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subset Ω of X with x̄ ∈ Ω and a scaler ε ≥ 0, the set N̂ε(x̄; Ω) of ε-normals of Ω at
x̄ is defined as

N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Ω→x̄

⟨x∗, x− x̄⟩
∥x− x̄∥

≤ ε
}
,

where x
Ω→ x̄ means x → x̄ with x ∈ Ω. When x̄ is an isolated point, N̂ε(x̄; Ω)

is defined as X∗. When ε = 0, the set N̂(x̄; Ω) := N̂0(x̄; Ω) is called the Fréchet
normal cone.

In the sequel, we often consider products of Banach spaces in the form

(1.1) X =
∏
j∈JX

Xj , Y =
∏
j∈JY

Yj , Z =
∏
j∈JZ

Zj ,

where m,n, p ∈ N, JX = {1, · · · ,m}, JY = {1, · · · , n}, JZ = {1, · · · , p}, and Xj , Yj ,
Zj are Banach spaces, respectively. As the main object of the paper, the generalized
sequential normal compactness (GSNC) can be defined as below:

Definition 1.1. Let J1, J2 ⊂ JX , Ω ⊂ X be a nonempty set with x̄ ∈ Ω. We say
that Ω is generalized sequentially normally compact (GSNC) at x̄ ∈ Ω with respect
to {Xj | j ∈ J1} (or J1 for simplicity) through {Xj | j ∈ J2} (or J2 for simplicity) if

for all sequence εk ↓ 0, xk
Ω→ x̄, and x∗k = (x∗1k, . . . , x

∗
mk) ∈ N̂εk(xk; Ω), the following

holds: [
x∗jk

w∗
→ 0 (j /∈ J2)

x∗jk → 0 (j ∈ J2)

]
=⇒

[
x∗jk → 0 (j ∈ J1)

]
.(1.2)

When X is an Asplund space and the set Ω is closed around x̄, we can equivalently
replace the ε-normal cones in Definition 1.1 by the Fréchet normal cones. If J1 =
JX , J2 = ∅ in Definition 1.1, then the GSNC reduces to the sequential normal
compactness (SNC) of Ω at x̄; if J2 = JX\J1, then the GSNC reduces to the
partial sequential normal compactness (PSNC) of Ω at x̄ with respect to J1; if
J2 = ∅, then the GSNC reduces to the strong partial sequential normal compactness
(strong PSNC, or SPSNC) of Ω at x̄ with respect to J1. In this way the GSNC
condition unifies the existing SNC/PSNC/strong PSNC conditions. We refer the
readers to [4, 6, 7, 12–14] or [2] and references therein for more discussions of these
compactness conditions and related notions both in Banach spaces and in Asplund
spaces.

For the subset J1 ⊂ JX as in Definition 1.1, and nonempty subsets Ω1,Ω2 of
X, recall that {Ω1,Ω2} is said to satisfy the mixed qualification condition at x̄ ∈
Ω1 ∩ Ω2 with respect to {Xj | j ∈ J1} (or J1 for simplicity) if for any εk ↓ 0,

uk
Ω1→ x̄, vk

Ω2→ x̄, u∗k = (u∗jk)j∈JX ∈ N̂εk(uk; Ω1), v
∗
k = (v∗jk)j∈JX ∈ N̂εk(vk; Ω2) with

(u∗k, v
∗
k)

w∗
→ (u∗, v∗) (k → ∞), one has[
u∗jk + v∗jk

w∗
→ 0 (j ∈ J\J1), u∗jk + v∗jk → 0 (j ∈ J1)

]
⇒ u∗ = v∗ = 0.

The mixed qualification condition was introduced in [6] for the development of the
calculus of sequential normal compactness conditions. When J1 = JX , the mixed
qualification condition reduces to the limiting qualification condition introduced
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in [5]. Clearly both qualification conditions are implied by the following more re-
strictive normal qualification condition corresponding to the case J1 = ∅:

N(x̄; Ω1) ∩
[
−N(x̄; Ω2)

]
= {0}.

See [5, 6] or [2] for further discussions.
We proceed to recall more notions to be used in the paper. By taking the

Painlevé-Kuratowski outer limit of ε-normal cones, we obtain the Mordukhovich
normal cone N(x̄; Ω):

N(x̄; Ω) :=
{
x∗ ∈ X∗ | ∃εk ↓ 0, x∗k

w∗
→ x∗, xk

Ω→ x̄ with x∗k ∈ N̂εk(xk; Ω)
}
.

Let F : X ⇒ Y be a set-valued mapping/multifunction. By gphF we mean the
graph of F , and by kerF we mean the kernel of F defined by

kerF := {x ∈ X | 0 ∈ F (x)}.
TheMordukhovich normal coderivative D∗

NF (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) ∈ gphF
is defined as

D∗
NF (x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗ | ∃εk ↓ 0, x∗k

w∗
→ x∗, y∗k

w∗
→ x∗, (xk, yk)

gphF→ (x̄, ȳ)

with (x∗k,−y∗k) ∈ N̂εk

(
(xk, yk); gphF

)}
∀y∗ ∈ Y ∗.

If the weak-star-convergence y∗k
w∗
→ y∗ in the above definition of D∗

NF (x̄, ȳ) is re-
placed by the norm-convergence y∗k → y∗, then we have the Mordukhovich mixed

coderivative D∗
MF (x̄, ȳ). If x∗k

w∗
→ x∗ in the above definition of D∗

NF (x̄, ȳ) is re-
placed by x∗k → x∗, then we have the Mordukhovich reversed mixed coderivative

D̃∗
MF (x̄, ȳ).

Letting φ : X → R := R ∪ {∞} = (−∞,∞], we denote its epigraph by epiφ
and assume that φ(x̄) < ∞ for some x̄ ∈ X. φ is said lower semicontinuous
(l.s.c.) around x̄ if epiφ is closed around (x̄, φ(x̄)). Let Eφ : X ⇒ R be a set-
valued mapping specified by the relation gphEφ = epiφ; then the Mordukhovich
subdifferential ∂φ(x̄) and singular subdifferential ∂∞φ(x̄) of φ at x̄ are respectively
defined as

∂φ(x̄) := D∗
NEφ(x̄, φ(x̄))(1), ∂∞φ(x̄) := D∗

NEφ(x̄, φ(x̄))(0).

