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Denoting by q = curlv, the vorticity, it follows from (1.1) that q satisfies the
system:  ∂tq + u · ∇q = q · ∇u,

u = Kα ∗ q,
q(t = 0, x) = q0(x)

(1.3)

in R3, where Kα is the integral kernel of the inverse of the operator (1− α2∆)curl,
which is the curl of the Bessel potential. Equation (1.3) resembles the equation
of motion of the vorticity in the three-dimensional Euler equations. However, the
vorticity stretching term, which is the main obstacle for proving the global regularity
for the three-dimensional Euler equations, is replaced above by the milder term
q · ∇u. Despite this mollification of the vorticity stretching term the question of
global regularity for the three-dimensional Euler-α is still, as in the case of the
three-dimensional Euler equations, a challenging open problem.

In the following, curlu0 and curlv0 will denote the vorticity of u0 and of v0 =
(1 − α2∆)u0 respectively. curlv0 is also called the initial unfiltered vorticity, while
curlu0 is called the filtered initial vorticity.

There has been a lot of mathematical progress made on the Euler-α equations re-
cently. For the two-dimensional case, Kouranbaeva and Oliver [32] obtained global
existence and uniqueness of (1.1)-(1.2) for the initial unfiltered vorticity of class
L2. The artificial viscosity method is applied in [32]. Furthermore, Oliver and
Shkoller [46] proved the global existence and uniqueness of weak solutions for ini-
tial unfiltered vorticity curlv0 in M(R2), which is the space of finite Radon mea-
sures. Ambrose, Lopes Filho and Nussenzveig Lopes [1] discussed with the weak
solutions of the two-dimensional Euler-α equationsin in the full. The convergence
results to Euler equations can be referred to [9, 39, 40] for different boundary con-
ditions when α vanishes. For the three-dimensional axisymmetric case, Busuioc
and Ratiu [10] proved the global existence and uniqueness of classical solution for
the three-dimensional axisymmetric Euler-α equations without swirl. Specifically,
in the case of the whole space R3, the restrictions on the initial data in [10] are:
u0 ∈ H3(R3), curlv0/r ∈ L2(R3) and curlv0 ∈ Lp(R3), for some p ∈ [1, 2]. For the
general three-dimensional case, a blow-up criterion of the smooth solutions, in the
spirit of the Beale-Kato-Majda [6], was presented in [26] (see also [47]). The local
existence and a blow-up criterion in Besov spaces for the 3D Lagrangian averaged
Euler equations was given in [36]. Zang [53] proved the local well-posedness of
Euler-α equations with periodic boundary conditions and the convergence to the
solutions of Euler equations in Hs sense, depending on the regularity of the initial
data.

Formally, as we have already mentioned above, when α = 0 in (1.1), the Euler-
α equations become the classical Euler equations. A natural question is whether
solutions of the Euler equations can be approximated properly by those of the cor-
responding Euler-α equations, especially for the vortex-sheets initial data. In par-
ticular, it has recently been shown in [35] that the solutions of three-dimensional
Euler−α equations converge to the corresponding strong solutions of the three-
dimensional Euler equations on the interval of existence of the latter. As a conse-
quence, it is also shown that the life span of the solution of the three-dimensional
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Euler−α is longer than that of one of the three-dimensional Euler equations cor-
responding to the same regular initial data. It is well-known, however, that when
the initial data are a vortex-sheets data, i.e., the initial vorticity is a finite Radon
measure and the initial velocity is locally square-integrable, the two-dimensional
time-dependent Euler equations have global (in time) weak solutions when the ini-
tial vorticity curlu0 is of one-sign. This result was first proved by Delort [15] by
regularizing the initial data to construct the approximate solutions (see also [38] for a
slight generalization). Then the result of Delort was proved by different approaches
(see, e.g., [21], [37], [41], [42], [48]). Specifically, the Navier-Stokes approximations
were used in [41], [44], and the vortex-method approximations were applied in [37].
Notably, the Euler-α equations were proposed as an inviscid approximation to the
Euler equations both in the two- and three-dimensional cases (see, e.g., the conver-
gence results and error estimates in [35]). Specifically, it was shown in [2] and [3]
the global regularity of the vortex sheet problem of the 2D Euler-α equations for
a wider class of vortex-sheet and that their solutions exists globally. Moreover, it
was shown that these solutions converge to one of the Delort solutions of the vortex
sheet for the 2D Euler equations, as a subsequence of the regularization parame-
ter αj → 0. In addition, it was also shown in [2] and [3] that the solutions of the
Birkhoff-Rott−α model for the vortex-sheet dynamics exists globally in time, and
that it is equivalent to the unique weak solution of the two-dimensional Euler−α
equations. In particular, it was also pointed out the role played by the regularizing
parameter α in inhibiting the Kelvin-Helmholtz instability. Numerical implemen-
tation of the Birkhoff-Rott−α, and comparison to other numerical regularization
of the Birkoff-Rott (see, e.g., [33]), is reported in [25]. However, the vortex-sheet
problem for the three-dimensional Euler equations remains unsolved even for the
case of one-signed measure. In [5], it has been shown, by an example of 3D shear
flow of Euler equations, the existence, and persistence for all time, of singular vortex
sheet solutions. This is a fundamentally different behavior than in the 2D case (see,
e.g., [11], [17], [33], [34], [52]). For some other works concerning the vortex sheet
problem the reader is referred to [4], [7], [12], [13], [16], [28]-[30], [35].

