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noting that v = wt and ut = (ws − 1)t = wst = wts = vs; we will also consistently
write z for vs = ut. We then write the solution vectorially as

X(s, t) = (u(s, t), v(s, t)) for (s, t) ∈ Q = [0, 1]× [0, T ].

We will always impose (1.3) so the weak form of the PDE vt = Ns will be

(1.5) ⟨η, vt⟩+ ⟨ηs, N⟩ = (ηy)
∣∣∣
s=1

for suitable test functions η.
For the initial/boundary value problem (IBVP) we additionally specify as data

the initial state:

(1.6) X(·, 0) = x with x = (u0(s), v0(s)) for s ∈ [0, 1].

We then designate the problem as IBVP(x, y) to indicate the dependence on this
specification of data, correspondingly writing X(t;x, y) for the solution.

This IBVP was considered in [3] under assumptions on n — see Section 2 — per-
mitting nonlinear dependence on both the strain and the strain rate while obtaining
well-posedness and ensuring that one never develops infinite compression, i.e., en-
suring that u > −1. See [3] and [4] for more detailed comment on the physics and
the use of other boundary conditions as well as related prior work on the IBVP (e.g.,
[9], [6], [11], [8], [1], [2], [12], etc.). Although the paper [3] considered the IBVP for
various choices of inhomogeneous boundary conditions, for expository convenience
we restrict our attention here to the specific configuration in which the rod is fixed
at one end with a specified force applied at the other end (compare [7]).

In contrast to [3], the primary concern here is not directly with the IBVP. Instead,
the conditions (1.3) are imposed without specifying any initial data and one asks
whether, assuming the forcing y(·) is periodic, there must be some periodic solution1

i.e., whether there will be some set of initial data x = (u0, v0) for which the solution
t 7→ (u, v) of the IBVP(x, y) is similarly periodic in t. Our principal result will be:

Theorem 1.1. Fix T > 0 and let the constitutive function n satisfy the conditions
(H0), (H1), (H2) of Subsection 3.1. Then for any sufficiently small y in Y = {y ∈
H1[0, T ] : y(T ) = y(0)} there exists a correspondingly periodic solution X of (1.4)
with (1.3) such that

X(t) = (u, v) ∈ X = H1[0, 1]×H2[0, 1]

with X(T ) = X(0).

1.1. Notation.

• We always implicitly assume that the rod is consistently oriented by its
labeling and cannot penetrate itself: if s1 < s2, then we must have w(s1, t) <
w(s2, t) so the model would be physically meaningful only if ws > 0 so
u > −1 and we take this as an implied constraint. Thus, if one were to have
u(s, t) → −1 (infinite compression) there must be a strongly opposing elastic
response: φ′(u) → −∞; similarly we expect φ′(u) → ∞ when u → ∞.
Thus, the physical variables (as w, u, v, etc.) are considered for (s, t) ∈

1Note that, in the context of the IBVP, w, u, v, etc., are intended for all t ≥ 0 but for the
periodicity problem are only needed up to T and should then repeat.
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Q = [0, 1] × [0, T ] while the constitutive function n(·, ·) should need to be
determined only for (u, z) ∈ Ω = (−1,∞)× R.

• For a solution X = (u, v) of (1.4), (1.3) it will be convenient for us to set

N(s, t) = n(u(s, t), ut(s, t)) = (φ′(u) + σ(u, ut))
∣∣∣
(s,t)

for all (s, t) ∈ Q, also extending to t ∈ [0,∞).
• For any function g, possibly of both space and time, we denote

∥g(·, t)∥ :=

(∫ 1

0
g2(s, t) ds

)1/2

,

i.e., we will always use ∥ · ∥ (without any subscript) to denote the L2-norm
with respect to the space variable s ∈ [0, 1]. Further, we write

⟨f, g⟩ =
∫ 1

0
f(s)g(s) ds

for the inner product in L2(0, 1) as well as related duality products.
• We consider T > 0 as fixed and set Q = [0, 1]× [0, T ]; we then set

∥g∥L2(Q) =

(∫
Q
g2(s, t) ds dt

)1/2

;

with ∥g∥L∞(Q) defined correspondingly.

