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a game with a finite set of players (or populations) each of which has a different set
of strategies and different payoff functions.

If for an evolutionary game the pure strategies set of each player (or population)
is a metric space, then consequently the replicator dynamics lives in a Banach space
(a space of finite signed measures). In particular, if we have n players each of which
has mi strategies, for i = 1, ..., n, then the replicator dynamics lives in Rm, where
m = m1 + ...+mn.

The main goal of this survey is to provide a general framework to study the
replicator dynamics for games in which the strategy set is a measurable space—
more precisely, a separable metric space. In fact, we are particularly interested
in reviewing topics such as the existence of solutions to the replicator dynamics,
characterizations of the relation between a Nash equilibrium of a certain normal
form game and the replicator dynamics, stability criteria for the replicator dynamics,
and finite-dimensional approximations for numerical implementation.

For characterizations on the relation between a Nash equilibrium of a normal
form game and the replicator dynamics, see, for instance, relations 5.5 and Propo-
sitions 4.4, 4.5, and 5.4. With respect to stability criteria for the replicator dy-
namics for asymmetric games we refer to Theorems 4.7 and 4.10. For symmetric
games, we also present results about stability on different topologies and metrics,
as in Theorems 6.1, 6.2, and 6.3. We also review conditions under which a finite-
dimensional dynamical system approximates the replicator dynamics for games with
strategies in metric spaces. In this manner, we can use numerical techniques for
finite-dimensional differential equations to approximate a solution to the replica-
tor dynamics, which typically lives in an infinite-dimensional Banach space. See
Theorems 8.1 and 8.4, and Sections 9.2 and 9.3.

Conditions for the existence of solutions to the replicator dynamics in measure
spaces for asymmetric games are given by Mendoza-Palacios and Hernández-Lerma
[31]; for symmetric games conditions are given by several authors, including Bomze
[5], Oechssler and Riedel [35], and more generally (including dynamics different from
the replicator equation) by Cleveland and Ackleh [8].

Similarly, conditions for dynamic stability of asymmetric games are given by
Mendoza-Palacios and Hernández-Lerma [31] and Narang and Shaiju [33]. For sym-
metric games, conditions for dynamic stability have been developed with respect to
different topologies, as in e.g. Bomze [4], Oechssler and Riedel [35] and [36], Eshel
and Sansone [13], Veelen and Spreij [45], Cressman and Hofbauer [11]. We stan-
dardized different stability criteria with respect to various metrics and topologies in
the probability-measures space and present a brief review of results on the stability
of the replicator dynamics.

In the theory of evolutionary games there are several interesting dynamics, for in-
stance, the imitation dynamics, the monotone-selection dynamics, the best-response
dynamics, the Brown-von Neumann-Nash dynamics, and so forth (see, for instance,
Hofbauer and Sigmund [21], [22], Sandholm [42]). Some of this evolutionary dy-
namics have been extended to games with strategies in a space of probability mea-
sures. For instance, Hofbauer, Oechssler and Riedel [20] extend the Brown-von
Neumann-Nash dynamics; Lahkar and Riedel extend the logit dynamics [28]. These
publications establish conditions for the existence of solutions and the stability of
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the corresponding dynamical systems. Cheung proposes a general theory for pair-
wise comparison dynamics [6] and for imitative dynamics [7]. M. Ruijgrok and T.
Ruijgrok [41] extend the replicator dynamics with a mutation term.

We selected the replicator dynamics partly because it is the most studied dy-
namics for games with strategies in metric spaces, and partly because it has many
interesting properties, as can be seen in Cressman [9], Hofbauer and Weibull [23],
and many other references. In particular, with the replicator dynamics it is not dif-
ficult to construct a proof of the existence of Nash equilibria and, moreover, when
the strategy set is finite, we can give a geometric characterization of the set of Nash
equilibria; see Harsanyi [16], Hofbauer and Sigmund [21], Ritzberger [40].

The paper is organized as follows. Section 2 presents notation and technical re-
quirements. Section 3 introduces a heuristic approach to the replicator dynamics
and describes its relation with evolutionary games. Some important technical is-
sues are also summarized. Section 4 establishes the relation between the replicator
dynamics and a normal form game, using the concepts of Nash equilibria and other
static equilibria such as a strong uninvadible profile and a strong unbeatable profile.
Section 5 describes the replicator dynamics for symmetric games. Section 6 contains
a review of results on the stability of the replicator dynamics. In this same section
the different stability criteria are standardized with respect to various metrics and
topologies in a space of probability measures.

Section 7 establishes a relationship between Nash equilibria and other stability
concepts for the replicator dynamics. Section 8 proposes approximation theorems
for the replicator dynamics on measure spaces, by means of dynamical systems on
finite-dimensional spaces. Section 9 presents examples to illustrate our results. We
conclude in section 10 with some general comments on possible extensions. An
appendix contains results of some technical facts.

2. Technical preliminaries

2.1. Spaces of signed measures. Consider a separable metric space A and its
Borel σ-algebra B(A). Let M(A) be the Banach space of finite signed measures µ
on B(A) endowed with the total variation norm

(2.1) ∥µ∥ := sup
∥f∥≤1

∣∣∣∣∫
A
f(a)µ(da)

∣∣∣∣ = |µ|(A),

where the supremum in (2.1) is taken over functions in the Banach space B(A) of
real-valued bounded measurable functions on A, endowed with the supremum norm

(2.2) ∥f∥ := sup
a∈A

|f(a)|.

Consider the subset CB(A) ⊂ B(A) of all real-valued continuous and bounded
functions on A. Consider the dual pair (CB(A),M(A)) given by the bilinear form
⟨·, ·⟩ : CB(A)×M(A) → R

(2.3) ⟨g, µ⟩ =
∫
A
g(a)µ(da).
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We consider the weak topology on M(X) (induced by CB(X)),i.e., the topology
under which all elements of CB(X), when regarded as linear functionals ⟨g, ·⟩ on
M(A) are continuous. In this topology a neighborhood of a point µ ∈ M(A) is of
the form

(2.4) VH
ϵ (µ) :=

{
ν ∈ M(A) : |⟨g, ν − µ⟩| < ϵ ∀g ∈ H

}
for ϵ > 0 and H a finite subset of M(A).

2.2. Metrics on P(A). There are many metrics that metrize the weak topology
on the set of probability measures. Here we use the Kantorovich-Rubinstein metric
and the Wasserstein distance. Let (A, ϑ) be a separable metric space, and P(A) the
set of probability measures on A. For any µ, ν ∈ P(A) we define the Kantorovich-
Rubinstein metric rkr, as

(2.5) rkr(µ, ν) := sup
f∈L(A)

{∫
A
f(a)µ(da)−

∫
A
f(a)ν(da) : ∥f∥L ≤ 1

}
,

where (L(A), ∥·∥L) is the space of continuous real-valued functions on A that satisfy
the Lipschitz condition

(2.6) ∥f∥L := sup |f(a)− f(b)|/ϑ(a, b) < ∞ ∀ a, b ∈ A, a ̸= b.

Let a0 be a fixed point in A and

(2.7) MK(A) :=

{
µ ∈ M(A) : sup

f∈L(A)

∫
A
|f(a)|µ(da) < ∞

}
.

The Kantorovich-Rubinstein metric rkr can be extended as a norm on MK(A) de-
fined as

(2.8) ∥µ∥kr := |µ(A)|+ sup
f∈L(A)

{∫
A
f(a)µ(da) : ∥f∥L ≤ 1, f(a0) = 0

}
for any µ in M(A) (see Bogachev [3], chapter 8). Note that for any µ, ν ∈ P(A),
rkr(µ, ν) = ∥µ− ν∥kr.

Let us suppose that the separable metric space A is also complete (that is, A is a
so-called Polish space), and let a0 be a fixed point in A. For each p with 1 ≤ p < ∞,
we define the space Pp(A) as

Pp(A) :=

{
µ ∈ P(A) :

∫
A
[ϑ(a, a0)]

pµ(da) < ∞
}
.

The Lp-Wasserstein distance rwp between µ and ν in Pp(A) is defined by

(2.9) rwp(µ, ν) :=

[
inf
π∈Π

∫
A

∫
A
ϑ(a, b)π(da, db)

] 1
p

,

where Π is the set of probability measures on A × A with marginals µ and ν. In
particular, when p = 1 we write the L1-Wasserstein distance rw1 as rw and in
addition we have that rw = rkr on P(A).



