


478 C. BARGETZ AND S. REICH

for all x, y ∈ D. This result has been generalized in [6] and [7] to set-valued mappings
the point images of which are closed subsets of their domains of definition. Recall
that given a bounded, closed and convex subset D of a Banach space X and a
mapping

F : D → 2D \ {∅},
an element x ∈ D is called a fixed point of F if it belongs to its image under F , that
is, if it satisfies x ∈ F (x). The proofs of these results use iterations of a mapping
defined on suitable hyperspaces. More precisely, let B(D) be a hyperspace of cer-
tain nonempty and closed subsets of D, and let F : D → B(D) be a nonexpansive
mapping. Then the mapping

F̃ : B(D) → B(D), A 7→
∪
x∈A

F (x),

is considered. Thus, in some sense the problem is “lifted” from a set-valued mapping
to a single-valued self-mapping of a certain hyperspace. A different approach to this
problem is taken in [4] and [8]. In the particular case of set-valued mappings which
are defined by pairs of nonexpansive single-valued mappings, an iteration of the
form

(1.1) x0 ∈ D, xk+1 ∈ argmin{∥y − xk∥ : y ∈ F (xk)}, k ∈ N,
is considered. In the case where D is a bounded, closed and convex subset of a
Hilbert space, the authors consider these mappings as elements of the space

M := {{f, g} : f, g : D → D with Lip f ≤ 1},
which is equipped with the Hausdorff distance inherited from the space of nonex-
pansive self-mappings endowed with the metric of uniform convergence. Here and
in the sequel we denote by Lip f the Lipschitz constant of a mapping f . It is shown
there that given a fixed initial point x0, the set of those nonexpansive mappings
for which the sequence in (1.1) is unique and converges is a residual subset of M.
In [4], F. S. de Blasi raises the question of whether this result is still true in general
Banach spaces. The main difference between the Banach space case and the Hilbert
space case is that in the former the Kirszbraun-Valentine extension theorem, on
which the proofs in [4, 8] are based, is no longer available. One of the goals of the
present paper is to give a positive answer to this question. We remark in passing
that a detailed overview of the genericity approach and its applications to nonlinear
analysis can be found in the book [11].

Since the set-valued mappings considered in this paper are of the form {f, g},
where both f, g : D → D are nonexpansive (single-valued) mappings, there seem to
be at least two natural metrics on the space M: the Hausdorff distance and the
metric of uniform convergence. The former was used in [4, 8], whereas the latter
is the one used in the results on generic existence of fixed points for set-valued
mappings mentioned above. We compare these two metrics and show that for both
of them, the results of [4, 8] can be generalized to the Banach space setting. We
emphasize that our goal in the present paper is not to find a fixed point of the
mapping f or g, which could be done by considering both of them independently,
but to work towards an understanding of the generic behavior of the method of
successive approximations for set-valued mappings.
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Mappings of the form

X → 2X \ ∅, x 7→ {fi(x) : i ∈ I(x)},

where each fi is a nonexpansive mapping and I(x) ⊂ I, where I is a finite index
set, have also been recently considered by M. Tam and others in the context of local
convergence analysis of iterative methods; see, for example, [12, 3].

In the sequel X is always a Banach space and D ⊂ X is a bounded, closed and
convex set. We moreover assume that D contains more than one element. By h we
denote the Hausdorff distance on 2D \ {∅}.

2. Some auxiliary results for single-valued mappings

In order to analyze the set-valued case, we first need a number of auxiliary results
regarding the single-valued case. Some of these results might be of independent
interest.

Lemma 2.1. Let f : D → D be a non-constant, nonexpansive mapping with a fixed
point ξ ∈ D. Then for each ε > 0, there is a strict contraction φ : D → D which
is ε-close to f , but has a different fixed point. Moreover, this strict contraction
satisfies Lipφ < Lip f .

Proof. Given ε > 0, choose y ∈ D with 0 < ∥ξ − y∥ < ε and δ ∈ (0, 1) with
δ < ε

diamD . We define φ : D → D by

φ(x) := δy + (1− δ)f(x), x ∈ D,

and observe that

Lipφ = (1− δ) Lip f and ∥f(x)− φ(x)∥ = δ∥y − f(x)∥ < ε.

Moreover, since

∥φ(ξ)− ξ∥ = δ∥ξ − y∥ > 0,

it is clear that ξ is not a fixed point of φ. Since according to Banach’s fixed point
theorem, φ has a unique fixed point, it follows that φ has a fixed point η ̸= ξ, as
asserted. □

We denote by

M1 := {f : D → D : Lip f ≤ 1}
the space of nonexpansive self-mappings of D equipped with the metric of uniform
convergence,

d∞(f, g) = sup
x∈D

∥f(x)− g(x)∥,

which turns M1 into a complete metric space.

Lemma 2.2. Let f : D → D be nonexpansive. Then for each ε > 0, there are a
number θ0 > 1 and a nonexpansive mapping φ : D → D such that d∞(f, φ) < ε and

(2.1) θφ(x) + (1− θ)x ∈ D

for every θ < θ0 and all x ∈ D. If f is a strict contraction, then so is φ.
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Proof. For each t ∈ (0, 1), define a mapping φt : D → D by

φt(x) := (1− t)x+ tf(x) for x ∈ D.

