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where vi : X × X → R1, i = 0,±1,±2, . . . is a continuous function defined on a
metric space X and x, y ∈ X. The interest in these discrete-time optimal problems
stems from the study of various optimization problems which can be reduced to this
framework (see [6, 32, 34] and the references mentioned there). The results of this
section were obtained in [30].

Let Z = {0,±1,±2, . . . } be the set of all integers, (X, ρ) be a compact metric
space and let vi : X × X → R1, i = 0,±1,±2, . . . be a sequence of continuous
functions such that

sup{|vi(x, y)| : x, y ∈ X, i ∈ Z} <∞
and which satisfy the following assumption:

(A) For each ϵ > 0 there exists δ > 0 such that if i ∈ Z and if

x1, x2, y1, y2 ∈ X

satisfy ρ(xj , yj) ≤ δ, j = 1, 2, then |vi(x1, x2)− vi(y1, y2)| ≤ ϵ.
For each y, z ∈ X and each pair of integers n1, n2 > n1 set

σ(n1, n2, y, z) = inf

{
n2−1∑
i=n1

vi(xi, xi+1) : {xi}n2
i=n1

⊂ X, xn1 = y, xn2 = z

}
,

σ(n1, n2) = inf

{
n2−1∑
i=n1

vi(xi, xi+1) : {xi}n2
i=n1

⊂ X

}
.

Choose a positive number d0 such that

|vi(x, y)| ≤ d0, x, y ∈ X, i ∈ Z.

A sequence {yi}∞i=−∞ ⊂ X is called good if there is c > 0 such that for each pair
of integers m1,m2 > m1,

m2−1∑
i=m1

vi(yi, yi+1) ≤ σ(m1,m2, ym1 , ym2) + c.

We say that the sequence {vi}∞i=−∞ has the turnpike property (TP) if there exists
a sequence {x̂i}∞i=−∞ ⊂ X which satisfies the following condition:

For each ϵ > 0 there are δ > 0 and a natural number N such that for each pair
of integers T1, T2 ≥ T1 + 2N and each sequence {yi}T2

i=T1
⊂ X which satisfies

T2−1∑
i=T1

vi(yi, yi+1) ≤ σ(T1, T2, yT1 , yT2) + δ

there are integers τ1 ∈ {T1, . . . , T1 +N}, τ2 ∈ {T2 −N, . . . , T2} such that:
(i) ρ(yi, x̂i) ≤ ϵ, i = τ1, . . . , τ2;
(ii) if ρ(yT1 , x̂T1) ≤ δ, then τ1 = T1 and if ρ(yT2 , x̂T2) ≤ δ, then τ2 = T2.
The sequence {x̂i}∞i=−∞ ⊂ X is called the turnpike of {vi}∞i=−∞.
The turnpike property is very important for applications. Suppose that our

sequence of cost functions {vi}∞i=−∞ has the turnpike property and we know a finite
number of “approximate” solutions of the problem (P). Then we know the turnpike
{x̂i}∞i=−∞, or at least its approximation, and the constant N (see the definition
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of (TP)) which is an estimate for the time period required to reach the turnpike.
This information can be useful if we need to find an “approximate” solution of the
problem (P) with a new time interval [m1,m2] and the new values x, y ∈ X at the
end points m1 and m2. Namely instead of solving this new problem on the “large”
interval [m1,m2] we can find an “approximate” solution of the problem (P) on the
“small” interval [m1,m1 + N ] with the values x, x̂m1+N at the end points and an
“approximate” solution of the problem (P) on the “small” interval [m2−N,m2] with
the values x̂m2−N , y at the end points. Then the concatenation of the first solution,

the sequence {x̂i}m2−N
m1+N and the second solution is an “approximate” solution of

the problem (P) on the interval [m1,m2] with the values x, y at the end points.
Sometimes as an “approximate” solution of the problem (P) we can choose any
sequence {xi}m2

i=m1
satisfying

xm1 = x, xm2 = y and xi = x̂i for all i = m1 +N, . . . ,m2 −N.

