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lemma to boundary points (see [4] and subsequent articles) or fixed points results
for 1-Lipschitz maps on weakly compact convex sets.

Let us describe the content of this note. Section 2 contains the basic lemmas
from convex analysis, with a first application to the existence of the Haar measure
on metrizable compact groups. Lemmas 2.2, 2.3 and 2.4 are applied throughout
our work. Section 3 gathers applications to complex analysis. Section 4 gives
applications to ergodic theorems and the action of uniformly bounded linear groups
on reflexive spaces. Section 5 provides applications to the construction of 1-Lipschitz
retractions in strictly convex reflexive spaces. All our proofs are elementary.

The notation we use is classical. We recall that the weak operator topology on
the space L(X) of continuous linear operators on a locally convex space X is the
topology generated by the semi-norms

Nx,x∗(T ) = | < x∗, T (x) > |

with x ∈ X and x∗ ∈ X∗. This topology is denoted by wo. We denote by GL(X)
the group of all invertible elements of L(X). A real-valued function ϕ from a convex
set C is strictly convex if ϕ(λx + (1 − λ)y) < λϕ(x) + (1 − λ)ϕ(y) for all pairs of
distinct points (x, y) ∈ C2 and all λ ∈ (0, 1).

2. Basic lemmas

We first recall a well-known fact.

Lemma 2.1. Let K be a convex compact subset of a locally convex Hausdorff vector
space V . Then K is metrizable if and only if there exists a strictly convex continuous
function φ : K → R.

Proof. Since V is locally convex Hausdorff, the space A(K) of affine continuous
real-valued functions on K separates the points of K. If K is metrizable, the space
C(K) is norm-separable and so is its subspace A(K). Therefore there exists a
sequence (fn) of affine continuous functions which separate K. We may and do
assume that supK |fn| ≤ 1 for all n. Then the map F : K → l2(N) defined by
F (x) = (n−1fn(x))n is an affine continuous embedding when l2(N) is equipped with
the norm topology. Then the function φ = ∥.∥22 ◦ F works.

Conversely, assume that such a function φ exists. Let ∆ be the diagonal subset
of K ×K = K2. For n ≥ 1, we set

Un = {(x, y) ∈ K2; [φ(x) + φ(y)]/2− φ((x+ y)/2) < 1/n}
.

The sequence (Un) if a countable basis of neighbourhoods of ∆ in K2, and this
countability implies that K is metrizable (see IX.15, Thm.1 in [3])

□

Remark: We will use below strictly convex lower semi-continuous functions. It
has been shown in [6] that if K is a convex compact subset of a locally convex Haus-
dorff vector space V , there exists a strictly convex lower semi-continuous function
defined on K if and only if K embeds linearly into a strictly convex dual space
equipped with its weak* topology. Note however that there exists convex compact
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subsets of Lp (0 ≤ p < 1) without extreme points on which exist strictly convex
lower semi-continuous functions ( as follows from [11] and [17]). In what follows,
we will focus on metrizable convex compact sets in locally convex spaces.

Our next lemma on ”increasing” strictly convex functions is trivial but useful.
We will call below such a strictly convex function Φ an energy functional.

Lemma 2.2. Let K be a metrizable convex compact subset of a locally convex
Hausdorff vector space V . Let Φ : K → R be a strictly convex lower semi-continuous
function. Assume that ≺ is a relation on K such that x ≺ y implies Φ(x) ≤ Φ(y).
Then there exists m ∈ K which is ≺-minimal. That is, if x ≺ m then x = m.

Proof. Since K is compact and Φ is lower semi-continuous, Φ attains its minimum
at some m ∈ K. if x ≺ m, we have Φ(x) = Φ(m). But then x = m since Φ is
strictly convex.

□

The relations ≺ we will use in this work are obtained as follows. Let ⋆ : K2 → K
be a map. We will call it a product. We may define ≺ by: x ≺ y if there exists z
such that x = z ⋆ y, or alternatively by x ≺ y if there exists z such that x = y ⋆ z.
Both definitions will prove to be useful. Note that the relations ≺ are transitive
when the product ⋆ is associative. In practice we will consider only associative
products.