Note that the convexity of D guarantees that φt is well defined. Moreover,

∥φt(x)− φt(y)∥ ≤ (1− t)∥x− y∥+ tLip f∥x− y∥ = µ∥x− y∥

for all x, y ∈ D, where µ := (1− t) + tLip f . Observe that µ ≤ 1 always holds and
that µ < 1 whenever Lip f < 1. For a fixed t ∈ (0, 1), we have

x+
1

t
(φt(x)− x) = f(x) ∈ D

for all x ∈ D. Therefore we can set φ := φt and θ0 := 1
t . Finally, we choose t close

enough to 1 so that (1− t) diamD < ε and observe that

∥φ(x)− f(x)∥ = (1− t)∥x− f(x)∥ ≤ (1− t) diamD < ε

for all x ∈ D. This completes the proof of the lemma. □

Lemma 2.3. Let f : D → D be a strict contraction and let θ0 > 1 be so that
θf(x) + (1 − θ)x ∈ D for every x ∈ D and every θ < θ0. Moreover, let η ∈ D and

σ ∈ (0, 1]. Then for every ε > 0, there is a strict contraction f̃ : D → D such that

d∞(f, f̃) < ε,

(2.2) f̃(x) = f(x) for x ∈ D \B(η, σ) and f̃(η) = f(η) + c
(
f(η)− η

)
for some c > 0.

Proof. Given ε > 0 and σ > 0, we set

(2.3) α := min

{
1− Lip(f)

4
,
ε

2σ
,
θ0 − 1

2σ

}
and

(2.4) γ(x) := max{0, σ − ∥x− η∥}min

{
α,

α

∥f(η)− η∥+ 2σ

}
.

The function γ satisfies

∥γ∥∞ = σαmin

{
1,

1

∥f(η)− η∥+ 2σ

}
and

Lip(γ) = min

{
α,

α

∥f(η)− η∥+ 2σ

}
.

We define f̃ by

(2.5) f̃(x) := f(x) + γ(x)(f(x)− x), x ∈ D.

Note that

f̃(x) = f(x) + γ(x)(f(x)− x) = (1 + γ(x))f(x)− γ(x)x

= µ(x)f(x) + (1− µ(x))x,

where µ(x) = 1 + γ(x) > 1 and µ(x) < θ0.
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The calculation∥∥f̃(x)− f̃(y)
∥∥ = ∥f(x) + γ(x)(f(x)− x)− f(y)− γ(y)(f(y)− y))∥
≤ ∥f(x)− f(y)∥+ |γ(x)− γ(y)|∥f(x)− x∥+ 2|γ(y)|∥x− y∥
≤ ∥x− y∥(Lip(f) + Lip(γ)(2σ + ∥f(η)− η∥) + 2∥γ∥∞)

≤ ∥x− y∥(Lip(f) + α+ 2σα)

≤ ∥x− y∥(Lip(f) + 3α)

shows that Lip(f̃) ≤ (Lip(f) + 3α) ≤ 1− α < 1.
Using the fact that the support of γ is contained in B(η, σ), we get

∥f̃(x)− f(x)∥ = γ(x)∥f(x)− x∥ ≤ γ(x)(2∥x− η∥+ ∥f(η)− η∥)
≤ γ(x)(2σ + ∥f(η)− η∥) ≤ σα < ε.

Finally, note that by construction,

(2.6) f̃(x) =

{
f(x) x ̸∈ B(η, σ)

f(η) + ∥γ∥∞(f(η)− η) x = η.

□

Lemma 2.4. Let ε > 0, and let f : D → D and g : D → D be strict contractions
with (unique) fixed points ξ and η, respectively. If d∞(f, g) < ε, then

∥ξ − η∥ < min

{
ε

1− Lip f
,

ε

1− Lip g

}
.

Proof. Using the triangle inequality, we obtain

∥ξ − η∥ = ∥f(ξ)− g(η)∥ ≤ ∥f(ξ)− f(η) + f(η)− g(η)∥
≤ ∥f(ξ)− f(η)∥+ ∥f(η)− g(η)∥ < (Lip f)∥ξ − η∥+ ε,

which is equivalent to

∥ξ − η∥ < ε

1− Lip f
.

This inequality, when combined with the analogous inequality for g, yields the
claimed bound on ∥ξ − η∥. □

3. Pairs of nonexpansive mappings

We begin this section with the following definition.

Definition 3.1. Given two nonexpansive mappings

f : D → D and g : D → D,

we denote by {f, g} the set-valued mapping defined by x 7→ {f(x), g(x)}. We endow
the space

(3.1) M := {{f, g} : f, g : D → D nonexpansive}
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with the Hausdorff distance H on the subsets of M1. By N we denote the subset
of all pairs {f, g} of strict contractions, that is, Lip f,Lip g < 1. By M∞ we denote
the space M equipped with the metric

(3.2) h∞(F,G) := sup
x∈D

h(F (x), G(x))

of uniform convergence on D.

Remark 3.2. The metric space (M,H) is a complete metric space because it is
a closed subset of the space of compact subsets of the complete metric space M1.
Observe that given two elements F,G ∈ M, F = {f1, f2} and G = {g1, g2}, the
Hausdorff distance H satisfies

(3.3) H(F,G) = min{max{d∞(f1, g1), d∞(f2, g2)},max{d∞(f1, g2), d∞(f2, g1)}}
(cf. Proposition 2.2 in [8, p. 1099]). Moreover, it is easy to see that for each x ∈ D,
the inequality h(F (x), G(x)) ≤ H(F,G) is satisfied and hence

(3.4) h∞(F,G) ≤ H(F,G)

for all F,G ∈ M.

