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SOME PROPERTIES OF A HILBERTIAN NORM FOR
PERIMETER

FELIPE HERNANDEZ

ABSTRACT. We investigate a relationship first described in [3] between the perime-
ter of a set and a related fractional Sobolev norm. In particular, we derive a new
characterization of sets of finite perimeter, and demonstrate that the fractional
Sobolev norm does not recover the BV norm but rather a certain quadratic
integral.

In a recent paper of Jerison and Figalli [3], a relationship is developed between
the perimeter of a set and a fractional Sobolev norm of its indicator function. More
precisely, letting v(z) denote the standard Gaussian in R", and defining the scaled
Gaussian () = e "y(x/¢e), Jerison and Figalli showed that

1
(0.1) 116113319 @II% * 1|3 = lim inf @H% 1|5 =~ P(E).
Here E' is a set of finite perimeter and 1g is its indicator function. The definition
of the H'/2 norm that we shall use for the paper is given in Section 1. The formula
is remarkable for its quadratic scaling and for its apparent Fourier-analytic nature.
The motivation for writing down this expression for the perimeter actually came
from a purely geometric question about characterizing convex sets in terms of there
marginals.

In this paper we discuss extensions of Equation (0.1). In particular, first we dis-
cuss the validity of the result for sets £ that do not necessarily have finite perimeter.
Second we demonstrate a strengthening of (0.1) which in particular implies that the
limit exists and that one can recover the perimeter exactly from the H'/2 norm.
This strengthening is a consequence of a much stronger result of Poliakovsky [8],
and was pointed out to me by an anonymous reviewer.

A very similar quantity has appeared in the literature before, in the foundational
work of Bourgain, Brezis, and Mironescu [2]. There the one-dimensional expression

1 _ 2
L[ BET0R
e—0 ’ 10g€| |lz—y|>e |1' - y|

appears as a remark referencing an earlier unpublished work of Mironescu and
Shafrir. The motivation for studying this functional came from studying I'-limits
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of Ginzburg-Landau type functionals, as for example in [5, 6]. More recently Poli-
akovsky introduced a similar functional in connection to the I'-limit of the Aviles-
Gila problem [9]. Poliakovsky introduced the notion of BVY spaces and showed
that a certain nonlocal functional very similar to that appearing in Equation (0.1)
captures the L9 norm of the jump set of a function.

We mention also several other works which relate perimeter and total variation to
nonlocal functionals. A paper of Leoni and Spector [7] studies a fractional Sobolev
expression that recovers the total variation of a function. The main difference is
that the integrand in their expression scales linearly in the function u, whereas the
formula (0.1) scales quadratically. Similarly, a recent paper of Ambrosio, Bourgain,
Brezis, and Figalli [1] introduced a very interesting BM O-type norm which recovers
the perimeter of a set. In [4] this norm was shown to also give the total variation
of functions in SBV.

0.1. Summary of Results. The first question we investigate in this paper is what
happens to sets that do not have finite perimeter. The answer comes in two parts.
First, we show in Theorem 2.1 that there is a set E C [0,1]" for which the limit
inferior in (0.1) vanishes. We do this by showing it is possible to construct a set of
infinite perimeter such that, for an sequence €, — 0 the functions ~., * 15 are much
smoother than 7.,. The construction is presented in Section 2.

The second part of the answer is that the limit superior does characterize sets of
finite perimeter. This is proven in Section 3 using in a strong way the L? structure
of the norm. The proof relies on the characterization of sets of finite perimeter
provided in [1].

The second purpose of this paper is to bring some light to a generalization of (0.1)
that was already available in the literature. This generalization is described in
Section 4.

0.2. A note on organization. Preliminary results and basic definitions appear in
Section 1. Each of the other sections can be read independently of each other, so
the reader should feel free to skip to the result that is most interesting to them.

0.3. Acknowledgements. I am grateful to David Jerison, who suggested this
problem to me and helped me to focus the investigation. Daniel Spector pointed
out to me the very interesting paper [9], and a reviewer showed me the argument of
Section 4 which was very helpful. The author is supported by the John and Fannie
Hertz Foundation Fellowship.