Our next lemma is a simple tool for showing the existence of a ”left zero” in
a convex semigroup, under quite general assumptions. We recall that an element
x ∈ K is called right regular for the product ⋆ if y ⋆ x = z ⋆ x implies y = z. With
this notation the following holds.

Lemma 2.3. Let K be metrizable convex compact subset of a locally convex space.
Let ⋆ be an associative product defined on K. We assume that ⋆ is separately
continuous, and left-linear, that is: (x+ y)/2 ⋆ z = (x ⋆ z + y ⋆ z)/2 for all x, y and
z in K. Then:

(1) if every z ∈ K is right-regular, or
(2) if ⋆ is bilinear and every e ∈ Ext(K) is right-regular

there exists m ∈ K such that m ⋆ z = m for every z ∈ K.

Proof. Let φ be a strictly convex continuous function on K. We consider the energy
functional defined by

Φ(x) = sup{φ(x ⋆ z); z ∈ K}.
Since ⋆ is left-continuous, the function Φ is lower semi-continuous. Since ⋆ is

associative, the function Φ is increasing for the relation ≺ defined by: x ≺ y if there
exists z ∈ K such that x = y ⋆ z. We claim that Φ is strictly convex. Indeed,
assume (1) and pick x and y in K with x ̸= y. Since ⋆ is right-continuous and φ is
continuous, there exists z ∈ K such that

Φ((x+ y)/2) = φ((x+ y)/2 ⋆ z) = φ((x ⋆ z + y ⋆ z)/2).

Since z is right-regular we have x ⋆ z ̸= y ⋆ z. But then
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Φ((x+ y)/2) = φ((x ⋆ z + y ⋆ z)/2) < [φ(x ⋆ z) + φ(y ⋆ z)]/2 ≤ [Φ(x) + Φ(y)]/2.

The conclusion follows from the definition of ≺ and Lemma 2.2. If we assume
(2), the proof follows the same lines once we notice that if ⋆ is bilinear, the function
ψ defined by ψ(z) = φ((x + y)/2 ⋆ z) is convex and continuous and thus it attains
its supremum at an extreme point.

□
Example: Let us show by an example that assuming right-regularity is necessary

in Lemma 2.3. We recall that a square matrix M ∈Mn(R) is stochastic if mij ≥ 0
for all (i, j) and

∑n
j=1mij = 1 for all i. The set Stn of stochastic n × n-matrices

is compact convex and stable under product. However, if A = (aij) is such that
ai1 = 1 for all i and aij = 0 for all i and all j ≥ 2, while B = (bij) is such that
bi2 = 1 for all i and bij = 0 for all i and all j ̸= 2, then TA = A and TB = B for
all T ∈ Stn. Hence Stn fails to satisfy the conclusion of Lemma 2.3.

Let us single out a special case of Lemma 2.3.

Lemma 2.4. Let K be metrizable convex compact subset of a locally convex space.
Let ⋆ be an associative, separately continuous and bilinear product defined on K.
We assume that every e ∈ Ext(K) is both left- and right-regular for ⋆. Then there
exists m ∈ K such that x ⋆ m = m ⋆ x = m for every x ∈ K.

Proof. We may apply (2) from Lemma 2.3 to get m ∈ K such that m ⋆ x = m for
every x ∈ K. But since every extreme point is also left-regular, we may use the
same argument with left and right swapped, to get m′ ∈ K such that x ⋆ m′ = m′

for all x ∈ K. But then m ⋆m′ = m = m′ and this concludes the proof.
□

Examples: Lemma 2.4 immediately shows the existence of the Haar measure for
any metrizable compact group G. Our proof follows [8]. Let K be the set P(G)
of probability measures on G equipped with the weak* topology. The convolution
product ⋆ satisfies the assumptions of Lemma 2.4. Indeed Ext(K) consists of the
Dirac measures (δx) which are ⋆-regular since the convolution with δx is a translation
operator.