A SURVEY ON THE REPLICATOR DYNAMICS 607

Remark 2.1. There are some metrics that metrize the weak topology on P(A)
that are particularly useful, for instance, the Prokhorov metric rp, the bounded
Lipschitz metric rbl, the Kantorovich-Rubinstein metric rkr, and the Lp-
Wasserstein distance rwp . (For details see, for instance, Shiryaev [43], Billingsley
[1] or Villani [46].) In the rest of this paper we will denote by rw∗ any metric that
metrizes the weak topology on P(A) (not to be confused with the notation rw
of the L1-Wasserstein distance). Moreover, we denote by r any metric on P(A)
that is either the total variation norm (2.1) or any distance that metrizes the weak
topology. An open ball in the metric space (P(A), r) is defined in the classical form

(2.10) Vr
α(µ) :=

{
ν ∈ P(A) : r(ν, µ) < α

}
where α > 0.

Remark 2.2. Let A be a separable metric space, and rw∗ any distance that metrizes
the weak topology τw∗ in P(A). Let µ be any measure in P(A), and consider the
family VH(µ) of neighborhoods VH

ϵ (µ) of the form (2.4). In addition, consider the
family Vrw∗ (µ) of the open balls Vrw∗

α (µ) of the form (2.10). Both families VH(µ)
and Vrw∗ (µ) are neighborhood basis for µ in the space (P(A), τw∗). For details see
Pedersen [38], chapters I-II.

Then, a neighborhood VH
ϵ (µ) for µ is contained in some open ball Vrw∗

α (µ) with
center µ. The inverse is also true, i.e., any open ball Vrw∗

α (µ) is contained in some
neighborhood VH

ϵ (µ).

2.3. Differentiability.

Definition 2.3. Let A be a separable metric space. We say that a mapping µ :
[0,∞) → M(A) is strongly differentiable if there exists µ′(t) ∈ M(A) such that, for
every t > 0,

(2.11) lim
ϵ→0

∥∥∥∥µ(t+ ϵ)− µ(t)

ϵ
− µ′(t)

∥∥∥∥ = 0.

Note that, by (2.1), the left-hand side in (2.11) can be expressed as

lim
ϵ→0

sup
∥g∥≤1

∣∣∣∣1ϵ
[∫

A
g(a)µ(t+ ϵ, da)−

∫
A
g(a)µ(t, da)

]
−
∫
A
g(a)µ′(t, da)

∣∣∣∣ .
For weak differentiability, see Remark 8.3, below.

2.4. Product Spaces. Consider a finite family of metric spaces {Xi}ni=1 and their
σ-algebras B(Xi), as well as the Banach spaces (M(Xi), ∥ · ∥) and (MK(Xi), ∥ · ∥kr).
For i = 1, ..., n, let µi ∈ M(Xi) and consider the elements µ = (µ1, ..., µn) in the
product space M(X1)× ...×M(Xn) with the norm

(2.12) ∥µ∥∞ := max
1≤i≤n

∥µi∥ < ∞.

These elements form the Banach space (M(X1) × ... × M(Xn), ∥ · ∥∞). We can
similarly define the Banach space (MK(X1)× ...×MK(Xn), ∥ · ∥kr∞), where

(2.13) ∥µ∥kr∞ := max
1≤i≤n

∥µi∥kr < ∞.
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3. Replicator dynamics for asymmetric games

3.1. A heuristic approach to the replicator dynamics. Let I =: {1, 2, ..., n}
be a set of different species (or players). Each individual of the species i ∈ I can
choose a single element ai in a set of characteristics (the set of pure strategies or
pure actions) Ai, which is a separable metric space. For every i ∈ I and every vector
a := (a1, ..., an) in the Cartesian product A1×· · ·×An we write a as (ai, a−i) where
a−i := (a1, ..., ai−1, ai+1, ..., an) is in

A−i := A1 × · · · ×Ai−1 ×Ai+1 × · · · ×An.

For each i ∈ I, let B(Ai) be the Borel σ-algebra of Ai, and Ni ∈ M(Ai) a positive
measure such that for each Ei in B(Ai), Ni(Ei) assigns the number (or mass) of
individuals using pure strategies ai in Ei. Then the total population of the species
i is Ni(Ai) and the proportion of individuals using strategies in Ei is

(3.1) µi(Ei) :=
Ni(Ei)

Ni(Ai)
,

so µi is a population distribution over the set of actions Ai and it is an element
of P(Ai), the set of probability measures on Ai, also known as the set of mixed
strategies. For every i ∈ I and vector µ := (µ1, ..., µn) in P(A1) × · · · × P(An), we
write µ as (µi, µ−i) where µ−i := (µ1, ..., µi−1, µi+1, ..., µn) is in

P(A1)× · · ·P(Ai−1)× P(Ai+1)× · · · × P(An).

For each species i we assign a payoff function Ji : P(A1)×· · ·×P(An) → R defined
as

(3.2) Ji(µ1, ..., µn) :=

∫
A1

· · ·
∫
An

Ui(a1, ..., an)µn(dan)...µ1(da1),

where U : A1×· · ·×An → R is a given measurable function. If δ{ai} is a probability
measure concentrated at ai ∈ Ai, the vector (δ{ai}, µ−i) is written as (a?i, µ−i), and
then

Ji(δ{ai}, µ−i) = Ji(ai, µ−i)

=

∫
A−i

U(ai, a−i)µ−i(da−i).

In particular, (3.2) yields

(3.3) Ji(µi, µ−i) :=

∫
Ai

Ji(ai, µ−i)µi(dai).

For each i ∈ I, Ei ∈ B(Ai) and time t ∈ [0,∞), let Ni(t, Ei) and µi(t, Ei) be the
mass-measure Ni(t) ∈ M(Ai) and the probability measure µ(t) ∈ P(Ai) (as in (3.1))
evaluated at Ei. Let γ1, γ2 be the background per capita birth and death rates in
the population. The background per capita net birth rate γ := γ1 − γ2 is modified
by the payoff Ji(ai, ·) for using strategy ai ∈ Ai. The rate of change of the number
of individuals is

(3.4) N ′
i(t, Ei) = γNi(t, Ei) +Ni(t, Ai)

∫
Ei

Ji(ai, µ−i(t))µi(t, dai)



A SURVEY ON THE REPLICATOR DYNAMICS 609

for Ei ∈ B(Ai), with some initial positive measure Ni(0) in M(Ai). The notation
N ′

i(t, Ei) represents the strong derivative of Ni(t) in the Banach space M(Ai) (see
Definition 2.3) valued at Ei ∈ B(Ai) and µi(t) is a probability measure defined as
in (3.1).

For each t in [0,∞) the term
∫
Ei

Ji(ai, µ−i(t))µi(t, dai) in (3.4) values the effi-
ciency of the strategies in the set Ei when the other species have a distribution
µ−i(t). Note that if Ji(·, ·) ≡ 0, the solution of (3.4) is Ni(t, Ei) = Ni(0, Ei)e

γt for
all Ei ∈ B(Ai), and t ≥ 0. Using (3.1) we have that

(3.5) N ′
i(t, Ei) = Ni(t, Ai)µ

′
i(t, Ei) +N ′

i(t, Ai)µi(t, Ei) ∀Ei ∈ B(Ai), t ≥ 0.

Hence, by (3.5), we may rewrite (3.4) as the differential equation

(3.6) µ′
i(t, Ei) =

∫
Ei

[
Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t))

]
µi(t, dai)

for each Ei in B(Ai) and t ≥ 0, whose solution lives in the space of probability mea-
sures. The equation (3.6) is known as the replicator dynamics for the asymmetric
case.