1. PROBLEM SETUP

First we define more clearly the Sobolev norm that we shall use. Given a smooth
function u € S(R™) with rapid decay, we define

Jullys = [ l€lia©)P de.
We would like to study the expression

2
@H% * UHH1/2
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for functions u € BV N L*(R") by decomposing the contributions from different
scales. To do this, we write

|log <]

e ull3e = Y e 2 o * ull7a + O(||ull £2)
k=0

with the convolution kernel ¢ chosen such that (&) is nonnegative and

(1.1) 217 = el (FEF — 7)) -

Observe that [£]73/23(€) is continuous and bounded, and that $(€) is smooth outside
the origin. From this we deduce that f has the decay

lp(z)| < C(1L+ |z|)~2 ™.

In particular, |z|p € L*(R™). In addition, ¢ is smooth and satisfies the cancellation
condition [ ¢ = 0. These three conditions are sufficient for us to prove the following
elementary estimates that we will use throughout the paper.

2. AN EXAMPLE WITH INFINITE PERIMETER.

2
H1/2
ize sets of finite perimeter. Indeed we show that one can find a set with infinite

perimeter for which the liminf is zero.

In this section we show that liminf._,q @H% * 1| does not character-

Theorem 2.1. For any n > 0 there exists E C R"™ with P(E) = oo and such that

1
lminf —— |7z * 1g[|%12 = 0.
it oiine = el

This will follow from the result in one dimension.

Lemma 2.2. There exists a set E C [0,1] with 0 < |E| <1 and

1
liminf —— 15|%.,, = 0.
e |log6\H%>(< Bllp2 =0

We show now that Theorem 2.1 follows from the one-dimensional case.

Proof of Theorem 2.1 using Lemma 2.2. Choose E  C  [0,1] according to
Lemma 2.2. For n > 1, consider the Cartesian product E™ C R". That is, the
indicator function can be written

]-E"(xla e ,.I'n) = 1E($1)1E(.’L'2) e ]—E(xn)
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We can use the fact that the Gaussian separates to estimate 7. * 1gn:

1/2
n

[7e * Lgn||571/2 = // 25]2 H (&)1 R (&) ? dg;.
J i=1
n n R N )
S;/"'/Kﬂ zl_[1 Ye(§)1E(&)| di.
2(n—1)

= n||ve * 1E||12r{1/2||75 * 1EHL2
< nfve * 1|32
In the last step we used the fact that |E| < 1. O

The rest of the section will be devoted to proving Lemma 2.2.

2.1. Plan for the construction. The idea of the construction is to design a se-
quence of smooth functions ¢, that act as the smoothed versions of the set E at
varying scales. That is, we would like

Y5 x 1p = Y5 * Qg
for any § > J;, where § is a sequence of scales converging to zero. If the scales dy
are sufficiently small, then because ¢ are smooth we should have
1 2 1 2

_ x 1 N — * =~ 0.

‘10g6‘||75k E||H1/2 |10g€’”’7§k ¢k’||H1/2
To ensure that the smooth functions ¢ converge to a measurable set, we enforce
that 0 < ¢ < 1 and that the sets {¢r = 0} and {¢p = 1} are strictly increasing.
Moreover the functions ¢, face a compatibility condition whereby local averages of
¢r+1 must match local averages of ¢r. The compatibility condition is of the form

76k¢k+1 ST ¢k

To reconcile this with our need for the set {¢x1 € {0,1}} to increase, we construct
¢r+1 to be highly oscillatory compared to the scale d;, so that the §; smoothing re-
covers only the smoother function ¢g. A cartoon of the first step of the construction
is given in Figure 1.

The following definition quantifies the conditions outlined above.

Definition 2.3. Let ¢ € C°((0,1)) be a sequence of smooth functions and let

€r > 0 be a decreasing sequence of scales with ;. — 0. We say that ¢, is a compatible
sequence if the following properties hold:

o Nontriviality:
0 < |{o1=1}.
e Convergence to a set:
[{on & {0, 1}}] < (0.99)",
{or =1} C{dp41 =1},
{or =0} C {¢p41 =0}, and
0<¢p <1

(2.1)
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N |

FiGURE 1. The beginning of the compatible sequence ¢;. On the
left, a smooth function ¢ is chosen which takes values in [0,1]. On
the right, the function ¢, is depicted on a magnified portion of the
interval (colored in gray on the left). In this interval, ¢ oscillates
between 0 and 1 in such a way to preserve the local averages of ¢;.

e Smoothness to scale gy, :

1 -
e * dulls <27

2.2 _—
(22) |loge

o Compatibility across scales: One has

(2.3) 9 * (P — Bot1) | 12 < 527"

for all r > .