The Markov-Kakutani fixed point theorem for compact groups follows from the
existence of the Haar measure, but it can be shown directly with an energy func-
tional: let K be a compact convex metrizable set, and ϕ a strictly convex continuous
function on K. Let G be a pointwise compact group of affine continuous maps from
K to K. Then the map Φ defined on K by Φ(x) = sup{ϕ(T (x)); T ∈ G} is l.s.c.
and strictly convex, and its unique minimizer is a common fixed point to all T ∈ G.

3. Applications to complex analysis

In Lemma 2.3 we assumed linearity of ⋆ on the left only. This will allow us to
apply this lemma to a very important product: the composition of functions ◦. We
prove now a quite general result on convex ◦-stable sets of holomorphic maps.

Let U be an open subset of Cn. We denote by H(U ;U) the set of analytic maps
from U to U . We denote by τK the topology of uniform convergence on the compact
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subsets of U . We denote by Id ∈ H(U ;U) the identity function such that Id(z) = z
for all z. With this notation, the following holds.

Proposition 3.1. Let U be a bounded connected open subset of C. Let C ⊂ H(U ;U)
be a convex ◦-stable set. Then either C = {Id} or the τK- closure C of C contains
a constant function.

Proof. Assume that C contains no constant function. Then every f ∈ C is a non-
constant holomorphic function, and thus f(U) is an open subset of C. But since
f(U) is contained in U and is open, we have in fact f(U) ⊂ U . Hence C ⊂ H(U ;U).
It is now easy to check that the convex set C is ◦-stable, and that ◦ is τK-separately
continuous. Moreover since U is bounded, the set C is τK-compact. Every f ∈ C
is right-regular for ◦. Indeed if g ◦ f = h ◦ f , the holomorphic functions g and h
coincide on the open set f(U) and thus everywhere on the connected set U .

We may now apply Lemma 2.3 which provides m ∈ C such that m ◦ f = m for
every f ∈ C. In particular m ◦ m = m, and thus m = Id on m(U). It follows
that m = Id or m is a constant function. The second option was ruled out, hence
m = Id and then m ◦ f = m = f for all f ∈ C. Thus C = {Id}.

□

A first corollary of this result is Schwarz’s uniqueness lemma in convex domains.

Corollary 3.2. Let U be a bounded convex open subset of C, and let f ∈ H(U ;U).
Assume that there exists z0 ∈ U such that f(z0) = z0 and f ′(z0) = 1. Then f(z) = z
for all z ∈ U .

Proof. We let C = {f ∈ H(U ;U); f(z0) = z0 , f
′(z0) = 1}. Since U is convex, the

set C is convex as well. The chain rule shows that it is stable under ◦. Hence if the
conclusion fails, C contains a constant function by Prop. 3.1, but this cannot be
since the map D(f) = f ′(z0) is τK- continuous on H(U ;C).

□

Our next corollary concerns stable subsets under a holomorphic action on a con-
vex domain. Note that Schwarz’s uniqueness lemma can be understood as what we
obtain when two fixed points of a holomorphic function merge into one.

Corollary 3.3. Let U be a convex bounded open subset of C, and let f ∈ H(U ;U).
Assume that there exists two disjoint convex compact subsets L and M of U such
that f(L) ⊂ L and f(M) ⊂M . Then f(z) = z for all z ∈ U .

Proof. Let C = {f ∈ H(U ;U); f(L) ⊂ L, f(M) ⊂M}. It is clear that C is convex
and ◦-stable. Hence if the conclusion fails, by Proposition 3.1 C contains a constant
function equal to µ. But clearly µ ∈ L ∩M and this cannot be.

□

It is classical that a holomorphic function on a simply connected domain with two
fixed points is Id. This is an immediate consequence of Corollary 3.3 if U is convex,
and the general case follows if we use Riemann’s conformal mapping theorem. We
recall that the“two fixed points” result fails in general for bounded open sets, as
shown by the example of f(z) = 1/z on the set U = {z ∈ C; 1/2 < |z| < 2}. On the
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other hand, Corollary 3.3 follows from the ”two fixed points” result for L and M
homeomorphic to compact convex sets if we use Schauder’s fixed point theorem.