Assume that {x̂i}∞i=−∞ ⊂ X. How to verify if the sequence of cost functions
{vi}∞i=−∞ has (TP) and {x̂i}∞i=−∞ is its turnpike? In [30] we introduced three
properties (P1), (P2) and (P3) and showed that {vi}∞i=−∞ has (TP) if and only if
{vi}∞i=−∞ possesses the properties (P1), (P2) and (P3). The property (P1) means
that all good sequences have the same asymptotic behavior. Property (P2) means
that for each pair of integersm1,m2 > m1 the sequence {x̂i}m2

i=m1
is a unique solution

of problem (P) with x = x̂m1 , y = x̂m2 and that if a sequence {yi}∞i=−∞ ⊂ X is
a solution of problem (P) for each pair of integers m1,m2 > m1 with x = ym1 ,
y = ym2 , then yi = x̂i for all integers i. Property (P3) means that if a sequence
{yi}m2

i=m1
⊂ X is an approximate solution of problem (P) and m2 − m1 is large

enough, then there is j ∈ [m1,m2] such that yj is close to x̂j .
The next theorem is the main result of [30].

Theorem 2.1. Let {x̂i}∞i=−∞ ⊂ X. Then the sequence {vi}∞i=−∞ has the turnpike
property and {x̂i}∞i=−∞ is its turnpike if and only if the following properties hold:

(P1) If {yi}∞i=−∞ ⊂ X is good, then

lim
i→∞

ρ(yi, x̂i) = 0, lim
i→−∞

ρ(yi, x̂i) = 0;

(P2) For each pair of integers m1,m2 > m1

m2−1∑
i=m1

vi(x̂i, x̂i+1) = σ(m1,m2, x̂m1 , x̂m2)

and if a sequence {yi}∞i=−∞ ⊂ X satisfies

m2−1∑
i=m1

vi(yi, yi+1) = σ(m1,m2, ym1 , ym2)

for each pair of integers m1,m2 > m1, then yi = x̂i, i ∈ Z;
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(P3) For each ϵ > 0 there exist δ > 0 and a natural number L such that for each

integer m and each sequence {yi}m+L
i=m ⊂ X which satisfies

m+L−1∑
i=m

vi(yi, yi+1) ≤ σ(m,m+ L, ym, ym+L) + δ

there is j ∈ {m, . . . ,m+ L} for which ρ(yj , x̂j) ≤ ϵ.

It should be mentioned that (P1)-(P3) easily follow from the turnpike property.
However it is very nontrivial to show that (P1)-(P3) are sufficient for this property.

3. Turnpike property for variational problems

In this section, which is based on [29], we discuss the structure of approximate
solutions of variational problems with continuous integrands f : [0,∞)×Rn×Rn →
R1 which belong to a complete metric space of functions. We do not impose any
convexity assumption. The main result of this section, obtained in [29] deals with
the turnpike property of variational problems.

We consider the variational problems

(P )

∫ T2

T1

f(t, z(t), z′(t))dt→ min, z(T1) = x, z(T2) = y,

z : [T1, T2] → Rn is an absolutely continuous function,

where T1 ≥ 0, T2 > T1, x, y ∈ Rn and f : [0,∞)×Rn×Rn → R1 belongs to a space
of integrands described below.

It is well known that the solutions of the problems (P) exist for integrands f
which satisfy two fundamental hypotheses concerning the behavior of the integrand
as a function of the last argument (derivative): one that the integrand should grow
superlinearly at infinity and the other that it should be convex [26]. Moreover, cer-
tain convexity assumptions are also necessary for properties of lower semicontinuity
of integral functionals which are crucial in most of the existence proofs, although
there are some interesting theorems without convexity [7, 20, 21]. For integrands
f which do not satisfy the convexity assumption the existence of solutions of the
problems (P) is not guaranteed and in this situation we consider δ-approximate
solutions.