Lemma 2.4. Let ¢ be a compatible sequence with scales €. Then there exists a
measurable set E C [0,1] with 0 < |E| < 1, ¢pp — E in LP for all p < oo, and

im —— v x12)2,,, = 0.
k;ﬂ;o‘logek‘!\%k Bl

Proof. The existence of the limiting set E follows straightforwardly from the first
two hypotheses on ¢.

To show that ||7e, * 1 E||§{1 /» grow manageably, we write 1 as a telescoping sum
and apply the triangle inequality:

1 2
e # 1p |2, < ——— 2
|10g8k|”7€k EHH1/2 = ‘loggk"h@k *¢k”H1/2

~ 2
2
+ m (mzzk Ve * (D1 — ¢m)‘H1/2>

The first term we bound using (2.2). For the terms in the sum we interpolate
between L? and H',

e * (Dmi1 = Sm)llrive < Ve * (Dmst — Sm)|[5221er * (St — Sm)l|obs

< (5,272 Q2lve, )2
< 0(6212—m)1/2(6k)—3/2
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The bound on the H! norm follows from the fact that |[¢m11 — ¢ml|/zr < 2. Since
em < € for m > k, this is bounded by 27"/2, and is thus clearly summable over
all m > k. O

Thus our task is reduced to showing the existence of a compatible set. This will
be done inductively in the next subsection.

2.2. Technical constructions. In this section we prove three short facts that
allow us to construct ¢,+1 from ¢,. The first says that, in order to get the local
approximation vy, * ¢ = ¥, * Pr+1, it suffices to demonstrate that the averages of
¢ and ¢4 are equal on many short intervals. Then we show how to actually
construct a function ¢,41 from ¢, such that the averages on short intervals are
correct, with the constraint that ¢, takes values in {0,1} more often. This is
done with the help of a short proposition that takes care of the case of one single
interval.

Proposition 2.5. Let ¢ € C°((0,1)) with 0 < ¢ <1, § > 0 be a scale, ¢ > 0 be
some tolerance, and k > 0 be an integer. Then for sufficiently large N we have the
following: For every ¢ € C2°((0,1)) with 0 < <1, if

(i+1)/N

(24) o) =N [

/N
for all but at most k values of i € [N], then

[ * (¢ — )|l <e.
for allr > 4.

Proof. Let x be the indicator function for the interval [0, 1], so that (N/M)x/n is
the function

N/M, 0<z<M/N

0, else ’

(N/M)xpyn () = {

We will consider the function g = (N/M)x;/n * 1. We show that by choosing M
large enough, and then N to be a sufficiently large multiple of M, we can enforce

lg = lloo < &/2.
Indeed, since (2.4) holds on all but at most k intervals,

; | M- j I
- = L)< 2.
(%) 2o (5)] <
Assuming we take M to be sufficiently large, and then N to be a sufficiently large
multiple of M, we have |g(i/N) — ¢(i/N)| < €/10. The definition of ¢ also yields
the Lipschitz bound |¢'(z)| < 2NM ™1, so that we can conclude ||g — ¢||c < £/2 as

desired, provided again M is large enough. -
Finally, we take N large enough that

|7 — Xar/n * Vsl L < €/100
and
¢ — Xar/n * @l L < /100.
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Then we conclude since

|75 * (& — )l < 1(v6 — v * Xaayn) * (9 — P) || 2o

+ [lvs * (xaryw * (@ — )=
< €.

O

The next proposition lets us satisfy the local average condition on an interval
with a function that looks more like an indicator function.

Proposition 2.6. Let a € [0,1) be a target average. Then there exists a function
P € CP((0,1)) satisfying [{¢p € {0,1}| > 0.1 and fol ¥ = a, and such that the sets
{p =0} and {¢ = 1} are unions of finitely many closed intervals.