The purpose of this paper is to prove the global existence and uniqueness of
weak solutions for the three-dimensional axisymmetric Euler-α equations without
swirl. Specifically, we will first obtain the global existence and uniqueness of the
solutions when the initial unfiltered vorticity curlv0

r belongs to Lp
c(R3) with p > 3

2 ,
which is the usual Lp Lebesgue space with compact support. Then we will prove the
existence of global weak solutions when the initial unfiltered vorticity curlv0

r belongs

to Mc(R3), which is the space of finite Radon measures with compact support; by
this we improve the results reported in [10]. The uniqueness of the solutions is still
not clear in the case of weak Radon measures valued solutions. In our analysis,
the filtered velocity u(t, x) will be recovered from the unfiltered vorticity q = curl v
by the expression u = Kα ∗ q, where Kα is the integral kernel of the inverse of
(1 − α2∆)curl (see (3.3) for more details). As in [2], [3] and [46], properties of the
kernel Kα near the origin and at the infinity would be essential to apply the singular
integral estimates approach. More precisely, when curlv0

r ∈ Lp
c(R3) with p > 3

2 , we
will be able to prove that the velocity u(t, x) is Lipschitz continuous with respect
to the space variables and uniformly continuous with respect to the time variable
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so that we can prove the global existence and uniqueness of the solution. In the
case where the initial unfiltered vorticity curlv0

r belongs to Mc(R3) we obtain the
global existence of the weak solutions. This is done by establishing appropriate
bounds for the gradient and the Hessian of the approximate solutions and using
standard compactness arguments. It should be noted that in this case the Lipschitz
continuity of u(t, x) with respect to the spatial variables and the uniform continuity
with respect to the time variable are still open.

We will state our main results in Section 2 and the proof of our main results will
be given in Section 3. Notably, an earlier version of this manuscript was posted on
[27].

2. Main results

In the cylindrical coordinates r, θ, z, the velocity u is written as u = urer +

uθeθ + uzez, where er = (x1
r ,

x2
r , 0), eθ = (x2

r ,−
x1
r , 0), ez = (0, 0, 1), r = (x21 + x22)

1
2 .

Axisymmetric flows without swirl are solutions for which the azimuthal (angular)
component of the velocity field satisfies uθ ≡ 0, and ur, uz are independent of θ.
In this case, we also have the unfiltered velocity v = vrer + vzez in the cylindrical
coordinate systems. It should be mentioned that the space of axisymmetric flows is
invariant under the solution of three-dimensional Euler-α equations, as in the case
of the Euler equations.

Let q = curl v be the unfiltered vorticity. Then only the azimuthal (angular)
component of q is non-zero in the cylindrical system, i.e.,

q = qθ(t, r, z)eθ,(2.1)

where qθ = ∂zvr−∂rvz. It follows that q solves equation (1.3) and direct calculations
show that

∂t(
qθ

r
) + u · ∇(

qθ

r
) = 0.(2.2)

That is, the scalar function qθ/r satisfies the transport equation. This is a key and
an important property of the invariant family of axisymmetric flows without swirl
(see also [16], [28], [29], [20], [51]). As observed above, for this invariant family
of flows the vorticity stretching term, i.e. the right-hand side of equation (1.3),
q · ∇u ≡ 0. Consequently, it follows, formally, from the transport equation (2.2)
that

∥q
θ

r
∥Lr = ∥q

θ
0

r
∥Lr ,(2.3)

for r ∈ [1,∞].
Before stating our main results, we introduce the following definition of weak

solutions. Let G be the group of all homeomorphisms ϕ of R3 which preserve the
Lebesgue measure.