Proposition 3.3. The space M∞ = (M, h∞) is complete.

Proof. Let {Fn}n∈N be a Cauchy sequence in M∞. Since M∞ is a topological
subspace of the space of compact-valued nonexpansive mappings with the metric of
uniform convergence, which is complete (see, for example, [6]), this Cauchy sequence
has a limit F : D → K(D). As uniform convergence implies pointwise convergence
and the space of sets with at most two elements is a closed subspace of the space of
compact subsets of D, the point images of F have at most two elements. It remains
to be shown that there are two single-valued nonexpansive mappings f and g on
D such that F = {f, g}. In order to establish this assertion, we use the following
iterative argument. We start by setting

A0 := {x ∈ D : |F (x)| = 1} = {x ∈ D : F (x) = {F1(x)}},

f0 : A0 → D, x 7→ F1(x) and g0 := f0.

Given ε > 0, we set

Aε := {x ∈ D : diamF (x) > ε}.
In other words, by Aε we denote the set of points for which the two elements of the
point image of F are at least ε apart. Now pick ε1 > 0 small enough and choose an
n1 ∈ N such that h∞(Fn1 , F ) <

ε1
3 . Let h11, h

1
2 : D → D be nonexpansive mappings

such that Fn1 = {h11, h12}. In the sequel, we use the notation F (x) = {F1(x), F2(x)}.
We now define

f1 : Aε1 → D, x 7→

{
F1(x) : ∥F1(x)− h11(x)∥ < ε1

3

F2(x) : ∥F2(x)− h11(x)∥ < ε1
3

and

g1 : Aε1 → D, x 7→

{
F1(x) : ∥F1(x)− h12(x)∥ < ε1

3

F2(x) : ∥F2(x)− h12(x)∥ < ε1
3

.



SUCCESSIVE APPROXIMATIONS IN BANACH SPACES 483

Note that the condition ∥F1(x)− F2(x)∥ > ε1 ensures that both f1 and g1 are well
defined and that the inequality h∞(Fn, F ) <

ε1
3 ensures that for each x ∈ Aε1 , at

least one element of F (x) is close enough to h1(x) and h2(x), respectively.
Now fix m ∈ N, and assume that fm and gm are already defined, and satisfy

F (x) = {fm(x), gm(x)}

for each x ∈ Aεm . Moreover, we assume that we have picked nm ∈ N and nonex-
pansive mappings hm1 , h

m
2 : D → D such that Fnm = {hm1 , hm2 },

∥hm1 (x)− fm(x)∥ ≤ εm
3

and ∥hm2 (x)− gm(x)∥ ≤ εm
3

for each x ∈ Aεm−1 . We choose an εm+1 ∈ (0, εm2 ) and pick a natural number nm+1 >
nm such that h∞(Fnm+1 , F ) <

εm+1

3 . Now we can find nonexpansive mappings

hm+1
1 , hm+1

2 : D → D

such that Fnm+1 = {hm+1
1 , hm+1

2 },

∥hm1 (x)− hm+1
1 (x)∥ ≤ 1

3
(εm + εm+1)

and

∥hm2 (x)− hm+1
2 (x)∥ ≤ 1

3
(εm + εm+1).

When combined with the inverse triangle inequality, these inequalities also yield

(3.5) ∥hm1 (x)− hm+1
2 (x)∥ ≥ εm − 1

3
(εm + εm+1) >

1

3
(εm + εm+1)

and

(3.6) ∥hm2 (x)− hm+1
1 (x)∥ ≥ εm − 1

3
(εm + εm+1) >

1

3
(ε1 + εm+1)

as εm > 2εm+1. Next we define

fm+1 : Aεm+1 → D, x 7→

{
F1(x) : ∥F1(x)− hm+1

1 (x)∥ < εm+1

3

F2(x) : ∥F2(x)− hm+1
1 (x)∥ < εm+1

3

and

gm+1 : Aεm+1 → D, x 7→

{
F1(x) : ∥F1(x)− hm+1

2 (x)∥ < εm+1

3

F2(x) : ∥F2(x)− hm+1
2 (x)∥ < εm+1

3

.

Again the conditions on Aεm+1 and Fnm+1 ensure that these mappings are well
defined. Note that inequalities (3.5) and (3.6) imply that

fm+1(x) = fm(x) and gm+1(x) = gm(x)

for all x ∈ Aεm .
The result of this inductive construction is a sequence of sets {Aεm} such that

Aεm ⊂ Aεm+1 and D =

∞∪
m=0

Aεm
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and a sequence {fm, gm}. We now set k(x) := min{m ∈ N : x ∈ Aεm} and define
two mappings f : D → D and g : D → D by

f(x) := fk(x)(x) and g(x) := gk(x)(x).

We finish the proof by showing that f is nonexpansive. The argument for g is
completely similar. Let x, y ∈ D be given. Assume that neither one of the points
are in the set A0. For every ε > 0, there is an εm < ε such that x, y ∈ Aεm and
hence

∥f(x)− f(y)∥ ≤ ∥hm+1
1 (x)− hm+1

1 (y)∥+ ∥f(x)− hm+1
1 (x)∥

+ ∥f(y)− hm+1
1 (y)∥

≤ ∥x− y∥+ ε.