The Mordukhovich normal cone, coderivatives, and subdifferentials are funda-
mental notions in variational analysis and its applications; we refer the readers
to [2, 3] and references therein for their history, calculus rules, and applications as
well as related topics. Readers can find more development on these notions in [8,9].

For a multifunction F : X ⇒ Y with ȳ ∈ F (x̄), we say that F is inner semicon-
tinuous at (x̄, ȳ) if for any sequence xk → x̄ with F (xk) ̸= ∅, there is a sequence
yk ∈ F (xk) such that yk → ȳ (k → ∞). We say that F is inner semicompact at
x̄ if for any sequence xk → x̄ with F (xk) ̸= ∅, there is a sequence yk ∈ F (xk)
that contains a convergent subsequence. We refer the readers to [2] and references
therein for more information about these two notions, and to [8, 9] for recent de-
velopment. In the following two sections, when these two conditions are involved,
we only present the results in the case of inner semicompactness, and omit the
corresponding formulations for the case of inner semicontinuity for simplicity; see
Remark 3.9 for more details.
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In the rest of the paper, we develop calculus of the GSNC conditions in Asplund
spaces in section 2, and then establish extended generalized differentiation results
utilizing the GSNC conditions in section 3.

2. GSNC in Asplund spaces

We study preservations of the GSNC properties of sets/mappings under various
set/mapping operations in Asplund spaces in this section. The obtained calculus
rules extend/unify the corresponding results in [4,6]. First we recall the intersection
rule for the GSNC of intersections of sets from [11,12] extending Theorem 3.3 in [6]:

Theorem 2.1. Let X as in (1.1) be a product of Asplund spaces and Ω1,Ω2 ⊂ X
be locally closed around x̄ ∈ Ω1 ∩ Ω2. Let Ji1, Ji2 ⊂ JX with Ji1 ∩ Ji2 = ∅ (i = 1, 2)
and J11 ∪ J21 = JX . Suppose that the following assumptions hold:

(i) Ωi is GSNC at x̄ with respect to Ji1 through Ji2 (i = 1, 2);
(ii) Either Ω1 is strongly PSNC at x̄ with respect to J22, or Ω2 is strongly PSNC

at x̄ with respect to J12;
(iii) The mixed qualification condition with respect to J12∪J22 holds for {Ω1,Ω2}

at x̄.

Then Ω1 ∩ Ω2 is GSNC at x̄ with respect to J11 ∩ J21 through J12 ∪ J22.

As demonstrated in the remaining part of the section, the intersection rule above
implies many useful calculus results for the GSNC of sets or graphs of mappings.
We first point out two simple cases. Let Fi : X ⇒ Y , φi : X → R (i = 1, 2) and
consider the mappings F1 ∩ F2 : X ⇒ Y , max{φ1, φ2} : X → R defined by
(2.1)
(F1 ∩ F2)(x) = F1(x) ∩ F2(x), max{φ1, φ2}(x) = max{φ1(x), φ2(x)} ∀x ∈ X.

Then we can directly apply Theorem 2.1 to obtain the corresponding GSNC results
for gph(F1 ∩ F2) and epimax{φ2, φ2} due to the relations

gph(F1 ∩ F2) = gphF1 ∩ gphF2, epimax{φ1, φ2} = epiφ1 ∩ epiφ2.

For simplicity we omit the details (cf. Proposition 4.6 in [6]).
For a multifunction F : X ⇒ Y and a set Θ ⊂ Y , the inverse image F−1(Θ) of Θ

under F is defined as

F−1(Θ) = {x ∈ X | F (x) ∩Θ ̸= ∅}.
The following result extends Theorem 3.8 in [6] regarding the normal compactness
of inverse images.

Theorem 2.2. Let F : X ⇒ Y be a multifunction with its graph gphF closed,
Θ ⊂ Y be a closed subset with x̄ ∈ F−1(Θ), where X, Y as in (1.1) are products
of Asplund spaces, and let JXi ⊂ JX , JY i ⊂ JY (i = 1, 2) with JX1 ∩ JX2 = ∅,
JY 1 ∩ JY 2 = ∅. Assume that the mapping S : X ⇒ Y defined by

S(x) = F (x) ∩Θ ∀x ∈ X

is inner semicompact at x̄, and that for every ȳ ∈ S(x̄) the following hold:

(i) gphF is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1} ∪ {Yj | j ∈ JY 1}
through {Xj | j ∈ JX2} ∪ {Yj | j ∈ JY 2};
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(ii) Θ is PSNC at ȳ with respect to {Yj | j ∈ JY \JY 1}, and is strongly PSNC at
this point with respect to {Yj | j ∈ JY 2};

(iii) F and Θ satisfy the qualification condition

(2.2) N(ȳ; Θ) ∩ kerD∗
NF (x̄, ȳ) = {0}.

Then the inverse image F−1(Θ) is GSNC at x̄ with respect to {Xj | j ∈ JX1}
through {Xj | j ∈ JX2}.

Proof. Take any sequence εk ↓ 0, xk → x̄ with xk ∈ F−1(Θ), and x∗k = (x∗jk)j∈JX ∈

N̂εk

(
xk;F

−1(Θ)
)
with x∗jk → 0 (j ∈ JX2) and x∗jk

w∗
→ 0 (j ∈ JX\JX2). It suffices

to show that x∗jk → 0 (j ∈ JX1) along a subsequence under the assumptions made.

According to the choice of xk, F (xk)∩Θ ̸= ∅. Then by the inner semicompactness of
the mapping S at x̄, there is a sequence yk ∈ F (xk)∩Θ that contains a convergent
subsequence. We may assume, without loss of generality, that yk → ȳ. Then
ȳ ∈ F (x̄) ∩Θ due to the closedness of gphF and Θ. Let

Ω1 := gphF, Ω2 := X ×Θ.

