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of Ginzburg-Landau type functionals, as for example in [5, 6]. More recently Poli-
akovsky introduced a similar functional in connection to the Γ-limit of the Aviles-
Gila problem [9]. Poliakovsky introduced the notion of BV q spaces and showed
that a certain nonlocal functional very similar to that appearing in Equation (0.1)
captures the Lq norm of the jump set of a function.

We mention also several other works which relate perimeter and total variation to
nonlocal functionals. A paper of Leoni and Spector [7] studies a fractional Sobolev
expression that recovers the total variation of a function. The main difference is
that the integrand in their expression scales linearly in the function u, whereas the
formula (0.1) scales quadratically. Similarly, a recent paper of Ambrosio, Bourgain,
Brezis, and Figalli [1] introduced a very interesting BMO-type norm which recovers
the perimeter of a set. In [4] this norm was shown to also give the total variation
of functions in SBV .

0.1. Summary of Results. The first question we investigate in this paper is what
happens to sets that do not have finite perimeter. The answer comes in two parts.
First, we show in Theorem 2.1 that there is a set E ⊂ [0, 1]n for which the limit
inferior in (0.1) vanishes. We do this by showing it is possible to construct a set of
infinite perimeter such that, for an sequence εk → 0 the functions γεk ∗1E are much
smoother than γεk . The construction is presented in Section 2.

The second part of the answer is that the limit superior does characterize sets of
finite perimeter. This is proven in Section 3 using in a strong way the L2 structure
of the norm. The proof relies on the characterization of sets of finite perimeter
provided in [1].

The second purpose of this paper is to bring some light to a generalization of (0.1)
that was already available in the literature. This generalization is described in
Section 4.

0.2. A note on organization. Preliminary results and basic definitions appear in
Section 1. Each of the other sections can be read independently of each other, so
the reader should feel free to skip to the result that is most interesting to them.

0.3. Acknowledgements. I am grateful to David Jerison, who suggested this
problem to me and helped me to focus the investigation. Daniel Spector pointed
out to me the very interesting paper [9], and a reviewer showed me the argument of
Section 4 which was very helpful. The author is supported by the John and Fannie
Hertz Foundation Fellowship.

1. Problem setup

First we define more clearly the Sobolev norm that we shall use. Given a smooth
function u ∈ S(Rn) with rapid decay, we define

∥u∥2
H1/2 =

∫
|ξ||û(ξ)|2 dξ.

We would like to study the expression

1

| log ε|
∥γε ∗ u∥2H1/2
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for functions u ∈ BV ∩ L∞(Rn) by decomposing the contributions from different
scales. To do this, we write

∥γε ∗ u∥2H1/2 =

| log ε|∑
k=0

ε−12−k∥φε2k ∗ u∥2L2 +O(∥u∥L2)

with the convolution kernel φ chosen such that φ̂(ξ) is nonnegative and

(1.1) |φ̂(ξ)|2 = |ξ|
(
|γ̂(ξ)|2 − |γ̂(2ξ)|2

)
.

Observe that |ξ|−3/2φ̂(ξ) is continuous and bounded, and that φ̂(ξ) is smooth outside
the origin. From this we deduce that f has the decay

|φ(x)| ≤ C(1 + |x|)−
3
2
−n.

In particular, |x|φ ∈ L1(Rn). In addition, φ is smooth and satisfies the cancellation
condition

∫
φ = 0. These three conditions are sufficient for us to prove the following

elementary estimates that we will use throughout the paper.

2. An example with infinite perimeter.

In this section we show that lim infε→0
1

| log ε|∥γε ∗ 1E∥2H1/2 does not character-

ize sets of finite perimeter. Indeed we show that one can find a set with infinite
perimeter for which the lim inf is zero.

Theorem 2.1. For any n > 0 there exists E ⊂ Rn with P (E) = ∞ and such that

lim inf
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 = 0.

This will follow from the result in one dimension.

Lemma 2.2. There exists a set E ⊂ [0, 1] with 0 < |E| < 1 and

lim inf
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 = 0.

We show now that Theorem 2.1 follows from the one-dimensional case.