If one of the points, say x, belongs to A0, then the inequality

h(Fnm(x), F (x)) <
εm
3

implies that

∥hm1 (x)− f(x)∥ ≤ εm
3

and ∥hm2 (x)− f(x)∥ ≤ εm
3

because F (x) = {f(x)}. Hence in any case, we end up with

∥f(x)− f(y)∥ ≤ ∥x− y∥+ ε

for every ε > 0. Letting ε→ 0+, we arrive at the claimed result. □

Lemma 3.4. Let ε > 0, and let f1, f2, g1 and g2 be nonexpansive self-mappings of
D with d∞(f1, f2), d∞(g1, g2) < ε. Then the set-valued mappings F1 and F2 defined
by

(3.7) F1(x) := {f1(x), g1(x)} and F2(x) := {f2(x), g2(x)}, x ∈ D,

satisfy h(F1(x), F2(x)) < ε and H(F1, F2) < ε.

Proof. This is an easy consequence of (3.3) and of (3.4); cf. Remark 2.3 in [8]. □

Lemma 3.5. Let ε > 0, let f1, f2, g1 and g2 be nonexpansive self-mappings of D,
and let F1 and F2 be the set-valued mappings defined by

(3.8) F1(x) := {f1(x), g1(x)} and F2(x) := {f2(x), g2(x)}, x ∈ D.

Then the inequality H(F1, F2) < ε implies that

d∞(f1, f2), d∞(g1, g2) < ε or d∞(f1, g2), d∞(g1, f2) < ε.

Proof. See Proposition 2.2 in [8]. □

Remark 3.6. Note that the above lemma fails if we replace the Hausdorff distance
H by the metric of uniform convergence. For example, consider D = [−1, 1]3, which
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is a bounded, closed and convex subset of R3, and the mappings

f1 : D → D (x, y, z) 7→ (x, 0, ε/2),

g1 : D → D (x, y, z) 7→ (−x, 0,−ε/2),

f2 : D → D (x, y, z) 7→

{
(x, 0, 0) x ≤ 0

(−x, 0, 0) x > 0

g2 : D → D (x, y, z) 7→

{
(−x, 0, 0) x ≤ 0

(x, 0, 0) x > 0
.

For these mappings, we obtain

h(F1(ξ), F2(ξ)) = h({f1(ξ), g1(ξ)}, {f2(ξ), g2(ξ)}) < ε,

but the inequalities

∥f1(ξ)− f2(ξ)∥ ≥ 2 and ∥g1(ξ)− f2(ξ)∥ ≥ 2

show, for ε small enough, that a selection in the spirit of the above lemma is not
possible.

Given two nonexpansive mapping f, g : D → D, we consider the mapping

(3.9) F : D →
(
D

≤ 2

)
, x 7→ {f(x), g(x)}.

Then F ∈ M by the definition of M.

Definition 3.7. Let F ∈ M. A sequence {xn}n∈N, where
(3.10) xn+1 ∈ PF (xn)(xn)

for n ∈ N, is called a sequence of successive approximations with respect to F . The
sequence {xn}n∈N is called regular if PF (xn)(xn) is a singleton for all n ∈ N.
Lemma 3.8. The set N ⊂ M is dense in M.

Proof. This result follows from the corresponding result for single-valued mappings;
see, for example, [5] and Lemma 3.4. □
Proposition 3.9. Let F : D → K(D) be a Lipschitz mapping with Lipschitz con-
stant L < 1. Then every sequence {xn}n∈N with xn+1 ∈ PF (xn)(xn) converges to a
fixed point of F .

Proof. For n ∈ N, we have

(3.11) ∥xn+1 − xn∥ = d(xn, F (xn)) ≤ h(F (xn−1), F (xn)) ≤ L∥xn − xn−1∥
because xn ∈ PF (xn−1)(xn−1) and F is L-Lipschitz. Hence for k ∈ N, we obtain

(3.12)

∥xn+k − xn∥ ≤
k∑
j=1

∥xn+j − xn+j−1∥ ≤ ∥xn − xn−1∥
k∑
j=1

Lj

≤ ∥x1 − x0∥
k∑
j=1

Lj+n−1 ≤ ∥x1 − x0∥
∞∑
j=n

Lj

= ∥x1 − x0∥
Ln

1− L
,
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that is, {xn}n∈N is a Cauchy sequence. Since X is complete, this sequence has a
limit x∗. It remains to be shown that x∗ is a fixed point of F . Indeed, for each
ε > 0, there is a point xn such that

∥xn − x∗∥ < ε/3 and ∥xn − xn+1∥ < ε/3.

We have

d(x∗, F (x∗)) ≤ ∥xn − x∗∥+ d(xn, F (xn)) + h(F (xn), F (x
∗))

≤ ∥xn − x∗∥+ ∥xn − xn+1∥+ L∥xn − x∗∥ < ε.

As this inequality is true for any ε > 0, it follows that d(x∗, F (x∗) = 0 and therefore
x∗ ∈ F (x∗) because F (x∗) is closed. □

Proposition 3.10. Let F : D → K(D) be a Lipschitz mapping with Lipschitz con-
stant L < 1 and let {xn}n∈N be as in (3.10). If there are k, p ∈ N, p ≥ 1, with
xk+p = xk, then xk+j = xk ∈ FixF for all j ∈ N.