Definition 2.1 (The case of Lp(R3)(p ≥ 1)). Let T > 0, the vector field u ∈
C([0, T ];Lip(R3)) and q = curl v ∈ Lp(R3) with p ≥ 1 are said to be a weak
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solution of (1.3) if there exists a unique Lagrangian trajectory y(t, x) ∈ C([0, T ];G)
satisfying

y(t, x0) = x0 +

∫ t

0
u(s, y(s, x0))ds x0 ∈ R3,(2.4)

u(t, x) = Kα ∗ q,(2.5)

u(t = 0, x) = u0(x),(2.6)

and the first equation of (1.3) (i.e., equation (2.2)) is satisfied in the sense of distri-
butions. In (2.5), Kα is, as before, the integral kernel representation of the inverse
operator of (1− α2∆)curl (see (3.3) for more details).

Remark 2.1 For the axisymmetric Euler-α equations without swirl, the first equa-
tion of (1.3) becomes (2.2) and in Definition 2.1 it should be satisfied in the following
sense: ∫

R×R3

(∂tφ+ u · ∇φ)
qθ

r
dxdt = 0(2.7)

for any φ ∈ C∞
0 ((0, T )× R3).

Definition 2.2 (The case of M(R3)). Let T > 0, and let curlv0/r ∈ Mc(R3). The
vector field u ∈ L∞([0, T ]× R3) is said to be a weak solution of (1.1) if

(1) ∇u ∈ L2([0, T ];L2
loc(R3));D2u ∈ L1([0, T ];L1

loc(R3)).
(2) For every test function φ ∈ C∞

0 ([0, T ) × R3) with divφ = 0, equation (1.1)
is satisfied in the following sense∫

[0,T ]×R3

[u(t, x) · (1− α2∆)∂tφ(t, x) + (u · ∇)φ · (1− α2∆)u]dxdt

+ α2

∫
[0,T ]×R3

(∇φ : D2)u · udxdt = −
∫
R3

u0 · (1− α2∆)φ(0, x)dx,(2.8)

where ∇φ : D2 =
∑n

i,k=1 ∂iφk∂k∂i.

Our main results are stated as:

Theorem 2.1. Assume that the initial velocity is divergence free, axisymmetric
without swirl and curlv0/r ∈ Lp

c with p > 3
2 . Then for any T > 0, there exists a

unique solution of (1.3) in the sense of Definition 2.1, over the interval [0, T ].

Theorem 2.2. Assume that the initial velocity is divergence free, axisymmetric
without swirl and curlv0/r ∈ Mc(R3). Then for any T > 0, there exists a global weak
solution u ∈ L∞([0, T ] × R3) of (1.1) in the sense of Definition 2.2. Moreover, we
have that ∇u ∈ L∞((0, T );La+L∞) with 1 ≤ a < 3 and D2u ∈ L∞((0, T );Lb+L∞)
with 1 ≤ b < 3

2 .

3. Proof of the Main Results

In this section, we will give the proof of Theorems 2.1 and 2.2.
For a smooth solution to (1.3), one can define a particle trajectory y(t, x) by

∂ty(t, x0) = u(t, y(t, x0)),
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y(0, x0) = x0,(3.1)

where x0 ∈ R3. It is noted that the transformation y(t, x0) on R3 preserves the
measure due to the divergence free condition of u (see [43]). Moreover, one can
recover the velocity u(t, x) from the unfiltered vorticity q = curl v through a precise
expression of the integral kernel Kα in (3.3) as follows. Due to the divergence free
condition of u, there exists a potential vector Ψ such that divΨ = 0 and u = ∇×Ψ.
Then by applying the curl operator to the second equation of (1.1) yields that

(3.2) q = −(1− α2∆)∆Ψ.

Direct calculations show that the Green function associated with the operator (1−

α2∆)∆ is (see, e.g., [31]) Gα(|x− y|) = 1−e−
|x−y|

α

4π|x−y| . Thus, we deduce that

u(t, x) = ∇×
∫
R3

Gα(|x− y|)q(t, y)dy

=

∫
R3

fα(|x− y|) x− y

|x− y|
× q(t, y)dy,(3.3)

where fα(|x − y|) := 1
α2 f(

|x−y|
α ), and f(z) := (1+z)e−z−1

4πz2
. Obviously, f(z),

∇f(z), and zf(z) are continuous and bounded functions for z ∈ (0,+∞). In
addition, the kernel Kα in the second equation of (1.3) can be represented as
Kα(x, y) = ∇×Gα(|x− y|).