Let T1 ≥ 0, T2 > T1, x, y ∈ Rn, f : [0,∞)×Rn ×Rn → R1 be an integrand and
let δ be a positive number. We say that an absolutely continuous (a.c.) function
u : [T1, T2] → Rn satisfying u(T1) = x, u(T2) = y is a δ-approximate solution of the
problem (P) if ∫ T2

T1

f(t, u(t), u′(t))dt ≤
∫ T2

T1

f(t, z(t), z′(t))dt+ δ

for each a.c. function z : [T1, T2] → Rn satisfying z(T1) = x, z(T2) = y.
The main result of [29] deals with the turnpike property of the variational prob-

lems (P). As usual, to have this property means, roughly speaking, that the approx-
imate solutions of the problems (P) are determined mainly by the integrand and
are essentially independent of the choice of interval and endpoint conditions, except
in regions close to the endpoints.
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In the classical turnpike theory, it was assumed that a cost function (integrand)
is convex. The convexity of the cost function played a crucial role there. In [29] we
get rid of convexity of integrands and establish necessary and sufficient conditions
for the turnpike property for a space of nonconvex integrands M described below.

Let us now define the space of integrands. Denote by | · | the Euclidean norm
in Rn. Let a be a positive constant and let ψ : [0,∞) → [0,∞) be an increasing
function such that ψ(t) → +∞ as t → ∞. Denote by M the set of all continuous
functions f : [0,∞)×Rn ×Rn → R1 which satisfy the following assumptions:

A(i) the function f is bounded on [0,∞)×E for any bounded set E ⊂ Rn ×Rn;
A(ii) f(t, x, u) ≥ max{ψ(|x|), ψ(|u|)|u|} − a for each (t, x, u) ∈ [0,∞)×Rn ×Rn;
A(iii) for each M, ϵ > 0 there exist Γ, δ > 0 such that

|f(t, x1, u)− f(t, x2, u)| ≤ ϵmax{f(t, x1, u), f(t, x2, u)}
for each t ∈ [0,∞) and each u, x1, x2 ∈ Rn which satisfy

|xi| ≤M, i = 1, 2, |u| ≥ Γ, |x1 − x2| ≤ δ;

A (iv) for eachM, ϵ > 0 there exists δ > 0 such that |f(t, x1, u1)−f(t, x2, u2)| ≤ ϵ
for each t ∈ [0,∞) and each u1, u2, x1, x2 ∈ Rn which satisfy

|xi|, |ui| ≤M, i = 1, 2, max{|x1 − x2|, |u1 − u2|} ≤ δ.

It is easy to show that an integrand f = f(t, x, u) ∈ C1([0,∞)×Rn×Rn) belongs
to M if f satisfies assumption A(ii), and if sup{|f(t, 0, 0)| : t ∈ [0,∞)} < ∞ and
also there exists an increasing function ψ0 : [0,∞) → [0,∞) such that

sup{|∂f/∂x(t, x, u)|, |∂f/∂u(t, x, u)|} ≤ ψ0(|x|)(1 + ψ(|u|)|u|)
for each t ∈ [0,∞) and each x, u ∈ Rn.

For the set M we consider the uniformity which is determined by the following
base:

E(N, ϵ, λ) = {(f, g) ∈ M×M : |f(t, x, u)− g(t, x, u)| ≤ ϵ

for each t ∈ [0,∞) and each x, u ∈ Rn satisfying |x|, |u| ≤ N

and (|f(t, x, u)|+ 1)(|g(t, x, u)|+ 1)−1 ∈ [λ−1, λ]

for each t ∈ [0,∞) and each x, u ∈ Rn satisfying |x| ≤ N},
where N > 0, ϵ > 0, λ > 1.

It is not difficult to show that the space M with this uniformity is metrizable
(by a metric ρw). It is known (see [29]) that the metric space (M, ρw) is complete.
The metric ρw induces in M a topology.

We consider functionals of the form

If (T1, T2, x) =

∫ T2

T1

f(t, x(t), x′(t))dt

where f ∈ M, 0 ≤ T1 < T2 < +∞ and x : [T1, T2] → Rn is an a.c. function.
For f ∈ M, y, z ∈ Rn and numbers T1, T2 satisfying 0 ≤ T1 < T2 we set

Uf (T1, T2, y, z) = inf{If (T1, T2, x) : x : [T1, T2] → Rn

is an a.c. function satisfying x(T1) = y, x(T2) = z}.
It is easy to see that −∞ < Uf (T1, T2, y, z) < +∞ for each f ∈ M, each y, z ∈ Rn

and all numbers T1, T2 satisfying 0 ≤ T1 < T2.
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Let f ∈ M. A locally absolutely continuous (a.c.) function x : [0,∞) → Rn is
called an (f)-good function [32, 34, 35] if for any a.c function y : [0,∞) → Rn there
is a number My such that

If (0, T, y) ≥My + If (0, T, x) for each T ∈ (0,∞).