Proof of Theorem 2.1 using Lemma 2.2. Choose E ⊂ [0, 1] according to
Lemma 2.2. For n > 1, consider the Cartesian product En ⊂ Rn. That is, the
indicator function can be written

1En(x1, . . . , xn) = 1E(x1)1E(x2) · · ·1E(xn).
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We can use the fact that the Gaussian separates to estimate γε ∗ 1En :

∥γε ∗ 1En∥2
H1/2 =

∫
· · ·
∫ ∑

j

ξ2j

1/2
n∏

i=1

∣∣∣γ̂ε(ξi)1̂E(ξi)∣∣∣2 dξi.
≤

n∑
j=1

∫
· · ·
∫

|ξj |
n∏

i=1

∣∣∣γ̂ε(ξi)1̂E(ξi)∣∣∣2 dξi.
= n∥γε ∗ 1E∥2H1/2∥γε ∗ 1E∥

2(n−1)
L2

≤ n∥γε ∗ 1E∥2H1/2 .

In the last step we used the fact that |E| < 1. □
The rest of the section will be devoted to proving Lemma 2.2.

2.1. Plan for the construction. The idea of the construction is to design a se-
quence of smooth functions ϕk that act as the smoothed versions of the set E at
varying scales. That is, we would like

γδ ∗ 1E ≈ γδ ∗ ϕk
for any δ ≥ δk, where δk is a sequence of scales converging to zero. If the scales δk
are sufficiently small, then because ϕk are smooth we should have

1

| log ε|
∥γδk ∗ 1E∥

2
H1/2 ≈ 1

| log ε|
∥γδk ∗ ϕk∥

2
H1/2 ≈ 0.

To ensure that the smooth functions ϕk converge to a measurable set, we enforce
that 0 ≤ ϕk ≤ 1 and that the sets {ϕk = 0} and {ϕk = 1} are strictly increasing.
Moreover the functions ϕk face a compatibility condition whereby local averages of
ϕk+1 must match local averages of ϕk. The compatibility condition is of the form

γδkϕk+1 ≈ γδkϕk.

To reconcile this with our need for the set {ϕk+1 ∈ {0, 1}} to increase, we construct
ϕk+1 to be highly oscillatory compared to the scale δk, so that the δk smoothing re-
covers only the smoother function ϕk. A cartoon of the first step of the construction
is given in Figure 1.

The following definition quantifies the conditions outlined above.

Definition 2.3. Let ϕk ∈ C∞
c ((0, 1)) be a sequence of smooth functions and let

εk > 0 be a decreasing sequence of scales with εk → 0. We say that ϕk is a compatible
sequence if the following properties hold:

• Nontriviality:
0 < |{ϕ1 = 1}|.

• Convergence to a set:

|{ϕk ̸∈ {0, 1}}| < (0.99)k,

{ϕk = 1} ⊂ {ϕk+1 = 1},
{ϕk = 0} ⊂ {ϕk+1 = 0}, and

0 ≤ϕk ≤ 1.

(2.1)
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Figure 1. The beginning of the compatible sequence ϕk. On the
left, a smooth function ϕ1 is chosen which takes values in [0, 1]. On
the right, the function ϕ2 is depicted on a magnified portion of the
interval (colored in gray on the left). In this interval, ϕ2 oscillates
between 0 and 1 in such a way to preserve the local averages of ϕ1.

• Smoothness to scale εk:

(2.2)
1

| log εk|
∥γεk ∗ ϕk∥

2
H1/2 < 2−k.

• Compatibility across scales: One has

(2.3) ∥γr ∗ (ϕk − ϕk+1)∥L2 < ε3k2
−k

for all r ≥ εk.

Lemma 2.4. Let ϕk be a compatible sequence with scales εk. Then there exists a
measurable set E ⊂ [0, 1] with 0 < |E| < 1, ϕk → E in Lp for all p <∞, and

lim
k→∞

1

| log εk|
∥γεk ∗ 1E∥

2
H1/2 = 0.

Proof. The existence of the limiting set E follows straightforwardly from the first
two hypotheses on ϕk.