In view of (2.1), we obtain that for the axisymmetric Euler-α equations without
swirl the velocity is recovered by

u(t, x) =

∫
R3

fα(|x− y|) x− y

|x− y|
× qθ(t, y)

r
(y2,−y1, 0)dy.(3.4)

Now we are ready to prove Theorem 2.1. Motivated by [43] and [46], we will utilize
the particle trajectory (3.1) to construct the approximate solutions and prove the
existence and uniqueness of solutions of the axisymmeric Euler-α equations without
swirl. The key ingredient is to prove the Lipschitz continuity of the vector fields u
with respect to the spatial variables.

Proof of Theorem 2.1. The sequences of the approximate solutions of (2.2) can be
constructed as follows

∂ty
n(t, x0) = un(t, yn(t, x0)),(3.5)

yn(0, x0) = x0,(3.6)

y0(t, x0) = x0,(3.7)

un(t, x) =

∫
R3

Kα(x, y)q
n−1(t, y)dy,(3.8)

(qn)θ

r
(yn(t, x0), t) =

qθ0
r
(x0),(3.9)

for n ∈ N.
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Thanks to (3.4), we have

|un(t, x)| =
∣∣∣∣∫

R3

fα(|x− yn−1(t, z)|) x− yn−1(t, z)

|x− yn−1(t, z)|

× (−x2 + yn−1
2 (t, z), x1 − yn−1

1 (t, z), 0)
qθ0
r
(z)dz

+

∫
R3

fα(|x− yn−1(t, z)|) x− yn−1(t, z)

|x− yn−1(t, z)|
× (x2,−x1, 0)

qθ0
r
(z)dz

∣∣∣∣
≤

∫
R3

|x− yn−1(t, z)||fα(|x− yn−1(t, z)|)||q
θ
0

r
(z)|dz

+

∫
R3

|fα(|x− yn−1(t, z)|)||q
θ
0

r
(z)|dz|x|

≤ C

α2
(1 + |x|)∥q

θ
0

r
∥L1 .(3.10)

In the last inequality above, we have used the facts that |x|fα(|x|) and fα(|x|) in
(3.3) are continuous and bounded functions in R3. By the assumption that curlv0/r
is compactly supported and curlv0/r ∈ Lp, for p > 3/2, then curlv0/r ∈ L1. Thus,
from (3.10) one has

(3.11) |un(t, x)| ≤ C

α2
(1 + |x|),

where C is a constant depending on the L1 norm of
qθ0
r and the bounds of fα(x) and

xfα(x) which are introduced in (3.3), for x ∈ (0,+∞).
Integrating (3.5) from 0 to t gives

yn(t, x0) = x0 +

∫ t

0
un(s, yn(s, x0))ds.(3.12)

(3.11) and the Gronwall inequality imply that

|yn(t, x0)| ≤ |x0|+ (1 + |x0|)(e
C
α2 t − 1) := L(t, |x0|;α),(3.13)

for any t ∈ [0, T ]. Using (3.4) again yields

|un(t, x)| =
∣∣∣∣∫

R3

fα(|x− yn−1(t, z)|) x− yn−1(t, z)

|x− yn−1(t, z)|

×(yn−1
2 (t, z),−yn−1

1 (t, z), 0)
qθ0
r
(z)dz

∣∣∣∣
≤ C

α2

∫
R3

L(t, |z|;α)|q
θ
0

r
|(z)dz

≤ Cα

α2
∥q

θ
0

r
∥L1 ,(3.14)

where Cα is a constant depending on the maximum of L(t, |z|;α) in the sup{|z| :
z ∈ supp

qθ0
r }.
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Next we prove that un is Lipshitz continuous with respect to the spatial variables
and is uniformly continuous in time. For any x, x′ ∈ R3, it follows from (3.4)-(3.9)
that

|un(t, x)− un(t, x′)|

= |
∫
R3

[
fα(|x− yn−1(t, z)|) x− yn−1(t, z)

|x− yn−1(t, z)|
− fα(|x′ − yn−1(t, z)|)