The following result was proved in [29].

Proposition 3.1. Let f ∈ M and let x : [0,∞) → Rn be a bounded a.c. function.
Then the function x is (f)-good if and only if there is M > 0 such that

If (0, T, x) ≤ Uf (0, T, x(0), x(T )) +M for any T > 0.

Let us now give the precise definition of the turnpike property.
Assume that f ∈ M. We say that f has the turnpike property, or breifly (TP),

if there exists a bounded continuous function Xf : [0,∞) → Rn which satisfies the
following condition:

For each K, ϵ > 0 there exist constants δ, L > 0 such that for each x, y ∈ Rn

satisfying |x|, |y| ≤ K, each T1 ≥ 0, T2 ≥ T1 + 2L and each a.c. function v :
[T1, T2] → Rn which satisfies

v(T1) = x, v(T2) = y, If (T1, T2, v) ≤ Uf (T1, T2, x, y) + δ

the inequality |v(t)−Xf (t)| ≤ ϵ holds for all t ∈ [T1 + L, T2 − L].
The function Xf is called the turnpike of f .
Assume that f ∈ M andX : [0,∞) → Rn is a bounded continuous function. How

to verify if the integrand f has (TP) and X is its turnpike? In [29] we introduced
two properties (P1) and (P2) and show that f has (TP) if and only if f possesses
the properties (P1) and (P2). The property (P2) means that all (f)-good functions
have the same asymptotic behavior while the property (P1) means that if an a.c.
function v : [0, T ] → Rn is an approximate solution and T is large enough, then
there is τ ∈ [0, T ] such that v(τ) is close to X(τ).

The next theorem is the main result [29].

Theorem 3.2. Let f ∈ M and Xf : [0,∞) → Rn be a bounded absolutely contin-
uous function. Then f has the turnpike property with Xf being the turnpike if and
only if the following two properties hold:

(P1) For each K, ϵ > 0 there exist γ, l > 0 such that for each T ≥ 0 and each a.c.
function w : [T, T + l] → Rn which satisfies

|w(T )|, |w(T + l)| ≤ K, If (T, T + l, w) ≤ Uf (T, T + l, w(T ), w(T + l)) + γ

there is τ ∈ [T, T + l] for which |Xf (τ)− v(τ)| ≤ ϵ.
(P2) For each (f)-good function v : [0,∞) → Rn,

|v(t)−Xf (t)| → 0 as t→ ∞.

In [29] we proved the following theorem which is an extension of Theorem 3.2.

Theorem 3.3. Let f ∈ M, Xf : [0,∞) → Rn be an (f)-good function. Assume
that the properties (P1), (P2) hold. Then for each K, ϵ > 0 there exist δ, L > 0 and
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a neighborhood U of f in M such that for each g ∈ U , each T1 ≥ 0, T2 ≥ T1 + 2L
and each a.c. function v : [T1, T2] → Rn which satisfies

|v(T1)|, |v(T2)| ≤ K, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + δ

the inequality |v(t)−Xf (t)| ≤ ϵ holds for all t ∈ [T1 + L, T2 − L].

4. Strong turnpike property for variational problems

In this section we use the notation, definitions and assumptions introduced in
Section 3 and discuss the results of [31].

The next result was proved in [31].

Proposition 4.1. Let f ∈ M and let for each (t, x) ∈ [0,∞) × Rn the function
f(t, x, ·) : Rn → R1 be convex. Then for each z ∈ Rn there is a bounded (f)-good
function Z : [0,∞) → Rn such that Z(0) = z and that for each T > 0,

If (0, T, Z) = Uf (0, T, Z(0), Z(T )).