To show that ∥γεk ∗1E∥2H1/2 grow manageably, we write 1E as a telescoping sum
and apply the triangle inequality:

1

| log εk|
∥γεk ∗ 1E∥

2
H1/2 ≤ 2

| log εk|
∥γεk ∗ ϕk∥

2
H1/2

+
2

| log εk|

( ∞∑
m=k

∥γεk ∗ (ϕm+1 − ϕm)∥H1/2

)2

The first term we bound using (2.2). For the terms in the sum we interpolate
between L2 and H1,

∥γεk ∗ (ϕm+1 − ϕm)∥H1/2 ≤ ∥γεk ∗ (ϕm+1 − ϕm)∥1/2
L2 ∥γεk ∗ (ϕm+1 − ϕm)∥1/2

H1

≤ (ε3m2−m)1/2(2∥γεk∥H1)1/2

≤ C(ε3m2−m)1/2(εk)
−3/2
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The bound on the H1 norm follows from the fact that ∥ϕm+1 − ϕm∥L1 < 2. Since

εm < εk for m > k, this is bounded by 2−m/2, and is thus clearly summable over
all m ≥ k. □

Thus our task is reduced to showing the existence of a compatible set. This will
be done inductively in the next subsection.

2.2. Technical constructions. In this section we prove three short facts that
allow us to construct ϕn+1 from ϕn. The first says that, in order to get the local
approximation γr ∗ ϕk ≈ γr ∗ ϕk+1, it suffices to demonstrate that the averages of
ϕk and ϕk+1 are equal on many short intervals. Then we show how to actually
construct a function ϕn+1 from ϕn such that the averages on short intervals are
correct, with the constraint that ϕn+1 takes values in {0, 1} more often. This is
done with the help of a short proposition that takes care of the case of one single
interval.

Proposition 2.5. Let ϕ ∈ C∞
c ((0, 1)) with 0 ≤ ϕ ≤ 1, δ > 0 be a scale, ε > 0 be

some tolerance, and k > 0 be an integer. Then for sufficiently large N we have the
following: For every ψ ∈ C∞

c ((0, 1)) with 0 ≤ ψ ≤ 1, if

(2.4) ϕ(
i

N
) = N ·

∫ (i+1)/N

i/N
ψ(t) dt

for all but at most k values of i ∈ [N ], then

∥γr ∗ (ϕ− ψ)∥L∞ < ε.

for all r > δ.

Proof. Let χ be the indicator function for the interval [0, 1], so that (N/M)χM/N is
the function

(N/M)χM/N (x) =

{
N/M, 0 ≤ x ≤M/N

0, else
.

We will consider the function g = (N/M)χM/N ∗ ψ. We show that by choosing M
large enough, and then N to be a sufficiently large multiple of M , we can enforce
∥g − ϕ∥∞ < ε/2.

Indeed, since (2.4) holds on all but at most k intervals,∣∣∣∣∣∣g
(
i

N

)
− 1

M

i+M−1∑
j=i

ϕ

(
j

N

)∣∣∣∣∣∣ ≤ k

M
.

Assuming we take M to be sufficiently large, and then N to be a sufficiently large
multiple of M , we have |g(i/N) − ϕ(i/N)| < ε/10. The definition of g also yields
the Lipschitz bound |g′(x)| ≤ 2NM−1, so that we can conclude ∥g − ϕ∥∞ ≤ ε/2 as
desired, provided again M is large enough.

Finally, we take N large enough that

∥γδ − χM/N ∗ γδ∥L∞ < ε/100

and
∥ϕ− χM/N ∗ ϕ∥L∞ < ε/100.
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Then we conclude since

∥γδ ∗ (ϕ− ψ)∥L∞ ≤ ∥(γδ − γδ ∗ χM/N ) ∗ (ϕ− ψ)∥L∞

+ ∥γδ ∗ (χM/N ∗ (ϕ− ψ))∥L∞

< ε.

□

The next proposition lets us satisfy the local average condition on an interval
with a function that looks more like an indicator function.

Proposition 2.6. Let a ∈ [0, 1) be a target average. Then there exists a function

ψ ∈ C∞
c ((0, 1)) satisfying |{ψ ∈ {0, 1}| > 0.1 and

∫ 1
0 ψ = a, and such that the sets

{ψ = 0} and {ψ = 1} are unions of finitely many closed intervals.