Then both Ω1 and Ω2 are closed and (x̄, ȳ) ∈ Ω1 ∩ Ω2. One can verify by the
definition of ε-normal cones that

(2.3) (x∗k, 0) ∈ N̂εk

(
(xk, yk); Ω1 ∩ Ω2

)
, k ∈ N.

We see that Ω2 is PSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX}∪{Yj | j ∈ JY \Y1}, is
strongly PSNC at this point with respect to {Xj | j ∈ JX2}∪{Yj | j ∈ JY 2}, and the
qualification condition (2.2) implies the qualification for {Ω1,Ω2} in Theorem 2.1.
Taking into account assumption (i) on the GSNC property of gphF , we can apply
Theorem 2.1 and obtain x∗jk → 0 (j ∈ JX1) by (2.3), which completes the proof. □

Theorem 2.2 reduces to the two cases of Theorem 3.8 in [6] in the following two
special situations: (i) JX1 = JX , JX2 = ∅, JY 1 = ∅, JY 2 = JY ; (ii) JX1 = JX ,
JX2 = ∅, JY 1 = JY , JY 2 = ∅. When Y = R in Theorem 2.2, we obtain the GSNC
properties of level sets of scalar functions below, which extends Corollary 3.9 in [6].

Theorem 2.3. Let φ : X → R with φ(x̄) = 0, where X as in (1.1) is a product of
Asplund spaces, and let JX1, JX2 ⊂ JX with JX1 ∩ JX2 = ∅. Then the following
assertions hold:

(i) If φ is l.s.c. around x̄, epiφ is GSNC at (x̄, 0) with respect to {Xj | j ∈ JX1}
through {Xj | j ∈ JX2}, and the qualification condition

(2.4) 0 /∈ ∂φ(x̄)

holds, then the set {x ∈ X | φ(x) ≤ 0} is GSNC at x̄ with respect to
{Xj | j ∈ JX1} through {Xj ∈ JX2}.

(ii) If φ is continuous around x̄, gphφ is GSNC at (x̄, 0) with respect to {Xj |
j ∈ JX1} through {Xj ∈ JX2}, and the qualification condition

(2.5) 0 /∈ ∂φ(x̄) ∪ ∂(−φ)(x̄)

holds, then the set {x ∈ X | φ(x) = 0} is GSNC at x̄ with respect to
{Xj | j ∈ JX1} through {Xj ∈ JX2}.
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Proof. Case (i) corresponds to Theorem 2.2 with F = Eφ, Y = R, and JY 1 = JY ,
JY 2 = ∅; case (ii) corresponds to Theorem 2.2 with F = φ, and JY 1 = JY , JY 2 =
∅. □

Combining Theorem 2.1 and Theorem 2.3, we can develop results concerning
GSNC properties of the constraint sets

{x ∈ X | φi(x) ≤ 0 (1 ≤ i ≤ q), φi(x) = 0 (q + 1 ≤ i ≤ q + r)}

for scalar functions φi : X → R with φi(x̄) = 0 (1 ≤ i ≤ q + r), where p, r ∈ N. We
leave the formulations of these results to the readers (cf. Theorem 3.10 in [6]).

We proceed to study preservations of GSNC properties of mappings under addi-
tions.

Theorem 2.4. Let Fi : X ⇒ Y (i = 1, 2) be multifunctions with closed graphs
and ȳ ∈ (F1 + F2)(x̄), where X, Y as in (1.1) are products of Asplund spaces,
and let JXi1, JXi2 ⊂ JX , JY i1, JY i2 ⊂ JY with JX11 ∪ JX21 = JX , JXi1 ∩ JXi2 =
JY i1 ∩ JY i2 = ∅ (i = 1, 2). Assume that the mapping S : X ×Y ⇒ Y ×Y defined by

S(x, y) = {(y1, y2) ∈ Y × Y |y1 ∈ F1(x), y2 ∈ F2(x), y1 + y2 = y} ∀(x, y) ∈ X × Y

is inner semicompact at (x̄, ȳ), and that for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the following
hold:

(i) gphFi is GSNC at (x̄, ȳi) with respect to {Xj | j ∈ JXi1} ∪ {Yj | j ∈ JY i1}
through {Xj | j ∈ JXi2} ∪ {Yj | j ∈ JY i2} (i = 1, 2);

(ii) Either gphF1 is strongly PSNC at (x̄, ȳ1) with respect to {Xj | j ∈ JX22},
or gphF2 is strongly PSNC at (x̄, ȳ2) with respect to {Xj | j ∈ JX12};

(iii) F1, F2 satisfy the qualification condition

(2.6) D∗
NF1(x̄, ȳ1)(0) ∩

[
−D∗

NF2(x̄, ȳ2)(0)
]
= {0}.

Then gph(F1 +F2) is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX11 ∩ JX21} ∪ {Yj |
j ∈ JY 11 ∪ JY 21} through {Xj | j ∈ JX12 ∪ JX22} ∪ {Yj | j ∈ JY 12 ∪ JY 22}.

Proof. It is sufficient to show that for any sequence εk ↓ 0, (xk, yk) → (x̄, ȳ) with
yk ∈ (F1 + F2)(xk), and x∗k = (x∗jk)j∈JX , y

∗
k = (y∗jk)j∈JY with

(2.7) (x∗k, y
∗
k) ∈ N̂εk

(
(xk, yk); gph(F1 + F2)

)
and x∗jk → 0 (j ∈ JX12∪JX22), x

∗
jk

w∗
→ 0 (j /∈ JX12∪JX22), y

∗
jk → 0 (j ∈ JY 12∪JY 22),

y∗jk
w∗
→ 0 (j /∈ JY 12 ∪ JY 22), one has

(2.8) x∗jk → 0 (j ∈ JX11 ∩ JX21, y∗jk → 0 (j ∈ JY 11 ∪ JY 21)

along some subsequence. By the choice of (xk, yk), S(xk, yk) ̸= ∅. Since the mapping
S is inner semicompact at (x̄, ȳ), there exists a sequence (y1k, y2k) ∈ S(xk, yk) that
contains a convergent subsequence. We may assume, without loss of generality, that
(y1k, y2k) → (ȳ1, ȳ2). It follows that (ȳ1, ȳ2) ∈ S(x̄, ȳ) because gphF1, gphF2 are
closed. Construct the sets Ω1,Ω2 ⊂ X × Y × Y such that

Ωi := {(x, u1, u2) ∈ X × Y × Y | ui ∈ Fi(x)} (i = 1, 2).
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Clearly these two sets are closed, (x̄, ȳ1, ȳ2) ∈ Ω1 ∩ Ω2, and one can verify directly
by the definition of ε-normal cones that (2.7) implies

(2.9) (x∗k, y
∗
k, y

∗
k) ∈ N̂εk

(
(xk, y1k, y2k); Ω1 ∩ Ω2

)
, k ∈ N.