• For k ∈ N, denote the Hilbert space Hk = Hk[a, b] by

Hk =

u(·) : ∥u∥Hk =

(
k∑

i=0

∥u(i)∥2
)1/2

< ∞

 ,

where u(i) denotes the i-th derivative; when i = 1, we may alternatively
write u′ for u(1). We will set

X = H1[0, 1]×H2[0, 1] Y = {y ∈ H1[0, T ] : y(T ) = y(0)}

2. Strategy

Suppose the IBVP(x, y) specified by (1.4) would be solvable for initial data x ∈ X
as in (1.6) and boundary data y ∈ Y as in (1.3) to get a unique solution X =
X(·;x, y) on [0, T ]. This may then be used to define a function

(2.1) F(x, y) = X(T )− x.

Suppose, further, that for some such y, there would be a solution, denoted by
x = G(y), of the equation

(2.2) F(x, y) = 0

so F(G(y), y) ≡ 0. By our definition (2.1) of F , this means that X(T )− x = 0 for

the solution of the IBVT(x, y). Now obtain X̂ by considering the IBVP(x̂, ŷ) on the
time interval [T, 2T ] with initial data x̂ = X(T ) and boundary data ŷ(t) = y(t). If
we would know that y is time-periodic (so y(t+kT ) = y(t) for t ≥ 0 and k = 1, 2, . . .)
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then, except for the translation in t, IBVP(x̂, ŷ) on [T, 2T ] is identical to IBVT(x, y)
on [0, T ] so the respective solutions are correspondingly identical:

X(t;x, y) = X̂(t; x̂, ŷ) = X(t− T ;x, y) for T ≤ t ≤ 2T.

In particular, we have X̂(2T ) = X(2T −T ) = X(T ) = x̂ so F(x̂, ŷ) = 0 whence x̂ =
G(ŷ) Proceeding inductively in this manner shows that the solution X(·;G(y), y),
initially constructed only for t ∈ [0, T ], extends periodically to all t ≥ 0 and, indeed,
to all t ∈ R. The argument sketched above is our strategy to attain the goal of the
paper: showing existence of a periodic motion X = X(·;G(y), y) for each periodic
forcing function y in an appropriate domain Y0.

The key to our argument is use of the Implicit Function Theorem (IFT) – once
one has verified its assumptions in the setting of the rod model – to see that y 7→
G(y) = x is implicitly defined by (2.2). The setting for the IFT is a pair of Banach

spaces X ,Y, a pair of elements x̂ ∈ X , ŷ ∈ Y, and a function f : X̂ × Ŷ → Y where
X̂ , Ŷ are neighborhoods of x̂, ŷ, respectively.

Theorem 2.1. (IFT) Assume that:

(A0) The function f is defined and continuous: X̂ × Ŷ → X ,

(A1) f is Fréchet differentiable on X̂ × Ŷ,
(A2) f(x̂, ŷ) = 0,
(A3) The partial derivative ∂f/∂x (evaluated at (x̂, ŷ)) is invertible,

Then there exists a neighborhood Y0 of ŷ (with Y0 ⊂ Ŷ) and a differentiable function

g : Y0 → Ŷ such that g(ŷ) = x̂ and f(g(y), y) ≡ 0 on Y0.

We are led to this strategy by the initial observation that without forcing (i.e.,
if we were to use y = ŷ ≡ 0 in (1.3)) we could have the trivial solution w = w∗

satisfying (1.1) so u = (w − w∗)s ≡ 0 and v = (w − w∗)t ≡ 0 giving (u, v) = (0, 0)
at t = 0 – which we write simply as ‘x̂ = 0’. As this is a steady state solution it is
obviously periodic for arbitrary period length T , as is y. Thus we begin knowing
the assumption (A2) and follow this strategy by proceeding to justify the remaining
assumptions: (A0), (A1), and (A3) on the basis of the hypotheses (H0), (H1), (H2)
we will impose on the constitutive function n.