Proof. We will split into the cases a > 1/2 and a < 1/2. We begin with the case
a > 1/2. Let σ be a smooth increasing function satisfying σ(x) = 0 for x ≤ 1/2 and
σ(x) = 1 for x ≥ 1. k

Consider the following function ψt ∈ C∞
c ((0, 1)) defined for 0 < t ≤ 1/2:

ψt(x) =


σ(x/t), x < t

1, x ∈ [t, 1− t]

σ((1− x)/t), x > 1− t

.

Each of ψt satisfy the condition |{ψ ∈ {0, 1}}| > 0.1. Moreover I(t) =
∫ 1
0 ψt is

a continuous function in t with I(1/2) < 1/2 and limt→0 I(t) = 1. Thus by the
intermediate value theorem we have that, for any a ∈ (1/2, 1), there exists t such
that

∫
ψt = a.

Now suppose a ≤ 1/2. Observe that I(0.1) > 1/2, so the function ψ = a
I(0.1)ψ1/10

satisfies the constraints. □

Finally we use Proposition 2.6 to construct a function satisfying the local average
constraints of Proposition 2.5.

Proposition 2.7. Let ϕ ∈ C∞
c ((0, 1)) satisfy 0 ≤ ϕ ≤ 1, and let N > 0. Suppose

that the sets {ϕ = 1} and {ϕ = 0} can be written as unions of at most k intervals.
Then there exists ψ ∈ C∞

c ((0, 1)) satisfying the following constraints:

• {ϕ = 1} ⊂ {ψ = 1} and {ϕ = 0} ⊂ {ψ = 0}.
• |{ψ ̸∈ {0, 1}}| ≤ 0.99 · |{ϕ ̸∈ {0, 1}}|.
• The level sets {ψ = 0} and {ψ = 1} can each be written as a union of finitely
many intervals.

• The function ψ satisfies the following local average constraints

ϕ

(
i

N ′

)
= N ′

∫ (i+1)/N ′

i/N ′
ψ(t) dt

for some N ′ > N , and on all but at most 2k intervals.
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Proof. Choose N ′ > N such that each interval [i/N ′, (i + 1)/N ′] contains at most
point in ∂{ϕ = 0} ∪ ∂{ϕ = 1}. Let Ii be the interval [i/N ′, (i + 1)/N ′]. Let A be
the set of indices such that their intervals contain such an endpoint, that is

A := {i; Ii ∩ (∂{ϕ = 0} ∪ ∂{ϕ = 1}) ̸= ∅} .
We will define functions Fi ∈ C∞([0, 1]) for 0 ≤ i ≤ N and set

ψ(x) = F⌊N ·x⌋(frac(N · x))
where frac(x) denotes the fractional part of x. We split the choice of Fi into three
cases.

Case I: i ̸∈ A and Ii ⊂ {ϕ = 1}. In this case we simply set Fi = 1.

Case II: i ̸∈ A and ϕ(i/N ′) < 1. Simply use Proposition 2.6 to choose Fi such that∫
Fi = ϕ(i/N ′).

Case III: i ∈ A. Choose any Fi subject to the constraints 0 ≤ Fi ≤ 1, ϕ ∈ C∞
c ,

{ϕ = 1} ⊂ {ψ = 1} and {ϕ = 0} ⊂ {ψ = 0}.

Our choice of N ′ guarantees that the above three cases are exhaustive. The
resulting function ψ satisfies all the conditions of the lemma. □

2.3. The iterative algorithm. In this section we combine the main lemmas above
to inductively define a compatible sequence ϕn.