By the structures of Ω1, Ω2 and the GSNC assumptions on F1, F2, it follows that

(i) Ω1 is GSNC at (x̄, ȳ1, ȳ2) with respect to {Xj | j ∈ JX11}, {Yj | j ∈ JY 11}
in the first Y -component in X × Y × Y , and the second Y -component in
X × Y × Y through {Xj | j ∈ JX12} and {Yj | j ∈ JY 12} in the first
Y -component in X × Y × Y ;

(ii) Ω2 is GSNC at (x̄, ȳ1, ȳ2) with respect to {Xj | j ∈ JX21}, the first Y -
component in X × Y × Y , and {Yj | j ∈ JY 21} in the second Y -component
in X × Y × Y through {Xj | j ∈ JX22} and {Yj | j ∈ JY 22} in the second
Y -component in X × Y × Y ;

(iii) Either Ω1 is strongly PSNC at (x̄, ȳ1, ȳ2) with respect to {Xj | j ∈ JX22} and
{Yj | j ∈ JY 22} in the second Y -component in X × Y × Y , or Ω2 is strongly
PSNC at (x̄, ȳ1, ȳ2) with respect to {Xj | j ∈ JX12} and {Yj | j ∈ JY 12} in
the first Y -component in X × Y × Y ;

(iv) the qualification condition (2.11) implies the qualification condition (iii) in
Theorem 2.1.

Therefore we can apply Theorem 2.1 and obtain from (2.9) that (2.8) holds. The
proof is complete. □

When JX11 = JX21 = JX , JX12 = JX22 = ∅, JY 11 = JY 21 = JY , JY 12 = JY 22 =
∅, Theorem 2.4 reduces to Theorem 4.4 in [6]. Note that the qualification condition
(2.6) corresponds to the normal qualification condition of gphFi, which can be
replaced by a more delicate condition involving the mixed qualification in terms of
normal cones of gphFi (i = 1, 2). In the case JY 11 = JY 21 = ∅, JY 12 = JY 22 = JY ,
we can improve (2.6) to (2.10) using the mixed coderivatives of Fi (i = 1, 2) in the
following result.

Theorem 2.5. Let Fi : X ⇒ Y (i = 1, 2) be multifunctions with closed graphs and
ȳ ∈ (F1 + F2)(x̄), where X, Y as in (1.1) are products of Asplund spaces, and let
JXi1, JXi2 ⊂ JX with JX11 ∪ JX21 = JX , JXi1 ∩ JXi2 = ∅ (i = 1, 2). Assume that
the mapping S : X × Y ⇒ Y × Y defined in Theorem 2.4 is inner semicompact at
(x̄, ȳ), and that for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the following hold:

(i) gphFi is GSNC at (x̄, ȳi) with respect to {Xj | j ∈ JXi1} through {Xj | j ∈
JXi2} ∪ {Yj | j ∈ JY } (i = 1, 2);

(ii) Either gphF1 is strongly PSNC at (x̄, ȳ1) with respect to {Xj | j ∈ JX22},
or gphF2 is strongly PSNC at (x̄, ȳ2) with respect to {Xj | j ∈ JX12};

(iii) F1, F2 satisfy the qualification condition

(2.10) D∗
MF1(x̄, ȳ1)(0) ∩

[
−D∗

MF2(x̄, ȳ2)(0)
]
= {0}.

Then gph(F1+F2) is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX11∩JX21} through
{Xj | j ∈ JX12 ∪ JX22} ∪ {Yj | j ∈ JY }.

Proof. The proof is similar to the proof of Theorem 2.4 (for the case JY 11 = JY 21 =
∅, JY 12 = JY 22 = JY ) except we can directly check that the qualification condition
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(2.10) implies the qualification condition (iii) in Theorem 2.1 for the set system
{Ω1,Ω2} defined in the proof of Theorem 2.4 at (x̄, ȳ1, ȳ2).. □

We single out a special case (JX12 = JX22 = ∅) of Theorem 2.5 which gives a
natural extension of Theorem 4.1 in [6] (corresponding to the case JX1 = JX2 = JX
below):

Theorem 2.6. Let Fi : X ⇒ Y (i = 1, 2) be multifunctions with closed graphs and
ȳ ∈ (F1 + F2)(x̄), where X, Y as in (1.1) are products of Asplund spaces, and let
JX1, JX2 ⊂ JX with JX1∪JX2 = JX . Assume that the mapping S : X×Y ⇒ Y ×Y
defined in Theorem 2.4 is inner semicompact at (x̄, ȳ), and that for every (ȳ1, ȳ2) ∈
S(x̄, ȳ) the following hold:

(i) gphFi is GSNC at (x̄, ȳi) with respect to {Xj | j ∈ JXi} through {Yj | j ∈
JY } (i = 1, 2);

(ii) F1, F2 satisfy the qualification condition

(2.11) D∗
MF1(x̄, ȳ1)(0) ∩

[
−D∗

MF2(x̄, ȳ2)(0)
]
= {0}.

Then gph(F1 + F2) is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1 ∩ JX2} through
{Yj | j ∈ JY }.

In the case of l.s.c. scalar functions, we have the following corollary of Theorem 2.4
or Theorem 2.5 by setting Fi = Eφi (i = 1, 2).