For our application we will take X = H1(0, 1)) × H2(0, 1) and Y = H1(0, T ).
Since we will be working with the trivial forcing ŷ = 0, all the forcing functions y
in the neighborhood Y0 may be viewed as “small data” as in the abstract. This
“smallness” requirement is certainly essential to the IFT and so to our use of this
strategy, but at this point it is not clear whether it is essential to the physics of our
application.

3. Hypotheses and estimates

In this section we address the verification of the assumptions (A0) and (A1) —
i.e., showing that the function F of (2.1), defined by the IBVP for (1.4), (1.3), is
indeed well-defined and differentiable. Throughout we will assume without further
mention that, as in (2.1), we have fixed T > 0 and n(·, ·) satisfying (H0), (H1),
(H2); further, we assume that X = (u, v) satisfies (1.4), (1.3) for some y ∈ Y and
some suitable initial data X(·, 0) = x.
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Although (A0), the existence of solutions for the IBVP, was already treated in the
paper [3], our major effort in this section is to provide (for the particular boundary
conditions considered here) the relevant a priori estimates bounding various Sobolev
norms which are key to obtaining well-posedness of (1.4), as well as differentiability
of (2.1) Our arguments here for these estimates largely follow the presentation in
[7].

3.1. Hypotheses on the Constitutive Function. Besides the form of the sys-
tem, we will impose throughout the hypotheses (H0), (H1), (H2) on the constitutive
function n :

(H0) We assume n(·, ·) is smooth on Ω with φ minimized at u = 0, so that

φ′(0) = 0 and σ(u, 0) ≡ 0.

(H1) Uniform ellipticity: There exists m > 0 such that

nz(u, z) = σz(u, z) ≥ m.

This in particular implies

σ(u, z) z ≥ mz2 and σ(u, z)/z ≥ m.

(H2) The dissipative damping dominates effectively: for some κ

(i) |nu| ≤ κnz and (ii) |nu| ≤ κ
√
nz

√
σ/z on Ω.

3.2. Principal Estimates.

Lemma 3.1. Suppose n satisfies (H0), (H1), (H2) and assume that

(3.1)
Ex = E(0) := 1

2∥v0∥
2 +

∫ 1
0 φ(u0) ds < ∞ and

Nx = sups∈[0,1] |nz((u0)s, (v0)s))| < ∞.

Now let X(t) = (u(·, t), v(·, t)) be a solution of IBVP(x, y), that is (1.4) with initial
data x = (u0, v0) and satisfying boundary condition (1.3). Let x = (u0, v0) ∈ X =
H1(0, 1)×H2(0, 1) and y ∈ H1(0, T ).

Then

u ∈ L∞((0, T ] → H1), v ∈ L∞((0, T ] → H2) and

sup
t∈[0,T ]

(
1

2
∥v(·, t)∥2 +

∫ 1

0
φ(u(s, t)) ds

)
≤ E(0) +

4

m
∥y∥2L2[0,T ].

If we set

(3.2)

G(T ) := E(0) + 4
m

∫ T
0 y2(τ) dτ, G0(T ) := 2∥u0∥2 + 8T

m GT ,

G1(T ) := (N 2
x

(
κ2 + 1

) ∥∥2 + ∥v0∥2
)
+

2κ2

4m
GT +

4

m
∥y′∥2L2[0,T ]

G2(T ) := TeκT
(
∥(u0)s∥+ 1

mG1(T )
)
.

then the solution X = (u, v) also satisfies the bounds

(3.3)
∥v(·, t)∥2 ≤ 2G(T ), ∥u(·, t)∥2 ≤ G0(T ), ∥us(·, t)∥ ≤ G2(T ),

∥vt(·, t)∥ ≤ G(T ), ∥vss(·, t)∥ ≤
√

G1(T )

m + κG2(T ).
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for all 0 < t ≤ T .

Proof. The classical energy (kinetic plus potential) is

(3.4) E(t) :=
1

2
∥v(·, t)∥2 +

∫ 1

0
φ(u(s, t)) ds

which we differentiate and use (1.5) with η = v (integrating by parts and using the
boundary conditions) for all t > 0; we readily obtain

(3.5) E(t) +

∫ t

0

∫ 1

0
σ(u, ut)ut ds dτ = E(0) +

∫ t

0
y(τ)v

∣∣∣
x=1

dτ.