Note that Corollary 3.3 and Schauder’s theorem show that if there exists a com-
pact convex set C ⊂ U such that f(C) ⊂ C and f ̸= Id, then the intersection of all
such sets C is the unique fixed point of f .

We now consider analytic functions of several complex variables. It is well-known
that such functions are harder to handle. For instance the dichotomy open range
vs. constant function completely fails, and Proposition 3.1 fails as well. A simple
example is provided by the set

C = {fµ ∈ H(D2;D2); |µ| < 1}
where fµ(z1, z2) = (µz1, z2), which satisfies the assumptions of Proposition 3.1
but not its conclusion. However, we observe that the arguments which proved
Proposition 3.1 show in dimensions greater than 1 the following weaker statement:
instead of finding an element of C which is everywhere constant, we can find such
an element which is constant on a non-compact set. Indeed:

Proposition 3.4. Let U be a bounded connected open subset of Cn. Let C ⊂
H(U ;U) be a convex ◦-stable set. Then either C = {Id} or the τK- closure C of C
contains f such that f−1(z) is not compact for some z ∈ f(U).

Proof. If the conclusion fails, then by Theorem 15.1.6 in [15], every f ∈ C is an
open map. The rest of the proof follows the same lines, once we observe that if
m ◦m = m and m is an open analytic function then m = Id.

□
Schwarz’s uniqueness lemma has an extension to analytic functions of several

complex variables due to H. Cartan ([5], see [15],p. 23). In fact, Cartan’s uniqueness
theorem holds in all Banach spaces (see Theorem 12.1 in [9]). Proposition 3.4
appears to fall short from implying Cartan’s theorem. Note however that this
theorem easily follows in the case of convex domains from Schauder’s fixed point
theorem, under an extra assumption on f which prevents trouble at the boundary.

Proposition 3.5. Let U be a bounded convex open subset of Cn, and let f ∈
H(U ;U). Assume that there exists z0 ∈ U such that f(z0) = z0 and f ′(z0) = Id,
and that f extends to an analytic function on a neighborhood of U . Then f(z) = z
for all z ∈ U .

Proof. We denote by H(U ;U) the set of analytic functions on U whose range is
contained in U . We define D = {g ∈ H(U ;U); g(z0) = z0, g

′(z0) = Id}. The set D
is convex and τK-compact. Moreover the map ψ : D → D defined by ψ(g) = f ◦ g
is continuous from (D, τK) to itself, hence by Schauder’s fixed point theorem there
is g ∈ D such that f ◦ g = g. But since g′(z0) = Id, the range of g has non-empty
interior, and thus f ◦ g = g implies that f = Id.

□
Let us mention in passing an easy case of Cartan’s result, where we do not need

any regularity assumption at the boundary: if U is the unit ball of a norm N on
Cn and f ∈ H(U ;U) is such that f(0) = 0 and f ′(0) = Id, then f = Id. Indeed
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one can apply Corollary 3.2 to functions g defined by g(λ) =< z∗, f(λz) >, where
we have N(z) = N∗(z∗) =< z∗, z >= 1 and λ ∈ C with |λ| < 1. Cartan’s theorem
follows for transitive domains in Cn but this is a quite restrictive condition (see e.g.
[12]).

4. Applications to ergodic theory

In this section, the product we consider will simply be the composition of linear
maps, hence a bilinear product. Our first proposition is a special case of Lemma
2.4.

Corollary 4.1. Let E be a locally convex Hausdorff space, and K ⊂ L(E) a con-
vex wo-metrizable compact subset of L(E), stable under products of operators. We
assume that Ext(K) is contained in the set GL(E) of invertible elements of L(E).
Then there exists P ∈ K such that PT = TP = P for all T ∈ K.