Theorem 2.7. Let φi : X → R be l.s.c. functions around x̄ ∈ X with φ(x̄) < ∞
(i = 1, 2), where X as in (1.1) is a product of Asplund spaces, and let JXi1, JXi2 ⊂
JX with JX11 ∪ JX21 = JX , JXi1 ∩ JXi2 = ∅ (i = 1, 2). Assume that

(i) epiφi is GSNC at (x̄, φi(x̄)) with respect to {Xj | j ∈ JXi1}} through {Xj |
j ∈ JXi2} (i = 1, 2);

(ii) either epiφ1 is strongly PSNC at (x̄, φ1(x̄)) with respect to {Xj | j ∈ JX22},
or epiφ2 is strongly PSNC at (x̄, φ2(x̄)) with respect to {Xj | j ∈ JX12};

(iii) φ1, φ2 satisfy the qualification condition

(2.12) ∂∞φ1(x̄) ∩
[
− ∂∞φ2(x̄)

]
= {0}.

Then epi(φ1+φ2) is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX11∩JX21} through
{Xj | j ∈ JX12 ∪ JX22}.

When JX12 = JX22 = ∅, Theorem 2.7 reduces to the following result extending
Corollary 4.3 in [6].

Theorem 2.8. Let φi : X → R be l.s.c. functions around x̄ ∈ X with φ(x̄) < ∞
(i = 1, 2), where X as in (1.1) is a product of Asplund spaces, and let JX1, JX2 ⊂ JX
with JX1 ∪ JX2 = JX . Assume that

(i) epiφi is strongly PSNC at (x̄, φi(x̄)) with respect to {Xj | j ∈ JXi} (i =
1, 2);

(ii) φ1, φ2 satisfy the qualification condition

(2.13) ∂∞φ1(x̄) ∩
[
− ∂∞φ2(x̄)

]
= {0}.

Then epi(φ1 + φ2) is strongly PSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1 ∩ JX2}.
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In the case of continuous scalar functions, we have the following corollary of
Theorem 2.4 or Theorem 2.5 in the case Fi = φi (i = 1, 2).

Theorem 2.9. Let φi : X → R be continuous functions around x̄ ∈ X (i = 1, 2),
where X as in (1.1) is a product of Asplund spaces, and let JXi1, JXi2 ⊂ JX with
JX11 ∪ JX21 = JX , JXi1 ∩ JXi2 = ∅ (i = 1, 2). Assume that

(i) gphφi is GSNC at (x̄, φi(x̄)) with respect to {Xj | j ∈ JXi1}} through
{Xj | j ∈ JXi2} (i = 1, 2);

(ii) either gphφ1 is strongly PSNC at (x̄, φ1(x̄)) with respect to {Xj | j ∈ JX22},
or gphφ2 is strongly PSNC at (x̄, φ2(x̄)) with respect to {Xj | j ∈ JX12};

(iii) φ1, φ2 satisfy the qualification condition

(2.14)
[
∂∞φ1(x̄) ∪ ∂∞(−φ1)(x̄)

]
∩
[
−
(
∂∞φ2(x̄) ∪ ∂∞(−φ2)(x̄)

)]
= {0}.

Then gph(α1φ1 + α2φ2) is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX11 ∩ JX21}
through {Xj | j ∈ JX12 ∪ JX22} for any α1, α2 ∈ R.

When JX12 = JX22 = ∅, Theorem 2.9 reduces to the following result extending
Corollary 4.5 in [6].

Theorem 2.10. Let φi : X → R be continuous functions around x̄ ∈ X(i = 1, 2),
where X as in (1.1) is a product of Asplund spaces, and JX1, JX2 ⊂ JX with JX1 ∪
JX2 = JX . Assume that

(i) gphφi is strongly PSNC at (x̄, φi(x̄)) with respect to {Xj | j ∈ JXi} (i =
1, 2);

(ii) φ1, φ2 satisfy the qualification condition

(2.15)
[
∂∞φ1(x̄) ∪ ∂∞(−φ1)(x̄)

]
∩
[
−
(
∂∞φ2(x̄) ∪ ∂∞(−φ2)(x̄)

)]
= {0}.

Then gph(α1φ1 + α2φ2) is strongly PSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1 ∩
JX2} for any α1, α2 ∈ R.

Next we establish the GSNC calculus for compositions of mappings.

Theorem 2.11. Let G : X ⇒ Y and F : Y ⇒ Z be multifunctions with closed
graphs and z̄ ∈ (F ◦ G)(x̄), where X, Y , Z as in (1.1) are products of Asplund
spaces, and let JXi ⊂ JX , JY i1, JY i2 ⊂ JY , JZi ⊂ JZ (i = 1, 2) with JX1 ∩ JX2 =
JY 11 ∩ JY 12 = JY 21 ∩ JY 22 = JZ1 ∩ JZ2 = ∅, JY 11 ∪ JY 21 = JY . Assume that the
mapping S : X × Z ⇒ Y defined by

S(x, z) = G(x) ∩ F−1(z) ∀(x, z) ∈ X × Z

is inner semicompact at (x̄, z̄), and that for every ȳ ∈ S(x̄, z̄) the following hold:

(i) gphG is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1} ∪ {Yj | j ∈ JY 11}
through {Xj | j ∈ JX2} ∪ {Yj | j ∈ JY 12};

(ii) gphF is GSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 21} ∪ {Zj | j ∈ JZ1}
through {Yj | j ∈ JY 22} ∪ {Zj | j ∈ JZ2};

(iii) Either gphG is strongly PSNC at (x̄, ȳ) with respect to {Yj | j ∈ JY 22}, or
gphF is strongly PSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 12}.

(iv) F , G satisfy the qualification condition

(2.16) D∗
NF (ȳ, z̄)(0) ∩ kerD∗

NG(x̄, ȳ) = {0}.
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Then gph(F ◦G) is GSNC at (x̄, z̄) with respect to {Xj | j ∈ JX1} ∪ {Zj | j ∈ JZ1}
through {Xj | j ∈ JX2} ∪ {Zj | j ∈ JZ2}.