Let f ∈ M. We say that f has the strong turnpike property, or briefly (STP), if
there exists a bounded a.c. function Xf : [0,∞) → Rn which satisfies the following
condition:

For each K, ϵ > 0 there exist constants δ, L > 0 such that for each T1 ≥ 0,
T2 ≥ T1 + 2L and each a.c. function v : [T1, T2] → Rn which satisfies

|v(T1)|, |v(T2)| ≤ K, If (T1, T2, v) ≤ Uf (T1, T2, v(T1), v(T2)) + δ

(i) there are τ1 ∈ [T1, T1 + L] and τ2 ∈ [T2 − L, T2] for which

|v(t)−Xf (t)| ≤ ϵ, t ∈ [τ1, τ2];

(ii) if |v(T1)−Xf (T1)| ≤ δ, then τ1 = T1 and if |v(T2)−Xf (T2)| ≤ δ, then τ2 = T2.
The function Xf is called the turnpike of f .
If in the definition above condition (ii) is not assumed, then we say that the

integrand f has the turnpike property which was discussed in Section 3.
Let f ∈ M. We say that an a.c. function x : [0,∞) → Rn is (f)-overtaking

optimal if for each a.c. function y : [0,∞) → Rn satisfying y(0) = x(0),

lim sup
T→∞

[If (0, T, x)− If (0, T, y)] ≤ 0.

Assume that f ∈ M and X : [0,∞) → Rn is a bounded a.c. function. How to
verify if the integrand f has (STP) and X is its turnpike? In [31] we introduced
three properties (P1), (P2) and (P3) and showed that f has (STP) if and only if
f possesses properties (P1), (P2) and (P3). Property (P1) means that all (f)-good
functions have the same asymptotic behavior while property (P2) means that X
is a unique (f)-overtaking optimal function whose value at zero is X(0). Property
(P3) means that if an a.c. function v : [0, T ] → Rn is an approximate solution and
T is large enough, then there is τ ∈ [0, T ] such that v(τ) is close to X(τ).

The next theorem is the main result of [31].

Theorem 4.2. Let f ∈ M, for each (t, x) ∈ [0,∞) × Rn the function f(t, x, ·) :
Rn → R1 be convex and let Xf : [0,∞) → Rn be a bounded a.c. function. Then
f has the strong turnpike property with Xf being the turnpike if and only if the
following three properties hold:
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(P1) For each pair of (f)-good functions v1, v2 : [0,∞) → Rn,

|v1(t)− v2(t)| → 0 as t→ ∞.

(P2) Xf is an (f)-overtaking optimal function and if an (f)-overtaking optimal
function v : [0,∞) → Rn satisfies v(0) = Xf (0), then v = Xf .

(P3) For each K, ϵ > 0 there exist γ, l > 0 such that for each T ≥ 0 and each a.c.
function w : [T, T + l] → Rn which satisfies

|w(T )|, |w(T + l)| ≤ K, If (T, T + l, w) ≤ Uf (T, T + l, w(T ), w(T + l)) + γ

there is τ ∈ [T, T + l] for which |Xf (τ)− v(τ)| ≤ ϵ.

In [31] we obtained the following theorem which is an extension of Theorem 4.2.

Theorem 4.3. Let f ∈ M, for each (t, x) ∈ [0,∞) × Rn the function f(t, x, ·) :
Rn → R1 is convex and let Xf : [0,∞) → Rn be a bounded a.c. function. Assume
that properties (P1), (P2) and (P3) from Theorem 4.2 hold.

Then for each K, ϵ > 0 there exist δ, L > 0 and a neighborhood U of f in M such
that the following property holds:

For each g ∈ U , each T1 ≥ 0, T2 ≥ T1 + 2L and each a.c. function v : [T1, T2] →
Rn which satisfies

|v(T1)|, |v(T2)| ≤ K, Ig(T1, T2, v) ≤ Ug(T1, T2, v(T1), v(T2)) + δ

there exist τ1 ∈ [T1, T1 + L], τ2 ∈ [T2 − L, T2] such that

|v(t)−Xf (t)| ≤ ϵ, t ∈ [τ1, τ2].

Moreover, if |v(T1)−Xf (T1)| ≤ δ, then τ1 = T1, and if |v(T2)−Xf (T2)| ≤ δ, then
T2 = τ2,

5. Discrete-time problems with constraints

In this section we discuss the structure of approximate solutions of nonautonomous
discrete-time optimal control systems arising in economic dynamics which are de-
termined by sequences of lower semicontinuous objective functions. The results of
this section we obtained in [33].