3.2. Asymmetric evolutionary games. In an evolutionary game, the strategies’
dynamics is determined by a differential equation of the form

(3.7) µ′
i(t) = Fi(µ1(t), ..., µn(t)) ∀i ∈ I, t ≥ 0,

with some initial condition µi(0) = µi,0 for each i ∈ I. The notation µ′
i(t) represents

the strong derivative of µi(t) (see Definition 2.3), and Fi(·) is a mapping Fi : P(A1)×
· · · × P(An) → M(Ai), which is associated with the payoff (3.2). Let F : P(A1) ×
· · ·×P(An) → M(An)×· · ·×M(An), where F (µ) := (F1(µ), ..., Fn(µ)), and consider
the vector µ′(t) = (µ′

1(t), ..., µ
′
n(t)). Then the system (3.7) can be expressed as

(3.8) µ′(t) = F (µ(t))

which is defined on the Banach spaces M(A1)×· · ·×M(An) endowed with the norm
(2.12).

More explicitly we write (3.7) as

(3.9) µ′
i(t, Ei) = Fi(µ(t), Ei) ∀Ei ∈ B(Ai),

where µ′
i(t, Ei) and Fi(µ(t), Ei) are the measures µ′

i(t) and Fi(µ(t)) valued at Ei ∈
B(Ai).

We shall be working with a special class of so-called asymmetric evolutionary
games which can be described as a quadruple

(3.10)

[
I,

{
P(Ai)

}
i∈I

,
{
Ji(·)

}
i∈I

, µ′(t) = F (µ(t))

]
,

where

i) I = {1, ..., n} is the set of players;
ii) for each player i ∈ I we have a set P(Ai) of mixed actions and a payoff

function Ji : P(A1)× · · · × P(An) → R (as in (3.2)); and
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iii) the dynamics µ′(t) = F (µ(t)) (as in (3.8)) is described by the replicator
equation (3.6), i.e., for i ∈ I and each Ei in B(Ai),

(3.11) Fi(µ(t), Ei) :=

∫
Ei

[
Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t))

]
µi(t, dai).

3.3. Technical issues on the replicator dynamics. For future reference, in
the remainder of this section we summarize conditions for the existence of a unique
solution to the differential equation (3.8), and an important property of this solution
(see Theorems 3.1 and 3.3, respectively) . These results can be traced back to
Mendoza-Palacios and Hernández-Lerma [31]. See also Bomze [5], Oechssler and
Riedel [35] for the symmetric case.

For each i ∈ I and t ≥ 0, let

(3.12) βi(ai|µ(t)) := Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t)),

which is the integrand of (3.6). Hence, by (3.12), β(·|µ(t)) is the Radon-Nikodym
density of Fi(µ(t)) with respect to µ(t), i.e.,

Fi(µ(t), Ei) =

∫
Ei

βi(ai|µ(t))µi(t, dai) ∀Ei ∈ B(Ai).

Theorem 3.1. Suppose that, for each i ∈ I, the function βi(·|µ) in (3.12) satisfies:

i) there exists Ci ≥ 0 such that

|βi(ai|µ)| ≤ Ci ∀ai ∈ Ai and ∥µ|∞ ≤ 2,

ii) there is a constant Di > 0, such that

sup
ai∈Ai

|βi(ai|η)− βi(ai|ν)| ≤ Di∥η − ν∥∞ ∀ν, η with ∥η∥∞, ∥ν∥∞ ≤ 2.

Then there exists a unique solution to the replicator dynamics (3.6)-(3.8).

Proposition 3.2. Let i ∈ I. If the payoff function Ui(·) in (3.2) is bounded, then
βi(·|µ) satisfies the conditions i) and ii) of Theorem 3.1.

Theorem 3.3. Suppose that the conditions i) and ii) of Theorem 3.1 are satisfied.
If µ(t) is a solution of the replicator dynamics (3.6)-(3.8) with initial condition µ(0)
in P(A1)× · · · × P(An), then:

i) µi(0) << µi(t) and µi(t) << µi(0) for all i ∈ I and t > 0, with Radon-
Nikodym density

(3.13)
dµi(t)

dµi(0)
(ai) = e

∫ t
0 βi(ai|µ(s))ds.

ii) In particular, for every i ∈ I and t > 0, if νi is a probability measure
satisfying that νi << µi(t) whenever νi << µi(0), then

(3.14) log
dνi

dµi(t)
(ai) = log

dνi
dµi(0)

(ai)−
∫ t

0
βi(ai|µ(s))ds.
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4. Stability for the asymmetric case

4.1. The replicator dynamics, NE, SUP and SUbP. In this section we con-
sider asymmetric evolutionary games as in (3.10) and compare them with normal
form games (4.1), below. We wish to study the relation between a Nash equilibrium
of a normal form game and the replicator dynamics (Proposition 4.4) . We also
define two important concepts strong uninvadable profile (Definition 4.2) and strong
unbeatable profile (Definition 4.3), and analyze their relation to a Nash equilibrium
(Proposition 4.5).

A normal form game Γ (also known as a game in strategic form) can be described
as

(4.1) Γ :=
[
I,

{
P(Ai)

}
i∈I

,
{
Ji(·)

}
i∈I

]
,

where

i) I = {1, 2, ..., n} is the set of players,
ii) for each player i ∈ I we specify a set of actions (or strategies) P(Ai) and a

payoff function Ji : P(A1)× ...× P(An) → R (as in (3.2)).

Definition 4.1. Let Γ be a normal form game. A vector µ∗ in P(A1)× ...× P(An)
is called an ϵ-equilibrium (ϵ > 0) if, for all i ∈ I,

Ji(µ
∗
i , µ

∗
−i) ≥ Ji(µi, µ

∗
−i)− ϵ ∀µi ∈ P(Ai).

If the inequality is true when ϵ = 0, then µ∗ is called a Nash equilibrium.

The following definition is an extended version of strongly uninvadable strategies
of symmetric games (for details see Bomze [5]).

Definition 4.2. A vector µ∗ ∈ P(A1) × P(A2) × ... × P(An) is called a strong
uninvadable profile (SUP) in a set C if µ∗ is in C and the following holds. There
exists ϵ > 0 such that for any µ ∈ C with ∥µ − µ∗∥∞ < ϵ, and every i ∈ I,
Ji(µ

∗
i , µ−i) > Ji(µi, µ−i) if µi ̸= µ∗

i . In particular, if

C = P(A1)× P(A2)× ...× P(An),

then µ∗ is simply called a strong uninvadable profile (SUP). In both cases, we call
ϵ the global invasion barrier.

The following definition is an extended version of strongly unbeatable strategies
of symmetric games (for details see Hingu, Rao, and Shaiju [18]).

Definition 4.3. A vector µ∗ ∈ P(A1) × P(A2) × ... × P(An) is called a strong
unbeatable profile (SUbP) if there exists ϵ > 0 such that for any µ ∈ P(A1) ×
P(A2)× ...× P(An) with ∥µ− µ∗∥∞ < ϵ, Ji(µ

∗
i , µ−i) ≥ Ji(µi, µ−i) for every i ∈ I.

As usual, the open neighborhood with center µ∗ and radius ε > 0 is defined as

(4.2) Vε(µ
∗) := {µ ∈ P(A1)× ...× P(An) : ∥µ− µ∗∥∞ < ε}.

The following proposition gives an important property, namely the relation be-
tween a Nash equilibrium of a normal form game and the replicator equation.

Proposition 4.4. Suppose that µ∗ = (µ∗
1, ..., µ

∗
n) is a Nash equilibrium of Γ . Then

µ∗ is a critical point of the replicator dynamics (3.6)-(3.8), i.e., F (µ∗) = 0.
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Proof. See Mendoza-Palacios and Hernández-Lerma [31], Theorem 5.4. □
The following proposition gives the relation between an ϵ-equilibrium (or a Nash

equilibrium), strong uninvadable profiles, and strong unbeatable profiles.

Proposition 4.5. i) Suppose that the payoff function Ui(·) in (3.2) is bounded
for all i ∈ I. Let µ∗ be a SUP in a set C with global invasion barrier ϵ1 > 0.
If the set C ∩ Vϵ1(µ

∗) has a convex and nonempty interior, then µ∗ is an
ϵ2-equilibrium of Γ, where ϵ2 > 0 depends on ϵ1. Moreover, if µ∗ is a SUP,
then µ∗ is a Nash equilibrium and the boundedness hypothesis is not required.

ii) If µ∗ a SUbP, then µ∗ is a Nash equilibrium.
ii) If µ∗ a SUP, then µ∗ is a SUbP.