Proof. It suffices to show that for any sequence εk ↓ 0, (xk, zk) → (x̄, z̄) with
(xk, zk) ∈ gph(F ◦G), and x∗k = (x∗jk)j∈JX , z

∗
k = (z∗jk)j∈JZ with

(2.17) (x∗k, z
∗
k) ∈ N̂εk

(
(xk, zk); gph(F ◦G)

)
and x∗jk → 0 (j ∈ JX2), z

∗
jk → 0 (j ∈ JZ2), x

∗
jk

w∗
→ 0 (j /∈ JX2), z

∗
jk

w∗
→ 0 (j /∈ JZ2),

one has

(2.18) x∗jk → 0 (j ∈ JX1), z∗jk → 0 (j ∈ JZ1)

along some subsequence. By the choice of (xk, zk), S(xk, zk) ̸= ∅. According to the
semicompactness assumption on S, there is a sequence yk ∈ S(xk, zk) containing a
convergent subsequence. Without loss of generality, we assume yk → ȳ. Because
gphG, gphF are closed, it follows that ȳ ∈ S(x̄, z̄). Consider closed sets Ω1,Ω2 ⊂
X × Y × Z defined by

Ω1 := gphG× Z, Ω2 := X × gphF ;

then (x̄, ȳ, z̄) ∈ Ω1∩Ω2 and it can be verified by (2.17) and the definition of ε-normal
cones that

(2.19) (x∗k, 0, z
∗
k) ∈ N̂εk

(
(xk, yk, zk); Ω1 ∩ Ω2), k ∈ N.

By the structures of Ω1 and Ω2, Ω1 is GSNC with respect to {Xj | j ∈ JX1} ∪ {Yj |
j ∈ JY 11} ∪ {Zj | j ∈ JZ} through {Xj | j ∈ JX2} ∪ {Yj | j ∈ JY 12} at (x̄, ȳ, z̄), Ω2

is GSNC with respect to {Xj | j ∈ JX} ∪ {Yj | j ∈ JY 21} ∪ {Zj | j ∈ JZ1} through
{Yj | j ∈ JY 22} ∪ {Zj | j ∈ JZ2} at (x̄, ȳ, z̄), and either Ω1 is strongly PSNC at
(x̄, ȳ, z̄) with respect to {Yj | j ∈ JY 22} ∪ {Zj | j ∈ JZ2}, or Ω2 is strongly PSNC
at (x̄, ȳ, z̄) with respect to {Xj | j ∈ JX2} ∪ {Yj | j ∈ Y12}; also (2.16) implies
the qualification condition (iii) in Theorem 2.1. Applying Theorem 2.1 to the set
system {Ω1,Ω2} at (x̄, ȳ, z̄), we obtain (2.18) by (2.19) and completes the proof. □

When JX1 = JX , JY 12 = JY 21 = JY , JZ1 = JZ , and JX2 = JY 11 = JY 22 = JZ2 =
∅, Theorem 2.11 reduces to the first case of Theorem 5.4 in [6]; when JX1 = JX ,
JY 11 = JY 22 = JY , JZ1 = JZ , and JX2 = JY 12 = JY 21 = JZ2 = ∅, Theorem 2.11
reduces to the second case of Theorem 5.4 in [6]; in this way, the two cases of the
latter theorem is unified. When JZ1 = ∅, JZ2 = JZ , we can improve the qualification
(2.16) in terms of the mixed coderivative of F as below. The proof is similar except
that we need to directly check that (2.20) implies the qualification condition (iii) in
Theorem 2.1 for the set system {Ω1,Ω2} defined in the proof of Theorem 2.11 at
(x̄, ȳ, z̄).

Theorem 2.12. Let G : X ⇒ Y and F : Y ⇒ Z be multifunctions with closed graphs
and z̄ ∈ (F◦G)(x̄), where X, Y , Z as in (1.1) are products of Asplund spaces, and let
JXi ⊂ JX , JY i1, JY i2 ⊂ JY (i = 1, 2) with JX1∩JX2 = JY 11∩JY 12 = JY 21∩JY 22 = ∅,
JY 11∪JY 21 = JY . Assume that the mapping S : X×Z ⇒ Y defined in Theorem 2.11
is inner semicompact at (x̄, z̄), and that for every ȳ ∈ S(x̄, z̄) the following hold:

(i) gphG is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1} ∪ {Yj | j ∈ JY 11}
through {Xj | j ∈ JX2} ∪ {Yj | j ∈ JY 12};
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(ii) gphF is GSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 21} through {Yj | j ∈
JY 22} ∪ {Zj | j ∈ JZ};

(iii) Either gphG is strongly PSNC at (x̄, ȳ) with respect to {Yj | j ∈ JY 22}, or
gphF is strongly PSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 12}.

(iv) {F,G} satisfies the qualification condition

(2.20) D∗
MF (ȳ, z̄)(0) ∩ kerD∗

NG(x̄, ȳ) = {0}.

Then gph(F ◦ G) is GSNC at (x̄, z̄) with respect to {Xj | j ∈ JX1} through {Xj |
j ∈ JX2} ∪ {Zj | j ∈ JZ}.

When JX1 = JX , JY 12 = JY 21 = JY , and JX2 = JY 11 = JY 22 = ∅, Theorem 2.12
reduces to the first case of Theorem 5.1 in [6]; when JX1 = JX , JY 11 = JY 22 =
JY , and JX2 = JY 12 = JY 21 = ∅, Theorem 2.12 reduces to the second case of
Theorem 5.1 in [6].

To conclude this section, we provide a corollary of Theorem 2.12 (or Theo-
rem 2.11) when F is a scalar function and G is single-valued. This result extends
Corollary 5.3 in [6].

Theorem 2.13. Let g : X → Y be a continuous function around x̄ ∈ X, and
φ : Y → R be an l.s.c. function around ȳ := g(x̄), where X, Y as in (1.1) are
products of Asplund spaces, and let JXi ⊂ JX , JY i1, JY i2 ⊂ JY (i = 1, 2) with
JX1 ∩ JX2 = JY 11 ∩ JY 12 = JY 21 ∩ JY 22 = ∅, JY 11 ∪ JY 21 = JY . Assume that the
following hold:

(i) gph g is GSNC at (x̄, ȳ) with respect to {Xj | j ∈ JX1} ∪ {Yj | j ∈ JY 11}
through {Xj | j ∈ JX2} ∪ {Yj | j ∈ JY 12};

(ii) epiφ is GSNC at (ȳ, φ(ȳ)) with respect to {Yj | j ∈ JY 21} through {Yj | j ∈
JY 22};

(iii) Either gph g is strongly PSNC at (x̄, ȳ) with respect to {Yj | j ∈ JY 22}, or
epiφ is strongly PSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 12}.