Proof. Since xk = xk+p, we have

∥xk+1 − xk∥ = d(xk, F (xk)) = d(xk+p, F (xk+p)) = ∥xk+p+1 − xk+p∥

and

∥xk+p+1 − xk+p∥ ≤ Lp−1∥xk+1 − xk∥

by (3.11). Combining these inequalities, we obtain

∥xk+1 − xk∥ ≤ Lp−1∥xk+1 − xk∥,

which implies that xp+1 = xp and xp ∈ FixF since xp ∈ F (xp). □

Proposition 3.11. Let f and g be strict contractions on D with distinct fixed points
ξ and η, respectively. Let {xn}n∈N be a sequence as in (3.10). Then the number of
elements of {xn}n∈N for which

(3.13) ∥xn − f(xn)∥ = ∥xn − g(xn)∥

is finite. Moreover, there is z ∈ {ξ, η} and an r0 so that for every 0 < r < r0,
there is an index N ∈ N such that xn ∈ B[z, r] for all n ≥ N and xn ̸∈ B[z, r] for
n = 0, . . . , N − 1.

Proof. By Proposition 3.9, we know that the sequence {xn}n∈N converges to a fixed
point of F . Without loss of generality, we may assume that the sequence converges
to ξ. The existence of a k ∈ N, where xk is a fixed point of F , implies that the rest
of the sequence remains constant and, since the fixed points of f and g are distinct,
we may set N := k in order to satisfy the claimed assertion.

Therefore it remains to consider the case where xn ̸∈ {ξ, η} for all n ∈ N. We set
α := min{∥f(ξ)−g(ξ)∥, ∥x0−ξ∥} and observe that α > 0 since the fixed points of f
and g are distinct, and x0 ̸= ξ. The continuity of f and g at ξ implies the existence
of an r0 > 0 with 0 < r0 <

α
4 such that ∥x− ξ∥ < r0 implies that ∥f(x)−f(ξ)∥ < α

4
and ∥g(x)− g(ξ)∥ < α

4 .
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For x ∈ B(ξ, r0), the triangle inequality, when combined with f(ξ) = ξ, implies
that

(3.14)
∥f(x)− x∥ ≤ ∥f(x)− f(ξ)∥+ ∥ξ − x∥ ≤ r0 +

α

4
<
α

2
and

∥g(x)− x∥ ≥ ∥g(ξ)− f(ξ)∥ − ∥g(ξ)− g(x)∥ − ∥ξ − x∥ ≥ α− α

4
− r0 ≥

α

2
,

and hence ∥f(x)− x)∥ < ∥g(x)− x∥. Given 0 < r < r0, we set

N := min{n ∈ N : ∥xn − ξ∥ ≤ r},
which exists because xn → ξ. This implies that

xN ∈ B(ξ, r) and xN+1 = f(xN ).

Since f is nonexpansive, we get ∥xN+1 − ξ∥ = ∥f(xN ) − f(ξ)∥ ≤ ∥xN − ξ∥ ≤ r.
Therefore we can deduce inductively that xn ∈ B(ξ, r) and xn+1 = f(xn) for all n ≥
N . Finally, we may use this bound, the inequality r < r0 and (3.14) to obtain that
the set of elements of {xn}n∈N for which

∥xn − f(xn)∥ = ∥xn − g(xn)∥
is contained in {x0, x1, . . . , xN−1} and therefore is finite, as asserted. □

4. Generic Convergence

Proposition 4.1. Let f and g be strict contractions on D with distinct fixed points
ξ and η, respectively. Moreover, assume that there is θ0 > 1 such that

(4.1) θf(x) + (1− θ)x ∈ D and θg(x) + (1− θ)x ∈ D

for every x ∈ D and every θ < θ0. Let {xn}n∈N be a sequence as in (3.10). Then for
each ε > 0, there are strict contractions φ and ψ on D such that H({f, g}, {φ,ψ}) <
ε, all metric projections P{φ(xn),ψ(xn)}(xn) are unique and {xn}n∈N satisfies (3.10)
for {φ,ψ}.

Proof. Without loss of generality, we may assume that xn → ξ. By Proposition 3.11,
there is an r0 > 0 such that for all 0 < r < r0, there is an N ∈ N so that xn ∈ B[ξ, r]
for n ≥ N and the set of elements of {xn}n∈N with

∥xn − f(xn)∥ = ∥xn − g(xn)∥
is contained in {x0, x1, . . . , xN−1}. Since x0, x1, . . . , xN−1 ̸∈ B[ξ, r], Proposition 3.10
implies that none of these points coincide. Define

σ := min

{
1,

∥xi − xj∥
2

, ∥xi − ξ∥ − r : i, j = 0, 1, . . . N − 1

}
and note that the above arguments imply that σ > 0. By the definition of σ, we
see that the balls B(xi, σ), σ = 0, 1, . . . , N − 1, and B(ξ, r) are pairwise disjoint.

Next, we define the mappings φ and ψ inductively: we start with setting φ0 := f
and ψ0 := g. Now for a fixed k ∈ {1, . . . , N − 1}, assume that φk−1 and ψk−1 have
already been defined.