Proof of Lemma 2.2. Using Lemma 2.4, it suffices to construct a compatible se-
quence. We begin with any valid function ϕ1 ∈ C∞

c ((0, 1)) satisfying the nontrivi-
ality constraint |{ϕ = 1}| > 0 and such that the sets {ϕ1 = 1} and {ϕ1 = 0} are

finite unions of closed intervals. Since ϕ1 is smooth, and thus in H1/2 we have

lim
ε→0+

1

| log ε|
∥γε ∗ ϕ1∥2H1/2 → 0,

so we may choose ε1 small enough to satisfy the smoothness constraint (2.2).
We now induct on k. Suppose that the sets {ϕk = 1} and {ϕk = 0} are unions

of at most K intervals. Applying Proposition 2.5 with ϕ = ϕk, δ = εk, ε = ε3k2
−k,

and k = K, we obtain a value Nk for which the interval average constraints (2.4)
imply the compatibility bound (2.3). We can then use Proposition 2.7 with ϕ = ϕk
and Nk to construct ϕk+1. The function ϕk+1 is smooth, so we can find εk+1 to
satisfy (2.2). Moreover, we have that the sets {ϕk+1 = 1} and {ϕk+1 = 0} are finite
unions of closed intervals, so the induction is closed. □

3. Characterizing Sets of Finite Perimeter

3.1. The lower bound. In this section we prove the following characterization of
sets of finite perimeter.

Theorem 3.1. Let E ⊂ Rn be a set with P (E) = ∞. Then

lim sup
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 = ∞.
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The proof of this theorem goes through an analysis of the smoothed functions
γε ∗ 1E . The difficulty is that these functions may be so smooth that ∥γε ∗ 1E∥2H1/2

could be very small. However, using a characterization of sets of finite perimeter
due to Ambrosio, Bourgain, Brezis, and Figalli, we will be able to see that

ε−1∥1E − γε ∗ 1E∥2L2

grows to be large if E is a set of infinite perimeter [1]. Decomposing the difference
1E − γε ∗ 1E over many scales in the Fourier domain, we will see that there must
be at least some wavelength ε′ < ε that contributes significantly to the difference.
It is at this wavelength that ∥γε′ ∗ 1E∥2H1/2 is large.

To make this analysis convenient, we will make our smoothing kernels compactly
supported in Fourier space. That is, let ψ ∈ C∞

c (R) have support in [−1, 1] with
ψ(ξ) = 1 for |ξ| < 1/2. Then by construction, the differences (ψr − ψr/2) ∗ 1E and
(ψh − ψh/2) ∗ 1E are orthogonal so long as r ̸∈ (h/4, 4f). From this we deduce the
following approximate orthogonality property:

(3.1) ∥ψr ∗ 1E − 1E∥2L2 ≤ C

∞∑
k=0

∥ψr/2k ∗ 1E − ψr/2k+1 ∗ 1E∥2L2 .

Next we demonstrate the connection between these differences and the quantity
∥γε ∗ 1E∥H1/2 via the kernel described in (1.1).

Proposition 3.2. With φ as defined by Equation (1.1), we have

∥(ψr − ψr/2) ∗ 1E∥2L2 ≤ C∥φr ∗ 1E∥2L2

for any measurable set E ⊂ Rn.

Proof. By Plancherel’s theorem and homogeneity it suffices to check that there
exists some constant C such that∣∣∣ψ̂(ξ)− ψ̂(ξ)

∣∣∣2 ≤ C |φ̂(ξ)|2

for all ξ ∈ Rn. By construction of φ, the left hand side has support in the annulus
1
4 ≤ r|ξ| ≤ 1. The result follows from the compactness of the annulus and the
positivity of φ̂ on Rn \ {0}. □
Lemma 3.3. Suppose that E ⊂ Rn satisfies

lim sup
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 <∞.

Then

(3.2) lim inf
n→∞

2n
∞∑
k=n

∥φ2−k ∗ 1E∥2L2 <∞.

Proof. Using the definition of φ, the condition on E implies that there exists C such
that for every integer n > 0,

(3.3)
n∑

k=1

2k∥φ2−k ∗ 1E∥2L2 < Cn.
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We first use this inequality to bound the infinite sum in (3.2) in terms of a finite
one. Indeed, by grouping the infinite sum into dyadic pieces and applying the bound
above in each piece, we have

2n
∞∑

k=2n

∥φ2−k ∗ 1E∥2L2 ≤ 2n
∞∑

N=1

n2N+1∑
k=n2N

∥φ2−k ∗ 1E∥2L2

≤ 2n
∞∑

N=1

2−n2N
n2N+1∑
k=n2N

2k∥φ2−k ∗ 1E∥2L2

≤ C2n
∞∑

N=1

2−n2Nn2N+1

which is clearly bounded independently of n. Thus, it suffices to show that

lim inf
n→∞

2n
2n∑
k=n

∥φ2−k ∗ 1E∥2L2 <∞.