Indeed it suffices to apply Lemma 2.4 to product of operators - which is w0

separately continuous - since regularity of the extreme points follows immediately
from their invertibility. This corollary extends for instance Theorem III.7.9 in [16].
Note that P is a projection on the closed space {x ∈ E;T (x) = x for all T ∈ K}
and that T (ker(P )) ⊂ ker(P ) for all T ∈ K.

We now focus on reflexive spaces equipped with special norms. Our next result
provides a projection of norm 1 on the space of common fixed points of a convex
bounded semigroup.

Proposition 4.2. Let X be a separable reflexive strictly convex Banach space. Let
C be a convex ◦-stable subset of the unit ball of L(X). Then there exists P in the
wo-closure K of C such that TP = P for all T ∈ K.

Proof. We equip L(X) with the weak operator topology wo. The product is wo-
separately continuous, and the wo-closure K of C is wo-compact and ◦-stable. Let
(xn)n≥1 be a dense sequence in BX . We consider the following energy functional:

Φ(T ) =
∑
n≥1

2−n∥T (xn)∥2X .

Since X is strictly convex, it is easily seen that Φ is strictly convex on L(X).
Moreover, it is w0-l.s.c. as supremum of such functions. Finally, it is increasing for
the relation on K defined by: S ≺ T if there is L ∈ K such that S = LT . Indeed
since K is contained in the unit ball of L(X), we have ∥S(xn)∥ = ∥LT (xn)∥ ≤
∥T (xn)∥ for all n if S ≺ T . Now Lemma 2.2 concludes the proof.

□
Example: Let E be a linear subspace of the separable reflexive strictly convex

space X. Let us consider the set

CE = {T ∈ L(X); ∥T∥ ≤ 1, T = Id on E}.
Proposition 4.2 applied to CE shows the existence of a smallest contractively

complemented subspace Ẽ ⊂ X containing E. The space Ẽ is such that any T ∈
L(X) of norm 1 which is identity on E is also identity on Ẽ.

This proposition can be dualized, as follows.
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Proposition 4.3. Let X be a separable reflexive Gâteaux smooth Banach space.
Let C be a convex ◦-stable subset of the unit ball of L(X). Then there exists P in
the wo-closure K of C such that PT = P for all T ∈ K.

Proof. Since X is reflexive and Gâteaux smooth, its dual X∗ is strictly convex. We
may therefore apply Proposition 4.2 to the convex set K∗ = {T ∗;T ∈ K}, to obtain
P ∗ such that T ∗P ∗ = P ∗ for all T ∈ K. The conclusion follows since T ∗P ∗ = (PT )∗.

□

The proof of Proposition 4.3 consists in fact into applying Lemma 2.2 through the
energy functional Φ∗(T ) =

∑
n≥1 2

−n∥T ∗(x∗n)∥2X∗ , where (x∗n) is a dense sequence
in BX∗ .

Examples: Propositions 4.2 and 4.3 fail even in finite dimensional spaces when no
specific assumption is made on the norm. We may consider for instance the convex
semigroup Stn of stochastic matrices in the unit ball of L(ln∞), where ln∞ denotes
Rn equipped by the supremum norm, and the conclusion of Proposition 4.3 fails for
this set. Dually, the set St∗n provides a example in the unit ball of L(ln1 ) where the
conclusion of Proposition 4.2 fails. We can also observe that if P1 and P2 are two
distinct norm 1-projections with the same kernel, then C = conv({P1, P2}) satisfies
the assumptions of Proposition 4.2 but not its conclusion. Such pair of projections
exist on every non strictly convex 2-dimensional space.

Of course, gathering Propositions 4.2 and 4.3 and the usual uniqueness trick
proves that if X reflexive and separable is Gâteaux smooth and strictly convex,
then in the above notation there exists a contractive projection P ∈ K such that
PT = TP = P for all T ∈ K. This applies for instance to the classical spaces
Lp(1 < p < ∞). In the special case where K is the smallest convex wo-compact ◦-
stable subset containing a single contractive operator T , our arguments work under
a smoothness or a convexity assumption since then K is ◦- commutative.