Proof. We will split into the cases a > 1/2 and a < 1/2. We begin with the case
a > 1/2. Let o be a smooth increasing function satisfying o(z) = 0 for z < 1/2 and
o(x)=1forx >1. k

Consider the following function v € C2°((0,1)) defined for 0 <t < 1/2:

o(x/t), <t
Pe(z) = {1, zelt,l—t.
o((l—a)/t), z>1—t

Each of vy satisfy the condition [{1p € {0,1}}| > 0.1. Moreover I(t) = fol Py is
a continuous function in ¢ with 7(1/2) < 1/2 and limy_,oI(t) = 1. Thus by the
intermediate value theorem we have that, for any a € (1/2,1), there exists ¢ such

that [ = a.
Now suppose a < 1/2. Observe that 1(0.1) > 1/2, so the function ¢ = ﬁzpl/w

satisfies the constraints. O

Finally we use Proposition 2.6 to construct a function satisfying the local average
constraints of Proposition 2.5.

Proposition 2.7. Let ¢ € C°((0,1)) satisfy 0 < ¢ < 1, and let N > 0. Suppose
that the sets {¢ = 1} and {¢ = 0} can be written as unions of at most k intervals.
Then there exists 1 € C°((0,1)) satisfying the following constraints:

{¢o =1} C{y =1} and {¢ = 0} C {¢) = 0}.
o {v #{0,1}}[ <0.99-[{¢ & {0,1}}].
The level sets {1 = 0} and {1p = 1} can each be written as a union of finitely

many intervals.
The function v satisfies the following local average constraints

; (i+1)/N
B Iyt d
o(w)=n [, o

for some N' > N, and on all but at most 2k intervals.
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Proof. Choose N’ > N such that each interval [i/N’, (i + 1)/N’] contains at most

point in d{¢ = 0} Ud{¢ = 1}. Let I; be the interval [i/N’ (i + 1)/N’]. Let A be

the set of indices such that their intervals contain such an endpoint, that is
A={i;N(0{¢p=0}uo{p=1})#0}.

We will define functions F; € C*°([0,1]) for 0 < i < N and set

Y(x) = F| .| (frac(N - z))

where frac(x) denotes the fractional part of x. We split the choice of F; into three
cases.

Case I: i ¢ A and I; C {¢ = 1}. In this case we simply set F; = 1.

Case II: i ¢ A and ¢(i/N’) < 1. Simply use Proposition 2.6 to choose F; such that
JFi = 6(i/N').

Case III: i € A. Choose any F; subject to the constraints 0 < F; < 1, ¢ € C°,
{o=1} c{¢ =1} and {¢ = 0} C {v = 0}.

Our choice of N’ guarantees that the above three cases are exhaustive. The
resulting function v satisfies all the conditions of the lemma. OJ

2.3. The iterative algorithm. In this section we combine the main lemmas above
to inductively define a compatible sequence ¢,,.

Proof of Lemma 2.2. Using Lemma 2.4, it suffices to construct a compatible se-
quence. We begin with any valid function ¢; € CZ°((0,1)) satisfying the nontrivi-
ality constraint [{¢ = 1}| > 0 and such that the sets {¢1 = 1} and {¢1 = 0} are
finite unions of closed intervals. Since ¢; is smooth, and thus in H/? we have

EET& @H% % 01 371/2 — 0,
so we may choose 1 small enough to satisfy the smoothness constraint (2.2).

We now induct on k. Suppose that the sets {¢x = 1} and {¢r = 0} are unions
of at most K intervals. Applying Proposition 2.5 with ¢ = ¢, d = ek, € = 5%2_’“,
and k = K, we obtain a value Ny, for which the interval average constraints (2.4)
imply the compatibility bound (2.3). We can then use Proposition 2.7 with ¢ = ¢,
and N to construct ¢r4+1. The function ¢g41 is smooth, so we can find g1 to
satisfy (2.2). Moreover, we have that the sets {¢g+1 = 1} and {¢r4+1 = 0} are finite
unions of closed intervals, so the induction is closed. O

3. CHARACTERIZING SETS OF FINITE PERIMETER

3.1. The lower bound. In this section we prove the following characterization of
sets of finite perimeter.

Theorem 3.1. Let E C R" be a set with P(E) = oo. Then

1
li e x 152, = oco.
Ry [V * 1E||71/2 = o0
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The proof of this theorem goes through an analysis of the smoothed functions
v * 1. The difficulty is that these functions may be so smooth that ||~z * 1E||i11/2
could be very small. However, using a characterization of sets of finite perimeter

due to Ambrosio, Bourgain, Brezis, and Figalli, we will be able to see that
e M1g — e * 152,

grows to be large if F is a set of infinite perimeter [1]. Decomposing the difference
1z — 7 * 1 over many scales in the Fourier domain, we will see that there must
be at least some wavelength ¢’ < ¢ that contributes significantly to the difference.
It is at this wavelength that ||y * 1EH?{1/2 is large.