(iv) g, φ satisfy the qualification condition

(2.21) ∂∞φ(ȳ) ∩ kerD∗
Ng(x̄, ȳ) = {0}.

Then epi(φ ◦ g) is GSNC at (x̄, z̄) with respect to {Xj | j ∈ JX1} through {Xj | j ∈
JX2}.

Proof. The theorem reduces to the caseG = g, F = Eφ, and Z = R of Theorem 2.12.
□

3. GSNC and generalized differentiation

The generalized sequential normal compactness opens the door to extended gen-
eralized differential calculus involving Mordukhovich constructions for sets and set-
valued mappings. In fact, an improved exact extremal principle was established
in [12], where it also contains the extended intersection rule as below.

Theorem 3.1. Let X as in (1.1) be a product of Asplund spaces, nonempty sets
Ω1,Ω2 ⊂ X be locally closed around x̄ ∈ Ω1 ∩ Ω2, and Ji (i = 1, 2, 3, 4) form a
partition of JX . Suppose that the following assumptions hold:
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(i) Ω1 is GSNC at x̄ with respect to J2 ∪ J3 through J1, and Ω2 is GSNC at x̄
with respect to J1 ∪ J4 through J2;

(ii) either Ω1 is strongly PSNC at x̄ with respect to J2, or Ω2 is strongly PSNC
at x̄ with respect to J1;

(iii) The limiting qualification condition holds for {Ω1,Ω2} at x̄.

Then one has the inclusion

(3.1) N(x̄; Ω1 ∩ Ω2) ⊂ N(x̄; Ω1) +N(x̄; Ω2).

In the remaining part of the section, we establish calculus rules, mostly based
on Theorem 3.1, involving Mordukhovich generalized differential constructions of
sets, set-valued mappings, and scalar functions. These results can be justified using
similar schemes as for the cases of GSNC calculus in section 2, and we omit these
proofs for simplicity (cf. the proofs of corresponding results in [5]). The obtained
calculus extend the corresponding cases of the general results in [5] involving a
topology τ . Actually results in this section can be extended to this general case
with the topology τ naturally, and we omit the details. First we present the rule
for inverse images under set-valued mappings.

Theorem 3.2. Let F : X ⇒ Y be a multifunction with a closed graph, Θ ⊂ Y be
a closed subset with x̄ ∈ F−1(Θ), where X, Y as in (1.1) are products of Asplund
spaces, and let JY i ⊂ JY (i = 1, 2) withJY 1 ∩ JY 2 = ∅. Assume that the mapping
S : X ⇒ Y defined in Theorem 2.2 is inner semicompact at x̄, and that for every
ȳ ∈ S(x̄) the following hold:

(i) gphF is GSNC at (x̄, ȳ) with respect to {Yj | j ∈ JY 1} through {Xj ∈
JX} ∪ {Yj | j ∈ JY 2};

(ii) Θ is PSNC at ȳ with respect to {Yj | j ∈ JY \JY 1}, and is strongly PSNC at
this point with respect to {Yj | j ∈ JY 2};

(iii) F and Θ satisfy the qualification condition

(3.2) N(ȳ; Θ) ∩ ker D̃∗
MF (x̄, ȳ) = {0}.

Then

(3.3) N
(
x̄;F−1(Θ)

)
⊂

∪
ȳ∈F (x̄)∩Θ,y∗∈N(ȳ;Θ)

D∗
NF (x̄, ȳ)(y∗).

Next we provide the rule for the coderivatives of sums of set-valued mappings.
Note that the case for mixed coderivative (i.e., D∗ = D∗

M ) can not be derived from
Theorem 3.1; it can be proved directly using the set system {Ω1,Ω2} defined in the
proof of Theorem 2.4 following the scheme of the proof of Theorem 3.1 in [12].

Theorem 3.3. Let Fi : X ⇒ Y (i = 1, 2) be multifunctions with closed graphs and
ȳ ∈ (F1 + F2)(x̄), where X, Y as in (1.1) are products of Asplund spaces, and
let JXi ⊂ JX (i = 1, 2, 3, 4) form a partition of JX . Assume that the mapping
S : X×Y ⇒ Y ×Y defined in Theorem 2.4 is inner semicompact at (x̄, ȳ), and that
for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the following hold:

(i) gphF1 is GSNC at (x̄, ȳ1) with respect to {Xj | j ∈ JX2 ∪ JX3} through
{Xj | j ∈ JX1} ∪ {Yj | j ∈ JY };
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(ii) gphF2 is GSNC at (x̄, ȳ2) with respect to {Xj | j ∈ JX1 ∪ JX4} through
{Xj | j ∈ JX2} ∪ {Yj | j ∈ JY };

(iii) Either gphF1 is strongly PSNC at (x̄, ȳ1) with respect to {Xj | j ∈ JX2}, or
gphF2 is strongly PSNC at (x̄, ȳ2) with respect to {Xj | j ∈ JX1};

(iv) F1, F2 satisfy the qualification condition

(3.4) D∗
MF1(x̄, ȳ1)(0) ∩

[
−D∗

MF2(x̄, ȳ2)(0)
]
= {0}.

Then for all y∗ ∈ Y ∗, and for D∗ = D∗
N or D∗

M ,

(3.5) D∗(F1 + F2)(x̄, ȳ)(y
∗) ⊂

∪
(ȳ1,ȳ2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y

∗) +D∗F2(x̄, ȳ2)(y
∗)
]
.

When JX1 = JX2 = ∅, Theorem 3.3 reduces to the following result which does
not have the strong PSNC assumptions and the assumptions on F1 and F2 are
symmetric.