For each nonempty set Y denote by B(Y ) the set of all bounded functions f :
Y → R1 and for each f ∈ B(Y ) set

∥f∥ = sup{|f(y)| : y ∈ Y }.

For each nonempty compact metric space Y denote by C(Y ) the set of all continuous
functions f : Y → R1.

Let (X, ρ) be a compact metric space with the metric ρ. The set X × X is
equipped with the metric ρ1 defined by

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2), (x1, x2), (y1, y2) ∈ X ×X.

For each integer t ≥ 0 let Ωt be a nonempty closed subset of the metric space
X ×X.

Let T ≥ 0 be an integer. A sequence {xt}∞t=T ⊂ X is called a program if
(xt, xt+1) ∈ Ωt for all integers t ≥ T .
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Let T1, T2 be integers such that 0 ≤ T1 < T2. A sequence {xt}T2
t=T1

⊂ X is called

a program if (xt, xt+1) ∈ Ωt for all integers t satisfying T1 ≤ t < T2.
We assume that there exists a program {xt}∞t=0. Denote by M the set of all

sequences of functions {ft}∞t=0 such that for each integer t ≥ 0

ft ∈ B(Ωt)

and that
sup{∥ft∥ : t = 0, 1, . . . } <∞.

For each pair of sequences {ft}∞t=0, {gt}∞t=0 ∈ M set

d({ft}∞t=0, {gt}∞t=0) = sup{∥ft − gt∥ : t = 0, 1, . . . }.
It is easy to see that d : M×M → [0,∞) is a metric on M and that the metric
space (M, d) is complete.

Let {ft}∞t=0 ∈ M. We consider the following optimization problems

(PT1,T2)

T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program,

(P
(y)
T1,T2

)

T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program and xT1 = y,

(P
(y,z)
T1,T2

)
T2−1∑
t=T1

ft(xt, xt+1) → min s. t. {xt}T2
t=T1

is a program and xT1 = y, xT2 = z,

where y, z ∈ X and integers T1, T2 satisfy 0 ≤ T1 < T2.
The interest in these discrete-time optimal problems stems from the study of

various optimization problems which can be reduced to this framework, e. g.,
continuous-time control systems which are represented by ordinary differential equa-
tions whose cost integrand contains a discounting factor [13], the study of the
discrete Frenkel-Kontorova model related to dislocations in one-dimensional crys-
tals [2, 28] and the analysis of a long slender bar of a polymeric material under
tension in [14,18]. Similar optimization problems are also considered in mathemat-
ical economics.

For each y, z ∈ X and each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 set

U({ft}∞t=0, T1, T2) = inf{
T2−1∑
t=T1

ft(xt, xt+1) : {xt}T2
t=T1

is a program},

U({ft}∞t=0, T1, T2, y) = inf{
T2−1∑
t=T1

ft(xt, xt+1) :

{xt}T2
t=T1

is a program and xT1 = y},

U({ft}∞t=0, T1, T2, y, z) = inf{
T2−1∑
t=T1

ft(xt, xt+1) :
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{xt}T2
t=T1

is a program and xT1 = y, xT2 = z}.
Here we assume that the infimum over empty set is ∞.

We are interested in the structure of approximate solutions of problems (PT1,T2),

P
(y)
T1,T2

and P
(y,z)
T1,T2

which are defined as follows.
Let M ≥ 0, y, z ∈ X and let integers T1, T2 satisfy 0 ≤ T1 < T2. A program

{xt}T2
t=T1

is called an (M)-approximate solution of problem P
(y,z)
T1,T2

if

xT1 = y, xT2 = z and

T2−1∑
t=T1

ft(xt, xt+1) ≤ U({ft}∞t=0, T1, T2, y, z) +M.

It is called an (M)-approximate solution of problem P
(y)
T1,T2

if

xT1 = y and

T2−1∑
t=T1

ft(xt, xt+1) ≤ U({ft}∞t=0, T1, T2, y) +M.

The program {xt}T2
t=T1

is called an (M)-approximate solution of problem PT1,T2 if

T2−1∑
t=T1

ft(xt, xt+1) ≤ U({ft}∞t=0, T1, T2) +M.