· x′ − yn−1(t, z)

|x′ − yn−1(t, z)|
]
× (yn−1

2 (t, z),−yn−1
1 (t, z), 0)

qθ0
r
(z)dz|

= |
∫
R3

[
(fα(|x− yn−1(t, z)|)− fα(|x′ − yn−1(t, z)|)) x− yn−1(t, z)

|x− yn−1(t, z)|

+ fα(|x′ − yn−1(t, z)|)
( x− yn−1(t, z)

|x− yn−1(t, z)|
− x′ − yn−1(t, z)

|x′ − yn−1(t, z)|
)]

× (yn−1
2 (t, z),−yn−1

1 (t, z), 0)
qθ0
r
(z)dz

∣∣.(3.15)

By the mean value theorem, there exists a point x′′ ∈ R3 such that

|un(t, x)− un(t, x′)|

≤ |x− x′|
∫
R3

[|∇fα(|x′′ − yn−1(t, z)|)|+ |fα(|x′ − yn−1(t, z))|
|x′ − yn−1(t, z)|

]

· |yn−1(t, z)||q
θ
0

r
(z)|dz

≤ c

α3
|x− x′|

∫
{z|z∈supp{

qθ0
r
}}
(1 +

1

|x′ − yn−1(t, z)|
)L(t, |z|;α)|q

θ
0

r
(z)|dz

≤ c

α3
|x− x′|(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp

∣∣∣∣ 1

|x′ − yn−1(t, z)|
∣∣∣∣
L

p
p−1

)

≤ cα
α3

|x− x′|(∥q
θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp),(3.16)

where p > 3
2 , and cα depends on the bounds of ∇f(|x|) and L(T, |z|;α) (see (3.13))

for z ∈ supp{ qθ0
r }.

To show the uniform continuity with respect to the time variable, we have, for
any t, t′ ∈ [0, T ],

|un(t, x)− un(t′, x)|

= |
∫
R3

[
fα(|x− yn−1(t, z))| x− yn−1(t, z)

|x− yn−1(t, z)|
× (yn−1

2 (t, z),−yn−1
1 (t, z), 0)

− fα(|x− yn−1(t′, z)|) x− yn−1(t′, z)

|x− yn−1(t′, z)
× (yn−1

2 (t′, z),−yn−1
1 (t′, z), 0)

]qθ0
r
(z)dz|

≤
∫
R3

∣∣fα(|x− yn−1(t, z)|)



AXISYMMETRIC 3D EULER-α EQUATIONS WITHOUT SWIRL 581

− fα(|x− yn−1(t′, z)|)| x− yn−1(t, z)

|x− yn−1(t, z)|
| |yn−1(t, z)| |q

θ
0

r
(z)|dz

+

∫
R3

∣∣fα(|x− yn−1(t′, z)|)| | x− yn−1(t, z)

|x− yn−1(t, z)|

− x− yn−1(t′, z)

|x− yn−1(t′, z)|
| |yn−1(t, z)| |q

θ
0

r
(z)|dz

(3.17)

+ |fα(|x− yn−1(t′, z)|)|| x− yn−1(t′, z)

|x− yn−1(t′, z)
| |yn−1(t, z)

− yn−1(t′, z))| |q
θ
0

r
(z)|dz

≤ ∥∇fα∥L∞

∫
R3

|yn−1(t, z)− yn−1(t′, z)| |yn−1(t, z)| |q
θ
0

r
(z)|dz

+

∫
R3

|fα(|x− yn−1(t′, z)|)|| |y
n−1(t, z)− yn−1(t′, z)|
|x− yn−1(t′, z)|

|yn−1(t′, z)| |q
θ
0

r
(z)|dz

+

∫
R3

|fα(|x− yn−1(t′, z)|)|yn−1(t, z)− yn−1(t′, z)| |q
θ
0

r
(z)|dz

≤ C

α3

∫
R3

|yn−1(t, z)− yn−1(t′, z)|[1 + |x− yn−1(t′, z)|
|x− yn−1(t′, z)|

L(T, z;α) + 1]|q
θ
0

r
(z)|dz

≤ Cα

α3
|t− t′|

∫
R3

| sup
s∈[0,T ]

|un−1(s, z)|[1 + |x− yn−1(t′, z)|
|x− yn−1(t′, z)|

+ 1]|q
θ
0

r
(z)|dz

≤ Cα

α3
|t− t′|(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp)

for any p > 3
2 , where constant Cα depends on the bounds of un−1(t, z) and yn−1(t, z)

for z lies in the support of
qθ0
r by virtue of (3.13) and (3.14), respectively. Since

un is Lipschitz continuous with respect to the spatial variables and is uniformly
continuous with respect to time, and un is uniformly bounded by (3.14), then the
map yn ∈ C1([0, T ];C(R3)), for every T > 0. Moreover, we have that yn(t, x)−x ∈
C1([0, T ];CB(R3)) in which CB(R3) means the space of bounded and continuous
functions.