If ∥f(xk−1)−xk−1∥ ̸= ∥g(xk−1)−xk−1∥, then we set φk := φk−1 and ψk := ψk−1.
Otherwise, that is, if ∥f(xk−1) − xk−1∥ = ∥g(xk−1) − xk−1∥, then we proceed as
follows:
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If xk = f(xk−1), then we set φk := φk−1 and use Lemma 2.3 to obtain a strict
contraction ψk with the following properties:

(i) ∥ψk(x)− ψk−1(x)∥ < ε for all x ∈ B(xk−1, σ),
(ii) ψk(x) = ψk−1(x) for all x ̸∈ B(xk−1, σ) and
(iii) ψk(xk−1) = g(xk−1) + c(g(xk−1)− xk−1) for some c > 0 and hence

∥φk(xk−1)− xk−1∥ = ∥f(xk−1)− xk−1∥ = ∥g(xk−1)− xk−1∥
< ∥ψk(xk−1)− xk−1∥.

Since the balls B(xi, σ), σ = 0, 1, . . . , N − 1, and B(ξ, r) are pairwise disjoint,
(i) implies that ∥ψk(x)−g(x)∥ < ε for all x ∈ D, and (ii) implies that ψk(xn) = g(xn)
for all n ≥ N and ψk(xn) = ψn(xn) for all n = 0, 1, . . . , k−1. Finally, note that (iii)
implies that

P{φk(xk−1),ψk(xk−1)}(xk−1) = {xk},
that is, the metric projection is unique.

If on the other hand, xk = g(xk−1), then we set ψk := ψk−1 and use the above
procedure to obtain a strict contraction φk which satisfies

φk(xn) = f(xn) for all n ≥ N,

φk(xn) = φn(xn) for the indices n = 0, 1, . . . , k − 1,

as well as

∥φk(xk−1)− xk−1∥ > ∥ψk(xk−1)− xk−1∥
and

∥f(x)− φk(x)∥ < ε

for all x ∈ D.
Setting φ := φN , ψ := ψN and using Lemma 3.4, we finish the proof. □

Proposition 4.2. Let f and g be strict contractions on D with distinct fixed points
ξ and η, respectively. In addition, let {xn}n∈N be a regular sequence of successive
approximations for {f, g}. Then there are an ε0 > 0 and an α > 0 so that for all
0 < ε < ε0 and all {φ,ψ} ∈ B({f, g}, αε), every sequence {yn}n∈N of successive
approximations for {φ,ψ} with y0 = x0 is regular and satisfies ∥xn − yn∥ ≤ ε for
all n ∈ N.

Proof. By assumption, the sequence {xn}n∈N converges. Without loss of generality,
we may assume that it converges to a fixed point ξ of f . Again by assumption, ξ is
not a fixed point of g. We set

ε0 := min

{
∥g(ξ)− ξ∥

3
,
1

2
, d∞(f, g)

}
and assume 0 < ε < ε0 to be given. Since xn → ξ, there is an N ∈ N such that
xn ∈ B(ξ, ε/4) for all n ≥ N . We set

σ := min
{
1,
∣∣∥f(xk)− xk∥ − ∥g(xk)− xk∥

∣∣ : k = 0, . . . , N
}

and

α := min

{
1−max{Lip f,Lip g}

2
,
σ

4N

}
,
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which is positive since f and g are strict contractions and {xn}n∈N is a regular
sequence.

Now let φ ∈ B(f, αε) and ψ ∈ B(g, αε) be arbitrary. Observe that for z ∈
B(ξ, ε/2), the conditions d∞(φ, f) < αε and ∥z − ξ∥ < ε/2, when combined with
the triangle inequality, imply that

(4.2) ∥φ(z)− ξ∥ < αε+ ∥f(z)− f(ξ)∥ ≤ (2α+ Lip f)
ε

2
≤ ε

2
,

that is, φ maps B(ξ, ε/2) into itself.
Let the sequence {yk}k∈N satisfy

y0 := x0 and yk+1 ∈ P{φ(yk),ψ(yk)}(yk).

We show by induction that ∥xk − yk∥ < kαε for k = 0, . . . , N . For k = 0, this
statement is true by the definition of y0. Assume now that we have already proved
the bound for the difference of xk and yk. If xk+1 = f(xk), we get

(4.3)
∥φ(yk)− xk+1∥ ≤ ∥φ(yk)− f(yk)∥+ ∥f(yk)− f(xk)∥

< αε+ kαε = (k + 1)αε

and

(4.4)

∥φ(yk)− yk∥ ≤ ∥f(xk)− xk∥+ ∥f(xk)− φ(xk)∥+ ∥φ(xk)− φ(yk)∥
+ ∥xk − yk∥

≤ ∥f(xk)− xk∥+ αε+ 2∥xk − yk∥ ≤ ∥f(xk)− xk∥
+ (2k + 1)αε

≤ ∥g(xk)− xk∥+ (2k + 1)αε− 4Nα ≤ ∥ψ(yk)− yk∥
+ (2k + 1− 4N)α

< ∥ψ(yk)− yk∥

because ∥g(xk)− xk∥ − ∥f(xk)− xk∥ ≥ 4Nα and ε ≤ 1
2 . Hence

yk+1 = φ(yk) and ∥yk+1 − xk+1∥ ≤ (k + 1)αε,

as claimed. A similar argument works for the case where xk+1 = g(xk).
Now we may use α ≤ 1