To make this analysis convenient, we will make our smoothing kernels compactly
supported in Fourier space. That is, let ¢ € C2°(R) have support in [—1,1] with
P(§) = 1 for [£] < 1/2. Then by construction, the differences (¢, — 9, /2) * 15 and
(Yn — ¥ny2) * 1g are orthogonal so long as 7 & (h/4,4f). From this we deduce the
following approximate orthogonality property:

oo
(3.1) lr % 15 = 1gl72 < C Y 90 * 1 = Wy joesn % 1p72.
k=0

Next we demonstrate the connection between these differences and the quantity
|7e * 1g| f1/2 via the kernel described in (1.1).

Proposition 3.2. With ¢ as defined by Equation (1.1), we have
(o = ¥rj2) ¥ 1el172 < Cllor * 1gll72
for any measurable set E C R".

Proof. By Plancherel’s theorem and homogeneity it suffices to check that there
exists some constant C' such that

~ ~ 2
B - deo)| < clper

for all £ € R™. By construction of ¢, the left hand side has support in the annulus
1 < rl¢] < 1. The result follows from the compactness of the annulus and the
positivity of ¢ on R™\ {0}. O

Lemma 3.3. Suppose that £ C R" satisfies

1
limsup —— * 1|2 < 0.
E—)Op |10g5’”75 EHH1/2
Then
o
. e ran 2
(3.2) lim inf 2 > g * 1pll72 < oo

k=n

Proof. Using the definition of ¢, the condition on F implies that there exists C such
that for every integer n > 0,

(3.3) > 2k [lpyr % 1g][32 < Cn.
k=1
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We first use this inequality to bound the infinite sum in (3.2) in terms of a finite
one. Indeed, by grouping the infinite sum into dyadic pieces and applying the bound
above in each piece, we have

oo n2N+1

00
2" ok 1gl72 <27 Y D [l #1532
k=2n N=1 g=n2N
e n2N+1
<22 N Ky x g7
N=1 k=n2N

oo

< 0" 2—n2Nn2N+1

which is clearly bounded independently of n. Thus, it suffices to show that
2n
lim inf 2" > ok ¥ 157> < oo

k=n
We do this by finding, for each n > 0, a suitable scale n < m < 2n. To see that at
least one m suffices we average over all such scales:

1 2n 2m 1 4in k
=302 e x 1alFa < - ok # 1al3 D 2"
m=n k=m k=n m=0

9 4n
< 23" gy Ll
k=n

The last sum is bounded by using again (3.3). Thus it is possible to find m > n
such that

2m
2™ )" lpo-k * 132
k=m

is bounded independent of n. O

The following lemma is a characterization of sets of finite perimeter that appears
in [1] that we will rely on. A d-cube is any cube in R" with side length 0.

Lemma 3.4 ([1, Lemma 3.2]). Let K > 0 and E C R" be a measurable set with
P(E) = co. Then there ezists §g = do(K, A) such that for every § < &g it is possible
to find a disjoint collection Us of §-cubes Q' with #Us > K6~ "1 and
"N E]
2_”_1 < L <1-— 2—n—1
|E]

for every Q' € Us.

Proposition 3.5. Let Q = (—%, %)" C R" be the unit cube. Suppose that E C R"
is a measurable set with 27~""1 < |[ENQ| <1 —27""1. Then there exists constants
Cn,Tn > 0 such that

[4r, % 1 = 1El72(g) > cn-
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Proof. We choose 1, so small that
lr, % 1g — gl <2772
With this choice for 7,,,

’/Q%n *1p(x)dr —|EN Q|‘ = ‘/lE(x) (¢, % 1g(x) — 1o(x)) da
<272,

It follows from the continuity of 1,,, * 1g that for some point z¢ € Q, ¥, * 1g(xo) €
(277721 —27"=2). Since ||V, ||~ < 7, !, one has

27" <oy, x1p(y) <1277
for any |y — 20| < 27" 2r,. In particular,

W, * 15(y) — 1p(y)| > 2772

for y € By-n-2,, . The claim follows upon integrating the above bound over By-n—2, N

Q. O

The above lemmas combine in a straightforward manner to prove our main result
for this section.