Theorem 3.4. Let Fi : X ⇒ Y (i = 1, 2) be multifunctions with closed graphs and
ȳ ∈ (F1 + F2)(x̄), where X, Y as in (1.1) are products of Asplund spaces, and let
JXi ⊂ JX (i = 1, 2) with JX1∪JX2 = JX , JX1∩JX2 = ∅. Assume that the mapping
S : X×Y ⇒ Y ×Y defined in Theorem 2.4 is inner semicompact at (x̄, ȳ), and that
for every (ȳ1, ȳ2) ∈ S(x̄, ȳ) the following hold:

(i) gphFi is GSNC at (x̄, ȳi) with respect to {Xj | j ∈ JXi} through {Yj | j ∈
JY } (i = 1, 2);

(ii) F1, F2 satisfy the qualification condition

(3.6) D∗
MF1(x̄, ȳ1)(0) ∩

[
−D∗

MF2(x̄, ȳ2)(0)
]
= {0}.

Then for all y∗ ∈ Y ∗, and for D∗ = D∗
N or D∗

M ,

(3.7) D∗(F1 + F2)(x̄, ȳ)(y
∗) ⊂

∪
(ȳ1,ȳ2)∈S(x̄,ȳ)

[
D∗F1(x̄, ȳ1)(y

∗) +D∗F2(x̄, ȳ2)(y
∗)
]
.

When Fi = Eφi for scalar function φi (i = 1, 2), Theorem 3.3 reduces to the
following subdifferential sum rule.

Theorem 3.5. Let φi : X → R (i = 1, 2) be l.s.c. functions around x̄ ∈ X, where
X as in (1.1) is a product of Asplund spaces, and let JXi ⊂ JX (i = 1, 2, 3, 4) form
a partition of JX . Assume that the following hold:

(i) epiφ1 is GSNC at (x̄, φ1(x̄)) with respect to {Xj | j ∈ JX2 ∪ JX3} through
{Xj | j ∈ JX1};

(ii) epiφ2 is GSNC at (x̄, φ2(x̄)) with respect to {Xj | j ∈ JX1 ∪ JX4} through
{Xj | j ∈ JX2};

(iii) Either epiφ1 is strongly PSNC at (x̄, φ1(x̄)) with respect to {Xj | j ∈ JX2},
or epiφ2 is strongly PSNC at (x̄, φ2(x̄)) with respect to {Xj | j ∈ JX1};

(iv) φ1, φ2 satisfy the qualification condition

(3.8) ∂∞φ1(x̄) ∩
[
− ∂∞φ2(x̄)

]
= {0}.

Then

∂(φ1 + φ2)(x̄) ⊂ ∂φ1(x̄) + ∂φ2(x̄),(3.9)

∂∞(φ1 + φ2)(x̄) ⊂ ∂∞φ1(x̄) + ∂∞φ2(x̄),(3.10)
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When JX1 = JX2 = ∅ in Theorem 3.5, we have the following corollary.

Theorem 3.6. Let φi : X → R (i = 1, 2) be lower semicontinuous and around
x̄ ∈ X, where X as in (1.1) is a product of Asplund spaces and JXi ⊂ JX (i = 1, 2)
with JX1 ∪ JX2 = JX , JX1 ∩ JX2 = ∅. Assume that the following hold:

(i) epiφi is strongly PSNC at (x̄, φi(x̄)) with respect to {Xj | j ∈ JXi} (i =
1, 2);

(ii) φ1, φ2 satisfy the qualification condition

(3.11) ∂∞φ1(x̄) ∩
[
− ∂∞φ2(x̄)

]
= {0}.

Then

∂(φ1 + φ2)(x̄) ⊂ ∂φ1(x̄) + ∂φ2(x̄),(3.12)

∂∞(φ1 + φ2)(x̄) ⊂ ∂∞φ1(x̄) + ∂∞φ2(x̄),(3.13)

To conclude the paper, we provide the chain rule for coderivatives of compositions
of set-valued mappings. The case D∗ = D∗

N can be derived from Theorem 3.1, while
the case D∗ = D∗

M can be proved directly using the set system {Ω1,Ω2} defined in
the proof of Theorem 2.11 following the scheme of the proof of Theorem 3.1 in [12].

Theorem 3.7. Let G : X ⇒ Y and F : Y ⇒ Z with closed graphs and z̄ ∈ (F ◦
G)(x̄), where X, Y , Z as in (1.1) are products of Asplund spaces and JY i ⊂ JY
(i = 1, 2) with JY 1∩JY 2 = ∅, JY 1∪JY 2 = JY . Assume that S : X×Z ⇒ Y defined in
Theorem 2.11 is inner semicompact at (x̄, z̄), and that for every ȳ ∈ G(x̄)∩F−1(z̄)
the following hold:

(i) gphG is GSNC at (x̄, ȳ) with respect to {Yj | j ∈ JY 1} through {Xj | j ∈
JX};

(ii) gphF is GSNC at (ȳ, z̄) with respect to {Yj | j ∈ JY 2} through {Zj | j ∈ JZ};
(iii) {F,G} satisfies the qualification condition

(3.14) D∗
MF (ȳ, z̄)(0) ∩

[
−D∗

MG−1(ȳ, x̄)(0)
]
= {0}.

Then for all z∗ ∈ Z∗ and for D∗ = D∗
N or D∗

M ,

(3.15) D∗(F ◦G)(x̄, z̄)(z∗) ⊂
∪

ȳ∈S(x̄,z̄)

[
D∗

NG(x̄, ȳ) ◦D∗F (ȳ, z̄)(z∗)
]
.

Remark 3.8. By Theorem 3.1 and the relations in (2.1), it is possible to derive
formulas for coderivatives of intersections of mappings, and subdifferentials of max-
ima of scalar functions; we omit the details (cf. Proposition 3.20 and Theorem 3.46
in [2]).

Remark 3.9. For those results in section 2 and 3 involving the inner semicompact-
ness, we can also establish the corresponding versions involving the inner semiconti-
nuity. They are similar with similar proofs, and we omit these results for simplicity.
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