4N to deduce that

(4.5) ∥yk − xk∥ ≤ k

4N
ε ≤ ε/4

for k = 0, 1, . . . , N .
For z ∈ B(ξ, ε/2), the bound

∥ψ(z)− z∥ > ∥g(ξ)− ξ∥ − αε− 2∥ξ − z∥ > ∥g(ξ)− ξ∥ − 2ε > ε

shows, when combined with (4.2), that ∥ψ(z)− z∥ > ∥φ(z)− z∥ in this case. Since
yN ∈ B(ξ, ε/2) by (4.5) and the definition of N , this implies that yk+1 = φ(yk) for
k ≥ N and that the whole sequence {yn}n∈N is regular. Again by (4.5) and since φ
maps B(ξ, ε/2) into itself, we conclude that yk ∈ B(ξ, ε/2) for all k ≥ N and hence
∥xk − yk∥ ≤ diamB(ξ, ε/2) = ε, as asserted. □
Theorem 4.3. For each u ∈ D, there is a residual set M∗ ⊂ M such that for every
mapping {φ,ψ} ∈ M∗, the sequence of successive approximations with initial point
u is regular (and therefore unique) and converges to a fixed point of φ or of ψ.
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Proof. We denote by N∗ the set of all mappings {f, g} ∈ N such that f and g have
distinct fixed points and every sequence {xn}n∈N of successive approximations for
{f, g} with x0 = u is regular.

Lemmata 2.1, 2.2 and 3.4, when combined with Proposition 4.1, imply that N∗
is dense in N . Since N is dense in M, we may deduce that N∗ is a dense subset of
M. We define

(4.6) M∗ :=

∞∩
i=1

∪
{f,g}∈N∗

BM

(
{f, g},min

{α{f,g}ε0,{f,g}

2
,
α{f,g}

i

})
,

where α{f,g} and ε0,{f,g} are given by Proposition 4.2. Since N∗ ⊂ M is dense, we
see immediately that M∗ is a dense Gδ-set.

Proposition 4.2 guarantees that every sequence of successive approximations
{xn}n∈N with respect to any {φ,ψ} ∈ M∗ and where x0 = u, is regular. Therefore
it remains to be shown that {xn}n∈N converges to a fixed point of φ or of ψ.

To this end, we first show that {xn}n∈N is a Cauchy sequence. Given ε > 0, we
choose a natural number i > 3

ε . For all {φ,ψ} ∈ M∗, by definition, there is an
element {f, g} ∈ N∗ with

H({φ,ψ}, {f, g}) < min
{α{f,g}ε0,{f,g}

2
,
α{f,g}

i

}
.

Hence, by Proposition 4.2, the sequence {yn}n∈N of successive approximations with
respect to {f, g} with initial point y0 = u satisfies

(4.7) ∥xn − yn∥ ≤ min

{
ε0,{f,g}

2
,
1

i

}
≤ 1

i

for all n ∈ N. Since {yn} is a convergent sequence, there is an N ∈ N such that
∥yn − ym∥ < ε

3 for all m,n ≥ N . Therefore, by the triangle inequality, we have

∥xn − xm∥ ≤ ∥xn − yn∥+ ∥yn − ym∥+ ∥ym − xm∥ ≤ 2

i
+
ε

3
< ε

for all m,n ≥ N , that is, {xn}n∈N is indeed a Cauchy sequence.
Since D ⊂ X is closed, the sequence {xn}n∈N converges to a point x∗ ∈ D. Hence

for all ε > 0, there is an N ∈ N such that ∥xn − x∗∥ < ε
2 for all n ≥ N . We can use

this bound to obtain

d(x∗, {φ(x∗), ψ(x∗)}) ≤ d(x∗, {φ(xn), ψ(xn)})
+ h({φ(xn), ψ(xn)}, {φ(x∗), ψ(x∗)})

≤ ∥xn+1 − x∗∥+ ∥xn − x∗∥ < ε

because {φ,ψ} ∈ M and xn+1 ∈ {φ(xn), ψ(xn)}. Since ε > 0 is arbitrary, we
may conclude that d(x∗, {φ(x∗), ψ(x∗)}) = 0 and therefore either φ(x∗) = x∗ or
ψ(x∗) = x∗. In other words, the sequence {xn}n∈N converges to a fixed point of φ
or ψ. □

The above result is also true for the metric of uniform convergence, or in other
words, for the space M∞ = (M, h∞). However, in order to prove this statement, we
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need some preparation. Since h∞(F,G) ≤ H(F,G), the inequality H(F,G) < ε im-
plies that h∞(F,G) < ε, and so we only need the following variant of Proposition 4.2
for this new case.

Proposition 4.4. Let f and g be strict contractions on D with distinct fixed points
ξ and η, respectively. In addition, let {xn}n∈N be a regular sequence of successive
approximations for {f, g}. Then there are an ε0 > 0 and an α > 0 so that for all
0 < ε < ε0, and all {φ,ψ} ∈ Bh∞({f, g}, αε), every sequence {yn}n∈N of successive
approximations for {φ,ψ} with y0 = x0 is regular and satisfies ∥xn − yn∥ ≤ ε for
all n ∈ N.

Proof. By assumption, the sequence {xn}n∈N converges. Without any loss of gener-
ality, we may assume that it converges to a fixed point ξ of f . Again by assumption,
ξ is not a fixed point of g. We set

ε0 := min

{
∥g(ξ)− ξ∥

3
,
1

2
, d∞(f, g)

}
and assume 0 < ε < ε0 to be given. Since xn → ξ, there is an N ∈ N so that
xn ∈ B(ξ, ε/4) for all n ≥ N . We set

σ := min
{
1,
∣∣∥f(xk)− xk∥ − ∥g(xk)− xk∥

∣∣ : k = 0, . . . , N
}

and

α := min

{
1−max{Lip f,Lip g}

2
,
σ

4N

}
,

which is positive since f and g are strict contractions and {xn}n∈N is a regular
sequence.