We do this by finding, for each n > 0, a suitable scale n ≤ m ≤ 2n. To see that at
least one m suffices we average over all such scales:

1

n

2n∑
m=n

2m
2m∑
k=m

∥φ2−k ∗ 1E∥2L2 ≤ 1

n

4n∑
k=n

∥φ2−k ∗ 1E∥2L2

k∑
m=0

2m

≤ 2

n

4n∑
k=n

2k∥φ2−k ∗ 1E∥2L2 .

The last sum is bounded by using again (3.3). Thus it is possible to find m > n
such that

2m
2m∑
k=m

∥φ2−k ∗ 1E∥2L2

is bounded independent of n. □
The following lemma is a characterization of sets of finite perimeter that appears

in [1] that we will rely on. A δ-cube is any cube in Rn with side length δ.

Lemma 3.4 ([1, Lemma 3.2]). Let K > 0 and E ⊂ Rn be a measurable set with
P (E) = ∞. Then there exists δ0 = δ0(K,A) such that for every δ < δ0 it is possible
to find a disjoint collection Uδ of δ-cubes Q′ with #Uδ > Kδ−n+1 and

2−n−1 ≤ |Q′ ∩ E|
|E|

≤ 1− 2−n−1

for every Q′ ∈ Uδ.

Proposition 3.5. Let Q = (−1
2 ,

1
2)

n ⊂ Rn be the unit cube. Suppose that E ⊂ Rn

is a measurable set with 2−n−1 ≤ |E ∩Q| ≤ 1− 2−n−1. Then there exists constants
cn, rn > 0 such that

∥ψrn ∗ 1E − 1E∥2L2(Q) > cn.
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Proof. We choose rn so small that

∥ψrn ∗ 1Q − 1Q∥L1 < 2−n−2.

With this choice for rn,∣∣∣∣∫
Q
ψrn ∗ 1E(x) dx− |E ∩Q|

∣∣∣∣ = ∣∣∣∣∫ 1E(x) (ψrn ∗ 1Q(x)− 1Q(x)) dx

∣∣∣∣
< 2−n−2.

It follows from the continuity of ψrn ∗1E that for some point x0 ∈ Q, ψrn ∗1E(x0) ∈
(2−n−2, 1− 2−n−2). Since ∥∇ψrn∥L∞ < r−1

n , one has

2−n−2 ≤ ψrn ∗ 1E(y) < 1− 2−n−2

for any |y − x0| < 2−n−2rn. In particular,

|ψrn ∗ 1E(y)− 1E(y)| > 2−n−2

for y ∈ B2−n−2rn . The claim follows upon integrating the above bound overB2−n−2rn∩
Q. □

The above lemmas combine in a straightforward manner to prove our main result
for this section.

Proof of Theorem 3.1. Suppose that E ⊂ Rn is a set with

lim sup
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 <∞.

We will then show that

(3.4) lim inf
δ>0

δ−1∥ψδ ∗ 1E − 1E∥2L2 <∞.

To show that this implies that E is a set of finite perimeter, let δ > 0 be very small
and such that

δ−1∥ψδ ∗ 1E − 1E∥2L2 < C.

Consider a collection Uδ/rn of δ/rn-cubes such that |Q′∩E|/|Q′| ∈ (2−n−1, 1−2−n−1)
for all Q′ ∈ Uδ. Appropriately scaling the conclusion of Proposition 3.5,

∥ψδ ∗ 1E − 1E∥2L2(Q′) > δncn

for all Q′ ∈ Uδ. In particular,

δncn#Uδ < ∥ψδ ∗ 1E − 1E∥2L2 < δC.

Thus #Uδ < Kδ1−n for some K. Since this holds for arbitrarily small δ, it follows
from Lemma 3.4 that P (E) <∞.