A program {xt}∞t=0 is called an (M)-approximate solution of the corresponding
infinite horizon problem if for each pair of integers T1 ≥ 0, T2 > T1,

T2−1∑
t=T1

ft(xt, xt+1) ≤ U({ft}∞t=0, T1, T2) +M.

Denote by Mreg the set of all sequences of functions {fi}∞i=0 ∈ M for which

there exist a program {xft }∞t=0 and constants cf > 0, γf > 0 such that the following
conditions hold:

(C1) the function ft is lower semicontinuous for all integers t ≥ 0;
(C2) for each pair of integers T1 ≥ 0, T2 > T1,

T2−1∑
t=T1

ft(x
f
t , x

f
t+1) ≤ U({ft}∞t=0, T1, T2) + cf ;

(C3) for each ϵ > 0 there exists δ > 0 such that for each integer t ≥ 0 and each

(x, y) ∈ Ωt satisfying ρ(x, x
f
t ) ≤ δ, ρ(y, xft+1) ≤ δ we have

|ft(xft , x
f
t+1)− ft(x, y)| ≤ ϵ;

(C4) for each integer t ≥ 0, each (xt, xt+1) ∈ Ωt satisfying ρ(xt, x
f
t ) ≤ γf and

each (x′t+1, x
′
t+2) ∈ Ωt+1 satisfying ρ(x′t+2, x

f
t+2) ≤ γf there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′
t+2) ∈ Ωt+1;

moreover, for each ϵ > 0 there exists δ ∈ (0, γf ) such that for each integer t ≥ 0,

each (xt, xt+1) ∈ Ωt and each (x′t+1, x
′
t+2) ∈ Ωt+1 satisfying ρ(xt, x

f
t ) ≤ δ and
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ρ(x′t+2, x
f
t+2) ≤ δ there is x ∈ X such that

(xt, x) ∈ Ωt, (x, x
′
t+2) ∈ Ωt+1, ρ(x, x

f
t+1) ≤ ϵ.

Denote by M̄reg the closure of Mreg in (M, d). Denote by Mc,reg the set of all
sequences {fi}∞i=0 ∈ Mreg such that fi ∈ C(Ωi) for all integers i ≥ 0 and by M̄c,reg

the closure of Mc,reg in (M, d).
We study the optimization problems stated above with the sequence of objective

functions {fi}∞i=0 ∈ Mreg. Our study is based on the relation between these finite
horizon problems and the corresponding infinite horizon optimization problem de-

termined by {fi}∞i=0. Note that the condition (C2) means that the program {xft }∞t=0

is an approximate solution of this infinite horizon problem.

Let {fi}∞i=0 ∈ Mreg, a program {xfi }∞i=0, cf > 0 and γf > 0 be such that (C1)-
(C4) hold.

We begin with the following useful result.

Proposition 5.1. Let S ≥ 0 be an integer and {xi}∞i=S be a program. Then either

the sequence {
∑T−1

i=S fi(xi, xi+1)−
∑T−1

i=S fi(x
f
i , x

f
i+1)}∞T=S+1 is bounded or

(2.1) lim
T→∞

[
T−1∑
i=S

fi(xi, xi+1)−
T−1∑
i=S

fi(x
f
i , x

f
i+1)] = ∞.

A program {xt}∞t=S , where S ≥ 0 is an integer, is called ({fi}∞i=0)-good if the
sequence

{
T−1∑
i=S

fi(xi, xi+1)−
T−1∑
i=S

fi(x
f
i , x

f
i+1)}

∞
T=S+1

is bounded.
We say that the sequence {fi}∞i=0 possesses an asymptotic turnpike property (or

briefly (ATP)) with {xfi }∞i=0 being the turnpike if for each integer S ≥ 0 and each
({fi}∞i=0)-good program {xi}∞i=S ,

lim
i→∞

ρ(xi, x
f
i ) = 0.

We say that the sequence {fi}∞i=0 possesses a turnpike property (or briefly (TP))
if for each ϵ > 0 and each M > 0 there exist δ > 0 and a natural number L such
that for each pair of integers T1 ≥ 0, T2 ≥ T1+2L and each program {xt}T2

t=T1
which

satisfies
T2−1∑
i=T1

fi(xi, xi+1) ≤ min{U({fi}∞i=0, T1, T2, xT1 , xT2) + δ,

U({fi}∞i=0, T1, T2) +M},
the inequality ρ(xi, x

f
i ) ≤ ϵ holds for all integers i = T1 + L, . . . , T2 − L.