Proof. See Mendoza-Palacios and Hernández-Lerma [31] Theorem 5.7; and Narang
and Shaiju [33]. □
4.2. Stability. In this section we are interested in the stability of the replicator
dynamics (3.6)-(3.8) (see Definition 4.6). To this end, we establish that strong
uninvadable profiles (Definition 4.2) and strong unbeatable profiles (Definition 4.3)
have some type of stability.

Definition 4.6. Let µ∗ be a critical point of the replicator dynamics (3.6)-(3.8),
i.e., F (µ∗) = 0.

i) µ∗ is called Lyapunov stable if for every ϵ > 0 there exists δ > 0 such that
if ∥µ(0)− µ∗∥∞ < δ, then ∥µ(t)− µ∗∥∞ < ϵ for all t > 0.

ii) µ∗ is called weakly attracting if it is Lyapunov stable and, in addition, there
exists δ > 0 such that if ∥µ(0) − µ∗∥∞ < δ, then as t → ∞, µi(t) → µ∗

i
weakly for all i ∈ I.

The following theorem establishes that strong uninvadable profiles are stable for
the replicator dynamics.

Theorem 4.7. Suppose that the conditions i) and ii) of Theorem 3.3 hold. Let
δa∗ = (δa∗1 , ..., δa∗n) be a vector of Dirac measures, and C an invariant set for the
replicator dynamics (3.6)-(3.8). If δa∗ is a SUP in the set C, then there exists ϵ > 0
such that the set

C ∩ Vϵ(δa∗),

is invariant for (3.6)-(3.8). Moreover, suppose that for all i in I, the map µ 7→
βi(a

∗
i |µ) is weakly continuous and the set of strategies Ai is a compact set. If C is

a closed set and µ(0) is in C ∩ Vϵ(δa∗), then as t → ∞, µ(t) → δa∗ weakly.

Proof. See Mendoza-Palacios and Hernández-Lerma [31]. □
If the vector δa∗ in Theorem 4.7 is a SUP, then we obtain the following corollary,

taking C = P(A1)× ...× P(An).

Corollary 4.8. Suppose that the conditions i) and ii) of Theorem 3.3 hold. Let
δa∗ = (δa∗1 , ..., δa∗n) be a vector of Dirac measures, and suppose that it is a SUP.
Then δa∗ is Lyapunov stable for the replicator dynamics (3.6)-(3.8). Moreover, if
the map µ 7→ βi(a

∗
i |µ) is weakly continuous and the set of strategies Ai is compact

for all i ∈ I, then δa∗ is weakly attracting.
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Note that if for each i in I the payoff function Ui(·) in (3.2) is continuous, then
the map µ 7→ βi(a

∗
i |µ) is weakly continuous. This fact is of relevance because many

games satisfy that Ui(·) in (3.2) is continuous.
The following definition was introduced by Narang and Shaiju [33].

Definition 4.9. A vector µ∗ ∈ P(A1)×P(A2)× ...×P(An) is called a polymorphic

profile if for every i ∈ I there exist many finite distinct a1i , ..., a
ki
i ∈ Ai and numbers

h1i , ..., h
ki
i ∈ (0, 1] such that µ∗

i =
∑ki

j=1 h
j
i δaji

.

The following theorem establishes conditions under which the strong unbeatable
profiles are stable for the replicator dynamics.

Theorem 4.10. Suppose that the payoff function Ui(·) in (3.2) is bounded for all
i ∈ I. Let µ∗ = (µ∗

1, ..., µ
∗
n) be a polymorphic profile, which is also a SUbP. Then µ∗

is Lyapunov stable for the replicator dynamics.

Proof. See Narang and Shaiju [33]. □
Narang and Shaiju [33] obtained the following results for polymorphic profiles:

i) if a polymorphic profile is strong uninvadable, then it is a vector of Dirac
measures;

ii) if a set of polymorphic profiles is a strong uninvadable set, then it is asymp-
totically stable for the replicator dynamics.

5. The replicator dynamics: symmetric games

Is this section we consider symmetric evolutionary games as in (5.3), below, and
compare them with normal-form games (5.4). We define the important concept of
strongly uninvadable strategy (Definition 5.2) and its relation to a Nash equilibrium
(Proposition 5.4).

We can obtain from (3.10) a symmetric evolutionary game when I := {1, 2}
and the sets of actions and payoff functions are the same for both players, i.e.,
A = A1 = A2 and U(a, b) = U1(a, b) = U2(b, a), for all a, b ∈ A. As a consequence,
the sets of mixed actions and the expected payoff functions are the same for both
players , i.e., P(A) = P(A1) = P(A2) and J(µ, ν) = J1(µ, ν) = J2(ν, µ) for all
µ, ν ∈ P(A) . This kind of model determines the dynamic interaction of strategies
of a unique species through the replicator dynamics

(5.1) µ′(t) = F (µ(t)),

where F : P(A) → M(A) is given by

(5.2) F (ν(t), E) :=

∫
E

[
J(a, ν(t))− J(ν(t), ν(t))

]
ν(t, da) ∀E ∈ B(A).

Finally, as in (3.10), we can describe a symmetric evolutionary games as

(5.3)
[
I = {1, 2}, P(A), J(·), ν ′(t) = F (ν(t))

]
.

Similarly, we can obtain from (4.1) a two-player symmetric normal-form game
described as

(5.4) Γs :=

[
I = {1, 2}, P(A), J(·)

]
.
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For symmetric normal-form games Γs we can express a symmetric Nash equilibrium
(µ∗, µ∗) in terms of the strategy µ∗ ∈ P(A), as follows.

Definition 5.1. We say that µ∗ ∈ P(A) is a Nash equilibrium strategy (NES) if
the pair (µ∗, µ∗) is a Nash equilibrium for Γs. That is,

J(µ∗, µ∗) ≥ J(µ, µ∗) ∀µ ∈ P(A).

By Proposition 4.4 if µ∗ is a NES for Γs, then µ∗ is a critical point of (5.1) when
F (·) is described by the replicator dynamics (5.2).

The following definition is a slightly modified version of the strongly uninvadable
strategies used in Bomze [5].

Definition 5.2. Let r be a metric on P(A). A measure µ∗ ∈ P(A) is called an
r-strongly uninvadable strategy (r-SUS) if there exists ϵ > 0 such that for any µ
with r(µ, µ∗) < ϵ, it follows that J(µ∗, µ) > J(µ, µ). We call ϵ the global invasion
barrier.

When r is the Prokhorov metric rp, Oechssler and Riedel [36] name a rp-SUS
as an evolutionary robust strategy. If rw∗ is any metric that metrizes the weak
topology (recall Remark 2.1), Cressman and Hofbauer [11] call a rw∗-SUS a locally
superior strategy. Hingu, Roa and Shaiju [19] call a rw∗-SUS a superior strategy if
the Definition 5.2 is satisfie with the Kullback-Leibler distance (6.1), below.

We use the notation ∥ · ∥-SUS when the metric on P(A) is given by the total
variation norm (2.1). Note that ∥ · ∥-SUS is a modified version of the SUP (see
Definition 4.2) for the symmetric case.

Proposition 5.3. Let rw∗ be a distance that metrizes the weak convergence on
P(A). If a measure µ∗ ∈ P(A) is rw∗-SUS, then it is ∥ · ∥-SUS.

Proof. See Mendoza-Palacios and Hernández-Lerma [32] Proposition 3. □

The following proposition shows that a strongly uninvadable strategy is also a
Nash equilibrum strategy. Compare with Proposition 4.5.

Proposition 5.4. Let r be a metric on P(A). If µ∗ is a r-SUS, then µ∗ is a NES
of Γs.

Proof. See Mendoza-Palacios and Hernández-Lerma [32], Proposition 4. □

Summarizing, in this section we have that

(5.5) r − SUS ⊂ N ⊂ C

where C is the set of critical points of the replicator dynamics, N is the family of
Nash equilibrium strategies for the replicator dynamics, r−SUS is the subfamily of
r-strongly uninvadable strategies for any metric r. This result will be complemented
in Corollary 7.3.

6. Stability of the replicator dynamics: symmetric games

6.1. Stability of SUSs. By Propositions 5.4 and 4.4, a SUS is a critical point of the
replicator dynamics. In this section we present a review of results on the stability of
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a SUS in the replicator dynamics. These results include different stability criteria
with respect to various metrics and topologies in the space of probability measures.