Now we prove (3.4). Indeed, according to Lemma 3.3, we may find C > 0 and
arbitrarily large n such that

2n
∞∑
k=n

∥φ2−k ∗ 1E∥2L2 < C.
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Setting δ = 2−n and applying Proposition 3.2 and the orthogonality property (3.1)
we obtain

∥ψ2−n ∗ 1E − 1E∥2L2 ≤ C

∞∑
k=n

∥ψ2−k ∗ 1E − ψ2−k−1 ∗ 1E∥2L2

≤ C

∞∑
k=n

∥φ2−k ∗ 1E∥2L2

≤ 2−nC

as desired. □

4. Generalization to bounded functions of bounded variation

In this section we derive a generalization of (0.1) as a consequence of the work
of Poliakovsky [8]. The argument provided here was suggested by an anonymous
referee. Applying [8, Proposition 3.2] with W ∈ C1(R,R) defined by W (x) = |x|2,
we obtain the following.

Proposition 4.1. Let η ∈ C2
c (R

n) satisfy
∫
η = 0, and let u ∈ BV ∩ L∞(Rn).

With uε defined as

uε(x) = ε−n

∫
Rn

η(
y − x

ε
)u(y) dy,

we have

(4.1) lim
ε→0

ε−1

∫
|uε(x)|2 dx =

∫
Ju

{∫ +∞

−∞
|Γ(t, x)|2 dt

}
dHn−1(x)

where

Γ(t, x) =

(∫ t

−∞
P (s, x) ds

)
u−(x) +

(∫ +∞

t
P (s, x) ds

)
u+(x)

with

P (t, x) =

∫
H0

ν(x)

η(tν(x) + y) dHn−1(y)

where

H0
ν = {y ∈ Rn | y · ν = 0},

ν(x) is the jump vector of u at x, and Ju is the jump set of u.

The formula 4.1 can be specialized further to the case that the mollifier η is
radial, in which case we obtain

Corollary 4.2. Let η ∈ C2
c (R

n) be a radial mollifier η(z) := η0(|z|) satisfying∫
η = 0, and let u ∈ BV ∩ L∞(Rn). With uε defined as

uε(x) = ε−n

∫
Rn

η(
y − x

ε
)u(y) dy,

we have

(4.2) lim
ε→0

ε−1

∫
|uε(x)|2 dx = Cη

∫
Ju

|u+(x)− u−(x)|2 dHn−1(x)
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where

Cη :=

∫ ∞

−∞

(∫ ∞

t
P0(s) ds

)2

dt = −
∫ ∞

−∞
2

(∫ ∞

t
P0(s) ds

)
P0(t)t dt

with

P0(t) =

∫
Rn−1

η0(
√
t2 + w2) dw.

Moreover, one can remove the constraint in Corollary (4.2) that η is compactly
supported so long as η(z)(|z| + 1) ∈ L1. To see this, for each R let ηR(z) satisfy
ηR(z) = η(z) for |z| < R, supp ηR(z) ⊂ B2R, and

∫
ηR = 0. Define now

uε(x) =

∫
Rn

η(z)u(x+ εz) dz

uε,R(x) =

∫
Rn

ηR(z)u(x+ εz) dz.

Then

ε−1

∫
|uε(x)− uε,R(x)| dx =

∫
ε−1

∣∣∣∣∫ (η(z)− ηR(z))u(x+ εz) dz

∣∣∣∣ dx
≤ ε−1

∫ ∫
|η(z)− ηR(z)||u(x)− u(x+ εz)| dz dx

≤ ε−1

∫ ∫
|η(z)− ηR(z)||u(x)− u(x+ εz)| dz dx

≤ C∥u∥BV

∫
|z||η(z)− ηR(z)| dz.

The right hand side goes to zero because |z|η(z) ∈ L1, and we have used the
inequality ∫

Rn

1

ε|z|
|u(x+ εz)− u(x)| dz ≤ C∥u∥BV .

As an application, choosing for η the kernel (1.1), we may derive that

lim
ε→0

1

| log ε|
∥γε ∗ 1E∥2H1/2 = C(n)P (E),

so in particular the limit exists.
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