Similar to the estimates in (3.16) and (3.17), one will prove that {yn(t, x)−x} is a
Cauchy sequence in C([0, T ];CB(R3)) and furthermore {yn} is a Cauchy sequence in
C([0, T ];G). For simplicity, the time dependence of sequences {un} and {yn}, n ∈ N,
is dropped in the following estimates. Note that

|yn(t, x)− yn−1(t, x)|

≤
∫ t

0
|un(s, yn(s, x))− un−1(s, yn−1(s, x))|ds

≤
∫ t

0
|
∫
R3

fα(|yn(x)− yn−1(z)|) yn(x)− yn−1(z)

|yn(x)− yn−1(z)|
× (yn−1

2 ,−yn−1
1 , 0)

qθ0
r
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− fα(|yn−1(x)− yn−2(z)|) yn−1(x)− yn−2(z)

|yn−1(x)− yn−2(z)|
× (yn−2

2 ,−yn−2
1 , 0)

qθ0
r
dz|ds

≤ C

α3

∫ t

0

∫
R3

|yn(x)− yn−1(x)||yn−1(z)
qθ0
r
|dzds

+
C

α2

∫ t

0

∫
R3

|yn(x)− yn−1(x)|
|yn−1(x)− yn−1(z)|

|yn−1||q
θ
0

r
|dzds

+
C

α2

∫ t

0

∫
R3

|yn−1 − yn−2||q
θ
0

r
|dzds

≤ Cα

α3
(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp)

∫ t

0
( sup
x∈R3

|yn − yn−1|+ sup
x∈R3

|yn−1 − yn−2|)ds

(3.18)

for p > 3
2 , where Cα > 0 is a constant depending on sup{|z| : z ∈ supp

qθ0
r }.

Define gN (t) = sup
n≥N

sup
x∈R3

|yn(x, t) − yn−1(x, t)|. Then (3.14) implies that gN (t) ≤

Cα
α3 ||

qθ0
r ||L1t < ∞ for t ∈ [0, T ], where Cα > 0 is a constant depending on sup{|z| :

z ∈ supp
qθ0
r }. Choose T1 > 0 small enough such that Cα

α3 (∥
qθ0
r ∥L1+∥ qθ0

r ∥Lp)T1 ≤ 1/2.
Then it follows from (3.18) that

gN (t) ≤ k

∫ t

0
gN−1(s)ds, t ∈ [0, T1],(3.19)

where k := 2Cα
α3 (∥ qθ0

r ∥L1 + ∥ qθ0
r ∥Lp), with Cα > 0 a constant depending on sup{|z| :

z ∈ supp
qθ0
r }. Similar as Lemma 3.2 of Chapter 2 in [43], we obtain that

(3.20) lim
N→∞

gN (t) → 0

uniformly on [0, T2], for some T2 ∈ (0, T1] sufficient small. Actually, it can be
proved that gN (t) can be bounded by the terms of a convergent geometrical series
for t ∈ [0, T2]. This implies that {yn−x} is a Cauchy sequence in C([0, T0];CB(R3)),

where T0 = min{T1, T2} depends on ∥ qθ0
r ∥L1 + ∥ qθ0

r ∥Lp and sup{|z| : z ∈ supp
qθ0
r }.

To continue the procedure above to the interval [T0, 2T0], we have

|yn(t, x)− yn−1(t, x)|

≤
∫ t

T0

|un(yn)− un−1(yn−1)|ds+ |yn(T0, x)− yn−1(T0, x)|(3.21)

for t ≥ T0. Due to (3.20), for any ϵ > 0, there exists a N1 > 0 such that
sup
x∈R3

|yn(T0, x) − yn−1(T0, x)| < ϵ, for n ≥ N1. Therefore, similar to (3.18), for

all n ≥ N1, one has

|yn(t, x)− yn−1(t, x)|

≤
∫ t

T0

|un(yn)− un−1(yn−1)|ds+ ϵ
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≤ Cα

α3
(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp)