Proof of Theorem 8.1. Suppose that E C R" is a set with

1
li e k152, . < 0.
R y— Ve * 1E| 512 < 00

We will then show that

(3.4) liI(sniOnf(VlHq/Jg *1p — 1g|3. < .
>

To show that this implies that F is a set of finite perimeter, let § > 0 be very small
and such that

5l * 1g — 1|7, < C.
Consider a collection Us ), of §/ry-cubes such that |Q'NE|/|Q'| € (27", 1-27""1)
for all Q" € Us. Appropriately scaling the conclusion of Proposition 3.5,
s % 15 — 1p|72igy > 6 cn
for all Q" € Us. In particular,
§"en s < ||Ys * 1 — 15|32 < 6C.

Thus #Us < K6~ for some K. Since this holds for arbitrarily small 6, it follows
from Lemma 3.4 that P(E) < cc.

Now we prove (3.4). Indeed, according to Lemma 3.3, we may find C' > 0 and
arbitrarily large n such that

%
2" " llpg-r ¥ 1g)72 < C.
k=n
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Setting 6 = 27" and applying Proposition 3.2 and the orthogonality property (3.1)
we obtain

o0
[tho-n %1 = 1g)32 < C Y g % 1p — thy—r—1 * Lg||72
k=n

o0
<O gy x g3

k=n

<27"C
as desired. n

4. GENERALIZATION TO BOUNDED FUNCTIONS OF BOUNDED VARIATION

In this section we derive a generalization of (0.1) as a consequence of the work
of Poliakovsky [8]. The argument provided here was suggested by an anonymous
referee. Applying [8, Proposition 3.2] with W € C'(R, R) defined by W (x) = |z|?,
we obtain the following.

Proposition 4.1. Let n € C?(R") satisfy [n = 0, and let w € BV N L>®(R™).
With ue defined as

wl) = [ 0=ty dy,

we have )
(4.1) ii_l)r(l)f—:fl / lue ()| do = /Ju {/J:O IT(t,z)? dt} dH" ()
where

It z) = < /_ ; P(s,) ds) w(2) + ( /t ™ ps.a) ds> ot ()
- P(ta)= [ ) + )
where

HB:{yER” | y-v =0},

v(z) is the jump vector of w at x, and J, is the jump set of u.

The formula 4.1 can be specialized further to the case that the mollifier 7 is
radial, in which case we obtain

Corollary 4.2. Let n € C?(R") be a radial mollifier n(z) := no(|z]) satisfying
Jn=0, and let u € BV N L>®°(R"). With u. defined as

wl) = [ o=ty dy,

3

we have

(4.2) lime™! / ’u5($)|2 dr — CU/J ’qu(x) s (x)’2 d?—[nil(a:)

e—0
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where

C, = /Z </tOOP0(s)ds>2dt:—/22</tooPg(s)ds> Po(t)t dt

Po(t) = /R o (VE + ) duw.

with

Moreover, one can remove the constraint in Corollary (4.2) that n is compactly
supported so long as 7(2)(|z| + 1) € L'. To see this, for each R let nr(z) satisfy
nr(z) = n(z) for |z| < R, suppnr(z) C Bag, and [ ng = 0. Define now

ue(z) = / n(z)u(x +ez) dz
ue r(x) = / nr(z)u(x + €z) dz.

Then
[ lue@) — v de = [
<= [ [0 - ne(@llutz) - u(o + 2] dzda
<=t [ [0 - nr(@llutz) - ule + 2] dzda

< Cllullsv / |2l 1n(2) — na(2)] dz.

The right hand side goes to zero because |z|n(z) € L!, and we have used the
inequality

/(TI(Z) —nr(2))u(z +€2) dz| dx

1
/ —u(x +ez) —u(x)|dz < C||lu||py.
R €l2]

As an application, choosing for 7 the kernel (1.1), we may derive that

iy ol el = O P(B)

so in particular the limit exists.
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