Assume that ν << µ. We define the cross entropy or Kullback-Leibler distance
of ν with respect to µ as

(6.1) K(µ, ν) :=

∫
A
log

[
dν

dµ
(a)

]
ν(da).

From Jensen’s inequality it follows that 0 ≤ K(µ, ν) ≤ ∞ and K(µ, ν) = 0 if
and only if µ = ν. The Kullback-Leibler distance is not a metric, since it is not
symmetric, i.e., K(µ, ν) ̸= K(ν, µ).

Given µ∗ ∈ P(A), ϵ > 0, and a strictly increasing function φ : [0,∞) → [0,∞),
we define the set

(6.2) Wφ(ϵ)(µ
∗) :=

{
µ ∈ P(A) : K(µ, µ∗) < φ(ϵ)

}
.

Theorem 6.1. Suppose that A is a separable metric space, and that the conditions i)
and ii) of Theorem 3.1 hold. Let µ∗ be a ∥·∥-SUS with global invasion barrier ϵ > 0,
and µ(·) the solution of the replicator dynamics (5.1)-(5.2). If µ(0) ∈ Wφ(ϵ)(µ

∗),

with φ(ϵ) =
[
ϵ
2

]2
, then:

i) µ(t) ∈ Wφ(ϵ)(µ
∗) for all t ≥ 0;

ii) ∥µ(t)− µ∗∥ < ϵ for all t ≥ 0;
iii) µ(t) is in some open ball Vrw∗

α (µ∗) as (2.10) for all t ≥ 0, where rw∗ is some
distance that metrizes the weak topology.

iv) Moreover if A is compact and the map µ → J(µ∗, µ)−J(µ, µ) is continuous
in the weak topology, then rw∗(µ(t), µ∗) → 0,.

v) Furthermore, parts i) to iv) are also true with the hypothesis that µ∗ is
rw∗-SUS.

Proof. Parts i), ii) and iv) are proved in Bomze [4] 1. Part iii) is a consequence of
ii) and Remark 2.2. Finally, v) follows from Proposition 5.3. □

The following theorem characterizes the stability of the replicator dynamics with
respect to the L1-Wasserstein metric rw (2.9). This distance metrizes the weak
topology and has important relationships with other distances that also metrize the
weak topology (see Proposition A.2). Furthermore, the L1-Wasserstein metric is
closely related to the variation norm (2.1) and the Kullback-Leibler distance (6.1);
see Proposition A.1. The following two propositions give better approximations to
parts iii) and iv) of Theorem 6.1.

Theorem 6.2. Suppose that A is a compact Polish space (with diameter C > 0),
and the conditions i) and ii) of Theorem 3.1 hold. Let µ∗ be a rw-SUS with global
invasion barrier ϵ > 0, and µ(·) the solution of the replicator dynamics (5.1)-(5.2).

If µ(0) ∈ Wφ′(ϵ)(µ
∗), with φ′(ϵ) =

[
ϵ
2C

]2
, then

i) µ(t) ∈ Wφ′(ϵ)(µ
∗) for all t ≥ 0;

ii) ∥µ(t)− µ∗∥ < ϵ
C for all t ≥ 0;

1Bomze proves a more general case for point iv) of Theorem 6.1, where any topology τ in P(A)
is included. Bomze only requires that P(A) be a τ -compact set and the map µ → J(µ∗, µ)−J(µ, µ)
be τ -continuous.
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iii) rw(µ(t), µ
∗) < ϵ for all t ≥ 0.

iv) Moreover, if the map µ → J(µ∗, µ) − J(µ, µ) is continuous in the weak
topology, then rw(µ(t), µ

∗) → 0.
v) Furthermore, parts i) to iv) are also true with the hypothesis that µ∗ is

∥ · ∥-SUS, with barrier ϵ
C .

Proof. See Mendoza-Palacios and Hernández-Lerma [32] Theorem 5.1. □

The next theorem characterizes the stability of the replicator dynamics of a SUS
that is also a Dirac measure.

Theorem 6.3. Let A be a separable metric space and suppose that the conditions i)
and ii) of Theorem 3.1 hold. Let δa∗ be a Dirac measure and r any metric on P(A).
If δa∗ is r-SUS , µ(·) is a solution of (5.1), with F (·) as (5.2), and ∥µ0 − δa∗∥ < ϵ
for some small ϵ > 0, then

i) ∥µ(t)− δa∗∥ < ϵ for all t ≥ 0;
ii) µ(t) is in some open ball Vrw∗

α (µ∗) as in (2.10) for all t ≥ 0, where rw∗ is
some distance that metrizes the weak topology;

iii) if A is a compact Polish space (with diameter C > 0), then, for all t ≥ 0,
rw(µ(t), δa∗) < Cϵ;

iv) if A is compact (not necessary a Polish space) and the map µ → J(δa∗ , µ)−
J(µ, µ) is continuous in the weak topology, then rw∗(µ(t), µ∗) → 0, where
rw∗ is any distance that metrizes the weak topology.

Proof. Parts i), ii) and iv) follow from Proposition 5.3 and Corollary 4.8. Finally,
part iii) follows from Proposition A.2. □

This theorem is also proved by Oechssler and Riedel [35] with slight changes in
the definition of SUS.

6.2. Other stability results. The following conjecture was proposed by Oechssler
and Riedel in [36], when rw∗ is a distance that metrizes the weak topology.

Conjecture 6.4. Let r be any metric on P(A) and rw∗ any distance that metrizes
the weak topology. Suppose that A is a separable metric space, and that the con-
ditions i) and ii) of Theorem 3.1 hold. Let µ∗ be a r-SUS and µ(·) the solution of
the replicator dynamics (5.1)-(5.2). Then

i) for ϵ > 0 there exist δ > 0 such that if r(µ(0), µ∗) < δ, we have that
r(µ(t), µ∗) < ϵ for all t ≥ 0;

ii) moreover, if part i) is satisfied, and the map µ → J(µ∗, µ) − J(µ, µ) is
continuous in the weak topology and µ∗ << µ(0), then rw∗(µ(t), µ∗) → 0.

Remark 6.5. A double symmetric game (named a potential game by Cressman
and Hofbauer [11]) is a game where J(µ, ν) = J(ν, µ) for any µ, ν ∈ P(A). Let rw∗

be any distance that metrizes the weak topology. Oechssler and Riedel [36] prove
that if A is a compact set and µ∗ is rw∗-SUS, then for double symmetric games, µ∗

satisfies part i) of the Conjecture 6.4. Cressman and Hofbauer [11] prove that if
part i) is satisfied, then ii) follows for any symmetric game.
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Oechssler and Riedel [36] prove that a rw∗-SUS satisfies other static evolution-
ary concepts such as evolutionary stable strategy (ESS), continuously stable strategy
(CSS), and neighborhood invader strategy (NIS), which are sufficient to guaran-
tee dynamic stability in the weak topology for the replicator dynamics. Eshel and
Sansone [13], Cressman [10], Cressman, Hofbauer and Riedel [12], use these evo-
lutionary concepts and different hypotheses in the payoff function U(·) in (3.2) to
guarantee dynamic stability. Norman [34] and Hingu [17] establish the dynamic
stability in terms of strategy sets.

Finally, Hingu, Rao and Shaiju [18], establish two important concepts: strong
unbeatable state (SUbS) which is a modified version of SUbP (see Definition 4.3)
for the symmetric case; and polymorphic population state (PPS) which is a modified
version of polymorphic profile (see Definition 4.9). Hingu, Rao and Shaiju [18] show
the following results:

i) every asymptotically stable critical point of the replicator dynamics, in the
norm (2.1), is finitely supported. If a polymorphic profile is strong uninvad-
able, then it is a vector of Dirac measures;

ii) if a PPS is SUbS, then it is Lyapunov stable; moreover, it is asymptotically
stable in the norm (2.1).

7. NESs and stability for symmetric games

In this section we introduce a general definition of dynamic stability for the
replicator dynamics (see Definition 7.1), and prove that any stable critical point of
the replicator dynamics is a NES of Γs (see Proposition 7.2). Finally, in Corollary
7.3 and Remarks 7.4 and 7.5 we establish relations between the stability of the
replicator dynamics (5.1)-(5.2), and the static evolutionary concepts of a strategy,
NES and SUS.