By exchanging the roles of φ and ψ, if necessary, we may assume without loss of
generality that ∥ψ(ξ)−g(ξ)∥ < αε. Since the choice of ε ensures that the inequality
∥g(ξ)− ξ)∥ > 3ε is satisfied, we obtain

∥ψ(x)− f(x)∥ = ∥ψ(x)− ψ(ξ) + ψ(ξ)− g(ξ) + g(ξ)− ξ + f(ξ)− f(x)∥
≥ ∥g(ξ)− ξ∥ − 2∥x− ξ∥ − αε

≥ ∥g(ξ)− ξ∥ − (α+ 1)ε

≥ (2− α)ε

> αε

for all x ∈ D such that ∥x− ξ∥ < ε
2 . Hence the assumption

h({f(x), g(x)}, {ψ(x), φ(x)}) ≤ h∞({f, g}, {φ,ψ}) < αε

implies that

∥ψ(x)− g(x)∥ < αε and ∥φ(x)− f(x)∥ < αε

for all x ∈ B(ξ, ε2). Combining these bounds with the triangle inequality, similarly
to the proof of (4.2), we obtain that φ maps B(ξ, ε/2) into itself.

Let the sequence {yk}k∈N satisfy

y0 := x0 and yk+1 ∈ P{φ(yk),ψ(yk)}(yk).

We now show by induction that ∥xk − yk∥ < kαε for k = 0, . . . , N . For k = 0,
this statement is true by definition of y0. Assume now that we have already proved
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the bound for the difference of xk and yk. Without loss of generality we may assume
that xk+1 = f(xk). The assumption on {φ,ψ} implies that

∥φ(xk)− f(xk)∥ < αε or ∥ψ(xk)− f(xk)∥ < αε.

Again, without loss of generality, we may assume that we are in the first case.
Observe that

∥φ(yk)− xk+1∥ ≤ ∥φ(yk)− φ(xk)∥+ ∥φ(xk)− f(xk)∥
≤ ∥yk − xk∥+ αε

≤ (k + 1)αε,

where the last inequality holds by the induction hypothesis. Moreover, we obtain

∥φ(yk)− yk∥ ≤ ∥φ(yk)− φ(xk)∥+ ∥φ(xk)− f(xk)∥+ ∥f(xk)− xk∥
+ ∥xk − yk∥

≤ 2∥yk − xk∥+ αε+ ∥f(xk)− xk∥
≤ ∥f(xk)− xk∥+ (2k + 1)αε

≤ ∥g(xk)− xk∥ − 4Nα+ (2k + 1)αε.

Combining these inequalities with

d(g(xk), {φ(xk), ψ(xk)}) ≤ αε,

we see that

∥φ(yk)− yk∥ ≤ max{∥φ(yk)− yk∥, ∥ψ(yk)− yk∥} − α(4N − 2ε(2k + 1))

because

∥φ(xk)− φ(yk)∥ ≤ ∥xk − yk∥ ≤ kαε

and

∥ψ(xk)− ψ(yk)∥ ≤ ∥xk − yk∥ ≤ kαε.

From

4N − 2ε(2k + 1) ≥ 4n− 2k + 1 ≤ 4N − 3N > 0

we now deduce that

max{∥φ(yk)− yk∥, ∥ψ(yk)− yk∥} = ∥ψ(yk)− yk∥

and

∥φ(yk)− yk∥ < ∥ψ(yk)− yk∥,
that is, the sequence {yk}k∈N is regular. Moreover,

yk+1 = φ(yk) and ∥yk+1 − xk+1∥ ≤ (k + 1)αε,

as claimed.
Now we may use the inequality α ≤ 1

4N to deduce that

(4.8) ∥yk − xk∥ ≤ k

4N
ε ≤ ε/4

for k = 0, 1, . . . , N . We can now finish the proof by copying verbatim the arguments
from the end of the proof of Proposition 4.2. □
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Theorem 4.5. For each u ∈ D, there is a residual set M∗ ⊂ M∞ such that for
every mapping {φ,ψ} ∈ M∗, the sequence of successive approximations with initial
point u is regular (and therefore unique) and converges to a fixed point of φ or of
ψ.

Proof. As h∞(F,G) ≤ H(F,G), the only modification we have to make to the
proof of Theorem 4.3 is to replace all references to Proposition 4.2 by references to
Proposition 4.4. □

References

[1] C. Bargetz and M. Dymond, σ-porosity of the set of strict contractions in a space of non-
expansive mappings, Israel J. Math. 214 (2016), 235–244.

[2] C. Bargetz, M. Dymond and S. Reich, Porosity results for sets of strict contractions on geodesic
metric spaces, Topol. Methods Nonlinear Anal. 50 (2017), 89–124.

[3] M. N. Dao and M. K. Tam, Union averaged operators with applications to proximal algorithms
for min-convex functions, J. Optim. Theory Appl. 181 (2019), 61–94.

[4] F. S. de Blasi, Generic convergence of the sequence of successive approximations for a class of
nonexpansive set-valued maps in Hilbert spaces, Preprint.

[5] F. S. de Blasi and J. Myjak, Sur la convergence des approximations successives pour les con-
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