We are now ready to apply a renorming argument, in order to show an isomorphic
result.

Corollary 4.4. Let X be a separable reflexive space, and G ⊂ GL(X) be a uniformly
bounded group. Then there exists a projection P in the wo-closed convex hull of G
such that PT = TP = P for all T ∈ G.

Proof. First, we equip the space X with the equivalent norm defined by N(x) =
sup{∥T (x)∥;T ∈ G}. The group G is contained into the group of invertible isome-
tries of the norm N . Now we may apply the renorming construction from [14] which
provides an equivalent locally uniformly rotund norm L on X such that every in-
vertible N -isometry is an L-isometry. Since L is in particular strictly convex, we
can apply Proposition 4.2 which provides a projection P in the wo-closed convex
hull of G such that TP = P for all T ∈ G. But applying [14] to the dual space X∗

gives a Fréchet smooth equivalent norm M such that every invertible N -isometry is
an M -isometry. Since M is in particular Gâteaux smooth, Proposition 4.3 gives a
projection P ′ in the wo-closed convex hull of G such that P ′T = P ′ for all T ∈ G.
As usual P ′P = P ′ = P and this concludes the proof.

□
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Note that the renorming procedure of [14] is canonical enough to provide a useful
property which, in the finite-dimensional case, follows from the uniqueness of John’s
ellipsoid: every invertible isometry for the original norm remains an isometry for
the new norm.

It is appropriate to compare Corollaries 4.1 and 4.4: when G is assumed to be
wo-compact, Corollary 4.4 is a special case of Corollary 4.1. In general however, it is
not easy to control the regularity of the extreme points of the wo-closed convex hull
of G. Moreover Corollary 4.4 typically applies to groups G which are not locally
compact, such as the group of unitary operators on L2.

Linear algebra shows that Corollary 4.4 actually states the following: if X is
separable and reflexive, and G is a uniformly bounded subgroup of GL(X), then
X = F ⊕H, where F = {x ∈ X;T (x) = x for all T ∈ G} and H is a closed vector
space such that T (H) ⊂ H for all T ∈ G, and for all x ∈ H\{0}, there is T ∈ G
with T (x) ̸= x.

Examples: We consider some finite-dimensional examples, with the above nota-
tion. Note that if G is contained in the orthogonal group On(R) on Rn, then P is
an orthogonal projection since it has norm 1 on ln2 . If G is the group of all linear
rotations of R3 with a given axis A, then F = A and P is the orthogonal projection
on A. If G = On(R), then conv(G) = BL(ln2 )

and P = 0. If G ⊂ On(R) is the

subgroup of permutation matrices, then by a result of Birkhoff conv(G) is the set
of bistochastic matrices. If we set e = (1, 1, 1, ...1) ∈ Rn, the projection P is the
orthogonal projection with range F = span(e). Note that the example of the convex
set Stn of stochastic matrices, which is ◦-stable but is not a group and for which
the conclusion of Corollary 4.4 fails, shows that our algebraic assumption on G is
necessary.

If X is any separable reflexive space and G is the group of all invertible isometries
of X, then P = 0. Actually, when G is such that there is T ∈ G with (−T ) ∈ G
then P = 0, since by Corollary 4.4 −(TP ) = −P = (−T )P = P . Note now that for
any normed space X, Id and −Id are invertible isometries.

5. Applications to Lipschitz maps

In this last section, we return to non-linear maps, more precisely to 1-Lipschitz
maps. We investigate the non expansive hull N(E) of a subset E of an appropriate
Banach space, as defined in [13] (see page 166). For convenience, we will use below

the notation Ẽ. We refer to [13] and to Chapter 1, Section 13 in [9] for more results
on 1-Lipschitz retractions. What follows is a non-linear version of Proposition 4.2.