Consider µ, ν ∈ P(A). By Propositions A.2 and A.3 we know that if µ and ν are
close with respect to the Kullback-Leibler distance K, then they are close in the
total variation norm ∥·∥, and consequently they are close in the weak topology. This
argument is not true in the opposite direction. Hence we say that the Kullback-
Leibler distance is “stronger than” the total variation norm, and, similarly, the total
variation norm is “stronger than” any distance that metrizes the weak topology.

Definition 7.1. Let A be a separable metric space, and r1 and r2 the Kullback-
Leibler distance or some metric in P(A) where r1 is equal to or “stronger than” r2.
A critical point µ∗ of the replicator dynamics (5.1)-(5.2) is said to be

i) [r1, r2]-stable (in symbols : [r1, r2]-S) if for any ϵ > 0 there exists δ > 0 such
that if r1(µ(0), µ

∗) < δ, then r2(µ(t), µ
∗) < ϵ for all t > 0. If r1 = r2 = r∗

then we only say that µ∗ is r∗-stable (in symbols : r∗-S).
ii) [r1, r2]-asymptotically weakly stable if it is [r1, r2]-stable and lim

t→∞
µ(t)

= µ∗ in the weak topology.

Consider the Kullback-Leibler distance K, the total variation norm
∥ · ∥, and any distance rw∗ that metrizes the weak topology. The following dia-
gram gives the natural implications between the different concepts of stability. (For
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details see Mendoza-Palacios and Hernández-Lerma [32].)

(7.1)

K − S ⇒ [K, ∥ · ∥]− S ⇒ [K, rw∗ ]− S
⇑ ⇑

∥ · ∥ − S ⇒ [∥ · ∥, rw∗ ]− S
⇑

rw∗ − S

Van Veelen and Spreij [45] study other relationships among the different con-
cepts of stability in diagram (7.1). They also study relationships between static
evolutionary concepts and asymptotic evolutionary stability.

Proposition 7.2. Let A be a separable metric space, and r1, r2 the Kullback-Leibler
distance or some metric in P(A) where r1 is equal to or “stronger than” r2. Suppose
that the conditions i) and ii) of Theorem 3.1 are satisfied, and let µ∗ be a critical
point of the replicator dynamics (5.1)-(5.2). If µ∗ is [r1, r2]-stable, then µ∗ is a
Nash equilibrium strategy (NES) of Γs.

Proof. See Mendoza-Palacios and Hernández-Lerma [32], Proposition 6. □
Now, we define the following sets:

i) N := {µ∗ ∈ P(A) : µ∗ is a NES of Γs},
C := {µ∗ ∈ P(A) : µ∗ is a critical point of (5.1)− (5.2)}.

ii) If r is any metric in P(A),

r − SUS := {µ∗ ∈ P(A) : µ∗ is r − SUS }.
iii) Let r1 and r2 be the Kullback-Leibler distance or some metric in P(A),

where r1 is equal to or “stronger than” r2,

[r1, r2]− S := {µ∗ ∈ P(A) : µ∗ is [r1, r2]− S}.

Corollary 7.3. Let A be a separable metric space, and consider the conditions i)
and ii) of Theorem 3.1. Let r1 be a metric on P(A), and let r2 be the Kullback-
Leibler distance or some metric on P(A) equal to or “stronger than” r1. Then we
have:

r1 − SUS ⊂ [K, r2]− S ⊂ N ⊂ C.

Proof. This is consequence of Theorem 6.1, and Propositions 4.4, 5.4 and 7.2. □
Compare Corollary 7.3 with (5.5).

Remark 7.4. Suppose the hypotheses of Corollary 7.3 and let A be a compact
Polish space. Then by Theorem 6.2 and Propositions A.2, A.3, we can obtain the
implications in Theorem 7.3 with a specific value for the barrier ϵ > 0, for the
metrics ∥·∥, rp, rbl, rw, and rkr. See Mendoza-Palacios and Hernández-Lerma [32],
Corollary 1.

Remark 7.5. Let r1 be a metric on P(A), and let r2 be the total variation norm
in P(A) or some metric that metrizes the weak topology. By Theorem 6.3 and
Propositions 4.4, 5.3,5.4 and 7.2, we have the following implications if a Dirac
measure δa∗ is a r1-SUS.

δa∗ ∈ r1 − SUS ⇒ δa∗ ∈ [∥ ∥, r2]− S ⇒ δa∗ ∈ N ⇒ δa∗ ∈ C.
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8. Finite dimensional approximations

An infinite-dimensional dynamical system, as the replicator dynamics (3.6)-(3.8),
is not a computable model. Mendoza-Palacios and Hernández-Lerma [30] introduce
some approximation schemes and propose two approximation theorems that ex-
tend the results in [36]. They establish the proximity of two paths generated by
two different dynamical systems (the original model and a discrete approximation
model) with different initial conditions. These approximations are studied in the
weak topology using the Kantorovich-Rubinstein metric (2.8), and also in the strong
topology using the norm of total variation (2.1).

8.1. Discrete approximations to the replicator dynamics. To obtain a finite-
dimensional approximation of the replicator dynamics (3.6)-(3.8) for an asymmetric
game (3.10) (or (5.1)-(5.2) for the symmetric game (5.3)), we can apply the following
Theorems 8.1 and 8.4 to a discrete approximation of the payoff functions Ui in
(3.2) and the initial probability measures µi,0, for i in I. For some approximation
techniques for the payoff function in games, see Bishop and Cannings [2], Simon
[44].

Oechssler and Riedel [36] propose a finite approximation for a symmetric game.
Following [36], consider an asymmetric game (4.1) where, for every i in I, Ai =
[ci,1, ci,2] (for some real numbers ci,1 < ci,2), and Ui is a real-valued bounded func-

tion. For every i in I, consider the partition Pki := {ξmi}2
ki−1

mi=0 over Ai, where

ξmi := [ami , ami+1), ami = ci,1 +
mi[ci,2 − ci,1]

2ki
,

for mi = 0, 1, ..., 2ki − 2 and ξ2ki−1 := [a2ki−1, ci,2]. For every i in I, the discrete
approximation to Ui is given by the function

Uki(x1, ..., xi, ..., xn) := Ui(am1 , ..ami , ..., amn),

if (x1, ..., xi, ..., xn) is in ξm1×· · ·×ξmi×· · ·×ξmn . Also, for each i in I we approximate
a probability measure µi ∈ P(Ai) by a discrete probability distribution µki on the
partition set Pki . Then we can write the approximation to the payoff function (3.2)
as

(8.1) Jki(µk1 , ..., µkn) :=
∑

ξm1∈Pk1

...
∑

ξmn∈Pkn

Ui(am1 , ..., amn)µkn(ξmn) · · ·µk1(ξm1).

For every i ∈ I and every vector µk := (µk1 , ..., µkn) in P(Pk1)× ...× P(Pkn), we
write µk as (µki , µ−ki), where µ−ki := (µk1 , ..., µki−1

, µki+1
, ..., µkn) is in P(Pk1)×...×

P(Pki−1
) × P(Pki+1

) × ... × P(Pkn). If δ{ξmi} is a probability measure concentrated

at ξmi ∈ Pki , then the vector (δ{ξmi}, µ−i) is written as (ami , µ−i), and so

(8.2) Jki(δ{ξmi}, µ−ki) = Jki(am−ki
, µ−ki).

In particular, (8.1) yields

(8.3) Jki(µki , µ−ki) :=
∑

ξmi∈Pki

Jki(ami , µ−ki)µki(ξmi).



620 S. MENDOZA-PALACIOS AND O. HERNÁNDEZ-LERMA

Note that µk := (µk1 , ..., µkn) in P(Pk1) × ... × P(Pkn) is a vector of measures in
P(A1)× ...×P(An). Then for any i ∈ I and Ei ∈ B(Ai)∩Pki , the replicator induced
by {Uki}i∈I has the form

µ′
ki
(t, Ei) =

∑
ξmi∈Ei∩Pki

[
Jki(amki

, µ−ki(t))− Jki(µki(t), µ−ki(t))
]
µki(t, ξmi),

which is equivalent to the system of differential equations in R2k1+...+2kn of the form

(8.4) µ′
ki
(t, ξmi) =

[
Jki(ami , µ−ki(t))− Jki(µki(t), µ−ki(t))

]
µki(t, ξmi),

for i = 1, 2, ..., n and mi = 0, 1, ..., ki, with initial condition {µki,0(ξmi)}
2ki −1
mi=0.