∫ t

T0

( sup
x∈R3

|yn − yn−1|+ sup
x∈R3

|yn−1 − yn−2|)ds+ ϵ,(3.22)

for t ∈ [T0, 2T0]. It follows that∫ t

T0

sup
x∈R3

|yn(s, x)− yn−1(s, x)|ds

≤ Cα

α3
(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp)(t− T0)

∫ t

T0

( sup
x∈R3

|yn − yn−1|+ sup
x∈R3

|yn−1 − yn−2|)ds

+ ϵ(t− T0),

for t ∈ [T0, 2T0]. This implies that∫ t

T0

sup
x∈R3

|yn(s, x)− yn−1(s, x)|ds

≤
∫ t

T0

sup
x∈R3

|yn−1 − yn−2|ds+ 2ϵ(t− T0),(3.23)

Putting (3.23) into (3.22), we get

sup
x∈R3

|yn(t, x)− yn−1(t, x)|

≤ 2
Cα

α3
(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp)

∫ t

T0

( sup
x∈R3

|yn−1 − yn−2|)ds

+ 2ϵ(t− T0)
Cα

α3
(∥q

θ
0

r
∥L1 + ∥q

θ
0

r
∥Lp) + ϵ.(3.24)

Since Cα
α3 (∥

qθ0
r ∥L1 + ∥ qθ0

r ∥Lp)(t− T0) ≤ 1/2, for all t ∈ [T0, 2T0], it follows that

gN (t) ≤ k

∫ t

T0

gN−1(s)ds+ 2ϵ, t ∈ [T0, 2T0],(3.25)

where k is same as in (3.19). By the arbitrariness of ϵ, similar to the previous
procedure (see also Lemma 3.2 of Chapter 2 in [43]), we can prove that {yn−x} is a
Cauchy sequence in C([T0, 2T0];CB(R3)), and furthermore in C([0, T ];CB(R3)); and
{yn} is a Cauchy sequence in C([0, T ];G), for every T > 0. The limit of {yn(t, x)}
in C([0, T ];G) is denoted by y(t, x).

Define q(t, x) = qθ

r (x, t)(x2,−x1, 0) satisfying
qθ

r (y(t, x), t) =
qθ0
r (x, t). Then it is

straightforward to prove that

qn(t, x) =
(qn)θ

r
(x, t)(x2,−x1, 0) ⇀ q(t, x)

in the sense of weakly-* convergence in L∞([0, T ];Lp(R3)), with p > 3/2, and

un(t, x) → u(t, x)

in CB([0, T ]× R3). Moreover, y, u, q solve (3.22), (2.5) and satisfy∫
R×R3

(∂tφ+ u · ∇φ)
qθ

r
dxdt = 0(3.26)
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for any φ ∈ C∞
0 ((0, T )× R3).

The uniqueness can be shown by the direct estimate on the difference of two flow
maps. The estimates are similar to the previous ones and we omit the details here.
The proof of the theorem is finished.

Proof of Theorem 2.2. Mollifying the initial potential vorticity, we can construct
the approximate solutions of (1.3) by solving the following problem: ∂tq

ϵ + uϵ · ∇qϵ = qϵ · ∇uϵ,
uϵ = Kα ∗ qϵ,
qϵ(t = 0, x) = qϵ0,

(3.27)

where qϵ0 is a smooth vector with compact support which converges to q0 in M(R3)
and ∥qϵ0∥L1 ≤ ∥q0∥M . Then there exits an unique smooth solution (uϵ, qϵ) to (3.27)
(see [10] and references therein). Moreover, there is a smooth pressure pϵ such that
uϵ satisfies 

∂tv
ϵ + uϵ · ∇vϵ +

∑
j
vϵj∇uϵj +∇pϵ = 0,

vϵ = (1− α2∆)uϵ,
divuϵ = 0.

(3.28)

Therefore, for any test function φ ∈ C∞
0 ([0, T ),R3), satisfying divφ = 0, integration

by parts yields∫
[0,T ]×R3

[uϵ(t, x)(1− α2∆)∂tφ(t, x) + (uϵ · ∇)φ · (1− α2∆)uϵ]dxdt

+ α2

∫
[0,T ]×R3

(∇φ : D2)uϵ · uϵdxdt = −
∫
R3

uϵ0(1− α2∆)φ(0, x)dx.(3.29)

Similar analysis as for (3.14) shows that

∥uϵ∥L∞([0,T ]×R3) ≤
Cα

α2
∥q

θ
0

r
∥M ,(3.30)

where Cα > 0 is a constant depending on T and the Lebesgue measure of the

support of
qθ0
r .