Proposition 5.1. Let X be a separable reflexive strictly convex space. Let E be a
non-empty subset of X. Then there exists a subset Ẽ of X containing E such that
if F : X → X is 1-Lipschitz and such that F (x) = x for all x ∈ E, then F (x) = x

for all x ∈ Ẽ, and moreover Ẽ is the range of a 1-Lipchitz retraction defined on X.

Proof. We may and do assume that 0 ∈ E. We let E1 = E ∩BX . Let

K1 = {F : BX → BX ; F 1− Lipschitz, F = Id on E1}
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The set K1 is convex, ◦-stable and compact for the pointwise topology with values
in (BX , w). We denote this topology by τ . Let (xn) be a dense sequence in BX

with x0 = 0. We consider again the energy functional Φ : K1 → R defined by

Φ(F ) =
∑
n≥0

2−n∥F (xn)∥2.

It is easily seen that Φ is τ -s.c.i. and strictly convex on K1. Moreover, for all f
and g ∈ K1, one has Φ(g ◦ f) ≤ Φ(f). Indeed, since g is 1-Lipschitz and g(0) = 0,
it follows that ∥g(y)∥ ≤ ∥y∥ for all y ∈ BX . We may now apply Lemma 2.2 for the
relation: h ≺ f if there is g such that h = g ◦ f . Lemma 2.2 provides m1 ∈ K1 such
that g ◦m1 = m1 for all g ∈ K1. Let m1(BX) = Ẽ1. It follows from the fact that

g ◦m1 = m1 for all g ∈ K1 that if x ∈ BX , we have x ∈ Ẽ1 if and only if g(x) = x

for all g ∈ K1. Note that the strict convexity of X implies that Ẽ1 is a convex set.
For any n ≥ 2, we now reproduce the above argument on nBX , with En =

E ∩ nBX and Kn = {F : nBX → nBX ; F 1 − Lipschitz, F = Id on En}. This
provides a sequence (mn) of 1-Lipschitz retractions from nBX on an increasing

sequence Ẽn of convex subsets of X. Since ∥mn(x)∥ ≤ ∥x∥ for all x and n ≥ ∥x∥,
there exists a subsequence (mnk

) such that limkmnk
(x) = m(x) exists in (X,w) for

all x ∈ X.
The map m is 1-Lipschitz since the norm of X is weakly l.s.c. Since the sequence

(Ẽn) is increasing, m(x) = x for every x ∈
∪

n≥1 Ẽn. We now denote

Ẽ =
∪
n≥1

Ẽn.

Note that this closure is the same for the weak and norm topologies since the
relevant set is convex. Hence m(X) ⊂ Ẽ since mn(X) ⊂ Ẽ for all n, and m(x) = x

for every x ∈ Ẽ since m is 1-Lipschitz. Therefore m is a 1-Lipschitz retraction
from X onto Ẽ. Finally, if F : X → X is 1-Lipschitz and F = Id on E, then the
restriction of F to nBX belongs to Kn for every n and thus F = Id on Ẽn for every
n, hence on Ẽ. This concludes the proof.

□

Note that Ẽ clearly contains conv(E). Actually, Ẽ = conv(E) for all bounded
two-dimensional subsets E of X if and only if X is isometric to the Hilbert space
(see (15.1) in [1]), in which case Ẽ = conv(E) for every non-empty subset of X.
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[13] E. Kopecká and S. Reich, Nonexpansive retracts in Banach spaces, Banach Center Publications
77 (2007), 161–174.

[14] G. Lancien, Dentability indices and locally uniformly convex renormings, Rocky Mountain J.
Math. 23 (1993), 635–647.

[15] W. Rudin, Function theory in the unit ball of Cn, Grundlehren der Math. Wiss. Band 241,
Springer Verlag, 1980.

[16] H. H. Schaefer, Banach lattices and positive operators, Grundlehren der Math. Wiss. Band
215, Springer Verlag, 1974.

[17] K. Sundaresan, Orlicz spaces isomorphic to strictly convex spaces, Proc. Amer. Math. Soc. 17
(1966), 1353–1356.

Manuscript received September 21 2018

revised January 3 2019

G. Godefroy
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