Hence, using Theorem 8.1 or Theorem 8.4, we can approximate (3.6)-(3.8) by a

system of differential equations in R2k1+...+2kn of the form (8.4).

8.2. Finite dimensional approximation: strong form. In this section we pro-
vide an approximation theorem that gives conditions under which we can approxi-
mate (3.6)-(3.8) by a finite-dimensional dynamical system of the form (8.4) under
the total variation norm (2.1).

Theorem 8.1. For each i in I, let Ai be a separable metric space and let Ui, U
ϵ
i :

A1 × ...×An → R be bounded functions such that max
i∈I

∥Ui −U ϵ
i ∥ < ϵ, where ∥ · ∥ is

the sup norm in (e3.2). Consider the replicator dynamics induced by {Ui}ni=1 and
{U ϵ

i }ni=1, i.e.,

(8.5) µ′
i(t, Ei) =

∫
Ei

[
Ji(ai, µ−i(t))− Ji(µi(t), µ−i(t))

]
µi(t, dai),

(8.6) ν ′i(t, Ei) =

∫
Ei

[
J ϵ
i (ai, ν−i(t))− J ϵ

i (νi(t), ν−i(t))
]
νi(t, dai),

for each i ∈ I, E ∈ B(Ai), and t ≥ 0. If µ(·) and ν(·) are solutions of (8.5) and
(8.6), respectively, with initial conditions µ(0) = µ0 and ν(0) = ν0, then for T < ∞

(8.7) sup
t∈[0,T ]

∥µ(t)− ν(t)∥∞ < ∥µ0 − ν0∥∞eQT + 2ϵ

(
eQT − 1

Q

)
.

where Q := (2n+ 1)H and H := max
i∈I

∥Ui∥.

Corollary 8.2. Let us assume the hypotheses of Theorem 8.1. Suppose that for
each i in I, there exists a sequence of functions {U ϵn

i }∞n=1 and probability measure
vectors {νn}∞n=1 such that max

i∈I
∥Ui − U ϵn

i ∥ → 0 and ∥µ0 − νn0 ∥∞ → 0. If µ(·) and

νn(·) are solutions of (8.5) and (8.6), respectively, with initial conditions µ(0) = µ0

and νn(0) = νn0 , then for T < ∞,

lim
n→∞

sup
t∈[0,T ]

∥µ(t)− νn(t)∥∞ = 0.
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8.3. Finite dimensional approximations: weak form. The next approxima-
tion result, Theorem 8.4, establishes the proximity of two paths generated by two dif-
ferent dynamical systems (the original model and a discrete approximating model)
with different initial conditions, under the weak topology. To this end we use the
Kantorovich-Rubinstein norm ∥ · ∥kr on M(A), which metrizes the weak topology.

Remark 8.3. Let A be a separable metric space. We say that a mapping µ :
[0,∞) → M(A) is weakly differentiable if there exists µ′(t) ∈ M(A) such that, for
every t > 0 and g ∈ CB(A)

(8.8) lim
ϵ→0

1

ϵ

[∫
A
g(a)µ(t+ ϵ, da)−

∫
A
g(a)µ(t, da)

]
=

∫
A
g(a)µ′(t, da).

If ∥ · ∥k,r is the Kantorovich-Rubinstein metric in (2.8), then (8.8) is equivalent to

(8.9) lim
ϵ→0

∥∥∥∥µ(t+ ϵ)− µ(t)

ϵ
− µ′(t)

∥∥∥∥
kr

= 0.

Theorem 8.4. For each i in I, let (Ai, ϑi) be a bounded separable metric space
(with diameter Ci > 0), and Ui, U

ϵ
i : A1 × ... × An → R be two bounded functions

such that max
i∈I

∥Ui−U ϵ
i ∥ < ϵ. For each i in I, suppose that ∥Ui∥L < ∞ and consider

the replicator dynamics induced by {Ui}ni=1 and {U ϵ
i }ni=1, as in (8.5) and (8.6). If

µ(·) and ν(·) are solutions of (8.5) and (8.6), respectively, with initial conditions
µ(0) = µ0 and ν(0) = ν0, then for T < ∞

(8.10) sup
t∈[0,T ]

∥µ(t)− ν(t)∥kr∞ < ∥µ0 − ν0∥kr∞eQT + 2ϵ

(
eQT − 1

Q

)
.

where Q := [2H + (2n − 1)CHL], H := max
i∈I

∥Ui∥, HL := max
i∈I

∥Ui∥L, and C :=

max
i∈I

Ci.

Corollary 8.5. Let us assume the hypotheses of Theorem 8.4. Suppose that for
each i in I, there exist sequences of functions {U ϵn

i }∞n=1 and of vectors of probability

measures {νn}∞n=1 such that max
i∈I

∥Ui −U ϵn
i ∥ → 0 and ∥µ0 − νn0 ∥kr∞ → 0. If µ(·) and

νn(·) are solutions of (8.5) and (8.6), respectively, with initial conditions µ(0) = µ0

and νn(0) = νn0 , then, for T < ∞,

lim
n→∞

sup
t∈[0,T ]

∥µ(t)− νn(t)∥kr∞ = 0.

9. Examples

9.1. A quadratic linear model: asymmetric case. Consider games in which
we have two players with the following payoff functions:

(9.1) U1(x, y) = −a1x
2 − b1xy + c1x+ d1y,

(9.2) U2(x, y) = −a2y
2 − b2yx+ c2y + d2x,

with a1, a2, b1, b2, c1, c2 > 0 and d1, d2 any real numbers. Let A1 = [0,M1] and
A2 = [0,M2] for M1,M2 > 0 and large enough, be the strategy sets.
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This class of games could represent a Cournot duopoly or models of international
trade with linear demand and linear cost (see Mas-Colell, Whinston and Green [29]).
It can also represent some models of public good games.

If

(2a2c1 − b1c2), (2a1c2 − b2c1), (4a1a2 − b1b2)

are all positive, then we have an interior Nash equilibrium

(x∗, y∗) =

(
2a2c1 − b1c2
4a1a2 − b1b2

,
2a1c2 − b2c1
4a1a2 − b1b2

)
.

Let

C1 := {(µ, ν) ∈ P(A1)× P(A2) : µ(x
∗,M1] = ν(y∗,M2] = 0} ,

C2 := {(µ, ν) ∈ P(A1)× P(A2) : µ[0, x
∗) = ν[0, y∗) = 0} ,

and C = C1 ∪ C2. The set C is invariant for the replicator dynamics (3.6)-(3.8) and
(δx∗ , δy∗) is in C. On the other hand, let

x̄µ :=

∫
A1

xµ(dx), ȳµ :=

∫
A2

yµ(dy).

If (µ, ν) is in C1, then by Jensen’s inequality

J1(δx∗ , ν) =

∫
A2

U1(x
∗, y)ν(dy) = U1(x

∗, ȳν) > U1(x̄
µ, ȳν) ≥ J1(µ, ν)

J2(µ, δy∗) =

∫
A1

U2(x, y
∗)µ(dx) = U2(x̄

µ, y∗) > U2(x̄
µ, ȳν) ≥ J2(µ, ν).

This is also true if (µ, ν) is in C2. Hence, for any ϵ > 0, the vector (δx∗ , δy∗) is a SUP
in the set C. Therefore, by Theorem 4.7, for ϵ > 0 the set C ∩Vϵ(δa∗) is invariant for
(3.6)-(3.8). Moreover, since for every i in I, the payoff functions Ui(·) are continuous
and the sets of strategies Ai are compact sets, we conclude by Theorem 4.7 that if
µ(0) ∈ C ∩ Vϵ(δa∗), then µ(t) → δa∗ weakly.