We now estimate ∇uϵ and D2uϵ. Let χ : R → [0, 1] be a smooth functions
satisfying

χ(s) =

{
1, |s| < 1,

0, |s| > 2 .

Then it follows from (3.4) that

∂xiu
ϵ(t, x)

=

∫
R3

∂xi [fα(|x− yϵ|) x− yϵ

|x− yϵ|
](1− χ(|x− yϵ|))× qθ(t, yϵ)

r
(yϵ2,−yϵ1, 0)dy

+

∫
R3

∂xi [fα(|x− yϵ|) x− yϵ

|x− yϵ|
]χ(|x− yϵ|)× qθ(t, yϵ)

r
(yϵ2,−yϵ1, 0)dy

≡ G1(t, x) +G2(t, x),(3.31)
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for i = 1, 2, 3. It is clear that

|G1(t, x)| ≤
C

α3

∫
R3

1

|x− yϵ(t, z)|
(1− χ(|x− yϵ(t, z)|))|(q

ϵ
0)

θ

r
(z)||yϵ(t, z)|dz

≤ Cα

α3
∥q

θ
0

r
∥M ,

for (t, x) ∈ [0, T ]× R3. One can use Young’s inequality for convolutions to obtain

∥G2(t, x)(t, x)∥L∞((0,T );La)

≤ sup
t∈[0,T ]

∥
∫
R3

1

|x− yϵ(t, z)|
χ(|x− yϵ(t, z)|)|(q

ϵ
0)

θ

r
(z)||yϵ(t, z)|dz∥La

≤ Cα

α3
∥(q

ϵ
0)

θ

r
∥L1 ≤ Cα

α3
∥q

θ
0

r
∥M(3.32)

for 1 ≤ a < 3. Thus ∇uϵ(t, x) is bounded in L∞((0, T );La + L∞) and

(3.33) ∥∇uϵ(t, x)∥L∞((0,T );La+L∞) ≤
Cα

α3
∥q

θ
0

r
∥M

for 1 ≤ a < 3. Similarly, we can prove that D2uϵ(t, x) is bounded in L∞((0, T );Lb+
L∞) and that

(3.34) ∥D2uϵ(t, x)∥L∞((0,T );Lb+L∞) ≤
Cα

α4
∥q

θ
0

r
∥M

for 1 ≤ b < 3
2 . In (3.33) and (3.34), the constant Cα is a positive constant de-

pending on ∥ qθ0
r ∥M and the support of

qθ0
r . In view of (3.30),(3.33) and (3.34),

it is easy to obtain that the terms uϵ · ∇vϵ,
∑
j
vϵj∇uϵj and ∇pϵ are bounded in

L∞((0, T );W−2,2
loc (R3)) and hence it follows from (3.28) that ∂tu

ϵ is bounded in

L∞((0, T );L2
loc(R3)). Note that uϵ is bounded in L∞((0, T );W 1,a

loc (R
3)) for any

1 ≤ a < 3. By the Aubin-Lions Lemma (see, e.g., [14], [49]), we obtain that
(up to a subsequence) that uϵ → u strongly in C([0, T ];Lc

loc(R3), with 1 ≤ c < 3a
3−a ,

where u ∈ L∞([0, T ]×R3) is a function satisfying ∇u ∈ L∞((0, T );La +L∞), with
1 ≤ a < 3, and D2u ∈ L∞((0, T );Lb + L∞), with 1 ≤ b < 3

2 . Thanks to (3.30),

we have that uϵ → u strongly in Lσ([0, T ];Lσ
loc(R3)), for any σ ∈ (1,∞). More-

over, it is clear that D2uϵ ⇀ D2u weakly-* convergence in L∞((0, T );Lb
loc), for any

1 ≤ b < 3/2. Thus, it follows from (3.29) that∫
[0,T ]×R3

[u(t, x)(1− α2∆)∂tφ(t, x) + (u · ∇)φ · (1− α2∆)u]dxdt

+ α2

∫
[0,T ]×R3

(∇φ : D2)u · udxdt = −
∫
R3

u0(1− α2∆)φ(0, x)dx

for any φ ∈ C∞
0 ([0, T ),R3) satisfying divφ = 0. This completes the proof of Theo-

rem 2.2.
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