The sequence {xfi }∞i=0 is called the turnpike of {fi}∞i=0.
In [33] we obtained the following results.

Theorem 5.2. The sequence {fi}∞i=0 possesses the turnpike property if and only if
{fi}∞i=0 possesses (ATP) and the following property:
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(P) For each ϵ > 0 and each M > 0 there exist δ > 0 and a natural number L

such that for each integer T ≥ 0 and each program {xt}T+L
t=T which satisfies

T+L−1∑
i=T

fi(xi, xi+1)

≤ min{U({fi}∞i=0, T, T + L, xT , xT+L) + δ, U({fi}∞i=0, T, T + L) +M}
there is an integer j ∈ {T, . . . , T + L} for which ρ(xj , x

f
j ) ≤ ϵ.

The property (P) means that if a natural number L is large enough and a program

{xt}T+L
t=T is an approximate solution of the corresponding finite horizon problem,

then there is j ∈ {T, . . . , T + L} such that xj is close to xfj .

We denote by Card(A) the cardinality of the set A.

Theorem 5.3. Assume that the sequence {fi}∞i=0 possesses (ATP) and the property
(P), ϵ > 0 and M > 0. Then there exists a natural number L such that for each

pair of integers T1 ≥ 0, T2 > T1 + L and each program {xt}T2
t=T1

which satisfies

T2−1∑
t=T1

ft(xt, xt+1) ≤ U({fi}∞i=0, T1, T2) +M

the following inequality holds:

Card({t ∈ {T1, . . . , T2} : ρ(xt, x
f
t ) > ϵ}) ≤ L.

Let S ≥ 0 be an integer. A program {xt}∞t=S is called ({fi}∞i=0)-minimal if for
each integer T > S,

T−1∑
t=S

ft(xt, xt+1) = U({fi}∞i=0, S, T, xS , xT ).

A program {xt}∞t=S is called ({fi}∞i=0)-overtaking optimal if for each program
{x′t}∞t=S satisfying xS = x′S ,

lim sup
T→∞

(
T−1∑
t=S

ft(xt, xt+1)−
T−1∑
t=S

ft(x
′
t, x

′
t+1)) ≤ 0.

Theorem 5.4. Assume that the sequence {fi}∞i=0 possesses (ATP), z ∈ X, S ≥ 0 is
an integer and that there exists an ({fi}∞i=0)-good program {xt}∞t=S satisfying xS =
z. Then there exists an ({fi}∞i=0)-overtaking optimal program {x∗t }∞t=S satisfying
x∗S = z.

Theorem 5.5. Assume that the sequence {fi}∞i=0 possesses (ATP), z ∈ X, S ≥ 0 is
an integer and that there exists an ({fi}∞i=0)-good program {x̄t}∞t=S satisfying x̄S = z.
Let a program {xt}∞t=S satisfy xS = z. Then the following properties are equivalent.

(i) {xt}∞t=S is an ({fi}∞i=0)-overtaking optimal program;
(ii) the program {xt}∞t=S is ({fi}∞i=0)-minimal and ({fi}∞i=0)-good;
(iii) the program {xt}∞t=S is ({fi}∞i=0)-minimal and satisfies

lim
t→∞

ρ(xt, x
f
t ) = 0.
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In [33] we also showed that {fi}∞i=0 is approximated by elements of Mreg pos-
sessing (TP).

For each r ∈ (0, 1) and all integers i ≥ 0 set

f
(r)
i (x, y) = fi(x, y) + rρ(x, xfi ), (x, y) ∈ Ωi.

Clearly, {f (r)i }∞i=0 ∈ Mreg for all r ∈ (0, 1) and

lim
r→0+

d({f (r)i }∞i=0, {fi}∞i=0) = 0.

Proposition 5.6. Let r ∈ (0, 1). Then the sequence {f (r)i }∞i=0 possesses (TP) with

{xfi }∞i=0 being the turnpike.
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