9.2. A quadratic linear model: symmetric case. We now consider the sym-
metric form of the game in Section 9.1 Thus, we can rewrite the payoff functions
(9.1) and (9.2) as

(9.3) U(x, y) = −ax2 − bxy + cx+ dy,

with a, b, c > 0 and d any real number. Let A = [0,M ] for M > 0 and large enough,
be the strategy set. If 2c(a− b) > 0 and 4a2− b2 > 0, then we have an interior Nash
equilibrium strategy (NES)

x∗ =
2c(a− b)

4a2 − b2
.

For a fixed y the function U(x, y) is concave in x and has the partial derivative
Ux(x, y) = −2ax− by + c. Let

x(y) := argmaxU(x, y) =
(c− by)

2a

and note that x′(y) = −(b/2a) < 0. Then if y < x∗ or x∗ < y, we have

U(x(y), y) > U(x∗, y) ≥ U(y, y).
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Figure 9.1

On the other hand, let ȳµ :=
∫
A yµ(dy). If µ is such that ȳµ < x∗, then by

Jensen’s inequality

J(δx∗ , µ) =

∫
A
U(x∗, y)µ(dy) = U(x∗, ȳµ) > U(ȳµ, ȳµ) ≥ J(µ, µ),

This is also true if ȳµ > x∗. Hence, for any metric r on P(A), the strategy δx∗ is
r-SUS. Therefore, by Theorem 6.3, if ∥µ0 − δx∗∥ = 2(1− µ0({x∗})) < ϵ, then

∥µ(t)− δx∗∥ = 2(1− µ(t, {x∗})) < ϵ, rw(µ(t), δx∗) < Mϵ ∀t ≥ 0.

Moreover, since the payoff function U(·) is continuous and the set A of strategies is
compact, we conclude that µ(t) → δx∗ weakly.

Consider a game where a = 2, b = 1, c = 5, d = 1, M = 2. For this game the
payoff function (9.3) is bounded Lipschitz and by Theorem 8.4 we can approximate
the replicator dynamics by a finite-dimensional dynamical system of the form (5.1)-
(5.2) under the Kantorovich-Rubinstein norm. The Figure 9.1 shows a numerical
approximation for this game where the Nash equilibrium is x∗ = 1. For this numer-
ical approximation we consider a partition with 100 elements with the same size,
and use the forward Euler method for solving ordinary differential equations. We
consider the uniform distribution as initial condition. We show the distribution for
the times 0, 1000 and 2000.

Note that under the strong norm the Nash equilibrium x∗ = 1 cannot be approx-
imated by a probability measure with a continuous density function.

9.3. A graduated risk game. A graduated risk game is a symmetric game, where
two players compete for a resource of value v > 0. Each player selects her “level
of aggression” for the game. This “level of aggression” is captured by a probability
distribution on A := [0, 1]. In this case, x ∈ A can be interpreted as the probability
that neither player is injured, and 1

2(1 − x) is the probability that player one (or
player two) is injured. If the player is injured, its payoff is v − c (with c > 0), and
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Figure 9.2

hence the expected payoff for the player is

(9.4) U(x, y) =

{
vy + v−c

2 (1− y) if y > x
v−c
2 (1− x) if y ≤ x

where x and y are the “levels of aggression” selected by the player and her opponent,
respectively.

If v < c, this game has a NES with density function

dµ∗(x)

dx
=

α− 1

2
x

α−3
2 ,

where α = c
v . Bishop and Cannings [2] show that if v < c, then the NES satisfies

that

J(µ∗, µ)− J(µ, µ) > 0 ∀µ ∈ P(A),

that is, µ∗ is a r-SUS for any metric r in P(A), with A = [0, 1].

Hence, by Theorem 6.2, if K(µ0, µ
∗) < φ′(ϵ) =

(
ϵ
2

)2
, then

i) µ(t) ∈ Wφ′(ϵ)(µ
∗) for all t ≥ 0;

ii) ∥µ(t)− µ∗∥ < ϵ for all t ≥ 0;
iii) rw(µ(t), µ

∗) < ϵ for all t ≥ 0.

Consider a game where c = 10, v = 6.5. For this game the payoff function (9.4)
is bounded, and by theorem 8.1 we can approximate the replicator dynamics by a
finite-dimensional dynamical system of the form (5.1)-(5.2) under the strong norm
(2.1). The Figure 9.2 shows a numerical approximation for this game. For this
numerical approximation we consider a partition with 100 elements with the same
size, and use the forward Euler method for solving ordinary differential equations.
We consider the uniform distribution as initial condition. We show the distribution
for the times 0, 500 and 1000.

In the same way, Figure 9.3 shows a numerical approximation for a game where
c = 10, v = 0.5. For this numerical approximation we consider a partition with
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Figure 9.3

100 elements with the same size, and use again the forward Euler method for solv-
ing ordinary differential equations. We consider the uniform distribution as initial
condition. We show the distribution for the times 0, 500 and 1000.

10. Comments

In this survey, we introduced a model of evolutionary games with strategies in
metric spaces. The model can be reduced, of course, to the particular case of
evolutionary games with finite strategy sets. We provide a general framework to
the replicator dynamics that allows us to analyze different stability criteria, and
establish conditions to approximate the replicator dynamics in a metric space by
a sequence of dynamical systems on finite-dimensional spaces. We also presented
three examples. The first two models may be applicable to oligopoly models, theory
of international trade, and public good models. The third example deals with a
graduated risk game.

There are many questions, however, that remain open. For instance, when the
set of pure strategies is finite, Cressman [9] shows that under some conditions the
stability of monotone selection dynamics is locally determined by the replicator
dynamics. Is this true for games with strategies in the space P(A) of probability
measures? The study of the stability for other game dynamics with strategies
in metric spaces has few theoretical results. A detailed study might require new
theoretical developments in the stability analysis of dynamic systems in general
spaces.

Another important issue would be to obtain stability results for evolutionary
games with continuous strategies similar to the result by Hofbauer and Sigmund
[22] (Theorem 14) for games with a finite strategy set A.

The replicator dynamics has been studied in other general spaces without direct
applications to game theory. For instance, Kravvaritis et al. [27], [24], [25] [26],
and Papanicolaou and Smyrlis [37] studied conditions for stability and examples for
these general cases. These extensions may be applicable in areas such as migration,
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regional sciences, and spatial economics (see Fujita, Krugman, and Venables [14]
chapters 5 and 6). However, these extensions have not been made for asymmetric
models, that is, for multipopulation games.

Appendix A: Metrics on P(A)

Proposition A.1. Let (A, r) be a separable metric space. Then the Prokhorov
metric rp and the bounded Lipschitz metric rbl metrize the weak convergence, i.e.,
for any sequence {µn} ⊂ P(A), the following statements are equivalent:

i) µn converges in the weak topology,
ii) rp(µn, µ) → 0,
iii) rbl(µn, µ) → 0.

Moreover, for any µ and ν in P(A),

(A.1)
1

3
[rp(µ, ν)]

2 ≤ rbl(µ, ν) ≤ 2rp(µ, ν)

Proof. See Shiryaev [43] chapter 3. □
Proposition A.2. Let (A, r) be a Polish space and 1 ≤ p < ∞. The Lp-Wasserstein
metric rwp metrizes the weak convergence on Pp(A), i.e., for any sequence {µn} ⊂
Pp(A) and {µ} ⊂ P(A), the following conditions are equivalent:

i) µn converges in the weak topology,
ii) rwp(µn, µ) → 0.

Moreover, if A is bounded, then the Lp-Wasserstein metric rwp, the Prokhorov met-
ric rp, the bounded Lipschitz metric rbl and the Kantorovich-Rubinstein metric rkr
metrize the weak convergence of probability measures in P(A). In addition, if p = 1
then

(A.2)
1

3
[rp(µ, ν)]

2 ≤ rbl(µ, ν) ≤ rkr(µ, ν) = rw(µ, ν).

Proof. See Shiryaev [43] chapter 3, and Givens and Shortt [15]. □
Proposition A.3. Let A be a separable metric space. Let µ and ν be in P(A), with
ν << µ. Then

(A.3) ∥µ− ν∥ ≤ 2[K(µ, ν)]
1
2 .

Moreover, if A is a bounded (with diameter C > 0) Polish space, then

(A.4) rw(µ, ν) ≤ C∥µ− ν∥ ≤ 2C[K(µ, ν)]
1
2 .

Proof. See Reiss [39] chapter 3, and Villani [46] chapter 6. □
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