Observe that for any function f : [0, 1] → R, with f(0) = 0, we have

(3.6) |f(y)| ≤ ∥fx∥ for y ∈ (0, 1].

so |v(1, t)| ≤ ∥vs(·, t)∥. Using this estimate, together with (H1) in (3.5), along with
the fact that ut = vs (see (1.4)) and Young’s inequality, we readily obtain

(3.7)
E(t) +

1

2

∫ t

0

∫ 1

0
σ(u, ut)ut ds dτ +

m

4

∫ t

0
∥vs∥2dτ

≤ E(0) +
4

m

∫ t

0
y2(τ) dτ = G(T ).

From (3.7), the Gronwall Inequality gives

(3.8) ∥v(·, t)∥2 ≤ 2G(T ) for all 0 < t ≤ T.

Moreover,

(3.9)

∫ T

0
∥vs∥2 dτ ≤ 4

m

(
E(0) +

4

m

∫ T

0
y2(τ) dτ

)
=

4

m
GT .

Observe that

(3.10) u(s, t) = u0(s) +

∫ t

0
ut(s, τ) dτ = u0(s) +

∫ t

0
vs(s, τ) dτ.

Applying Cauchy-Schwartz, we readily have

u2(s, t) ≤ 2u20(s) + 2t

∫ t

0
v2s(s, τ) dτ.

Integrating in s from 0 to 1, we obtain for each 0 < t ≤ T

(3.11) ∥u(·, t)∥2 ≤ 2∥u0∥2 +
8T

m
G(T ) = G0(T ).

To obtain higher order estimates, we use the Chain Rule, observing that (1.4)
yields

(3.12) vt = ∂s n(u, ut) = nu

∣∣∣
(u,z)

us + nz

∣∣∣
(u,z)

vss

Note, in particular, that the initial data should satisfy

(3.13) vt

∣∣∣
t=0

= nu(u0, (v0)s) (u0)s + nz(u0, (v0)s) (v0)ss.

Thus, in assuming u0 ∈ H1 and v0 ∈ H2, we also assume that ∥vt(·, 0)∥ < ∞.
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Much as in (3.12), we get from (1.4)

(3.14) vtt = ∂s∂t

[
n(u, z)

∣∣∣
(u(s,t),ut(s,t)

]
= [nuut + nzvs]s

Observe that n(u, ut)
∣∣∣
s=1

= y(t) which implies ∂tn(u, ut)
∣∣∣
s=1

= y′(t). Also, v
∣∣∣
s=0

≡

0 implies vt

∣∣∣
s=0

= 0. Multiplying (3.14) by vt, integrating by parts in s and using

the boundary conditions yields

1
2

d

dt
∥vt∥2 = −

∫ 1

0
∂t n(u, ut) vts ds+ y′(t)vt

∣∣∣
s=1

≤ −
∫ 1

0
[ny(u, ut)ut + nz(u, ut)utt] vts ds+ y′(t)∥vts∥,(3.15)

where we have already used (3.6) in (3.15). Rearranging the above inequality and
using (H1), Young’s inequality, the fact that vts = utt, and (H2), we obtain

1

2

d

dt
∥vt∥2 +

m

2
∥utt∥2 ds+

m

4

∫ 1

0
nz(u, ut)u

2
tt ds

≤
∫ 1

0
ny(u, ut)ututt ds+

4

m
(y′(t))2(3.16)

≤ κ

∫ 1

0

√
nz(u, ut)

√
|σ(u, ut)| |ut| |utt| ds+

4

m
(y′(t))2

≤ m

4

∫ 1

0
nz(u, ut)u

2
tt ds+

2κ2

m

∫ 1

0
σ(u, ut)ut ds+

4

m
(y′(t))2,

where in (3.16), we also used the fact that σ(u, z)z ≥ m > 0 where defined. Inte-
grating the resulting inequality and using (3.7), we obtain

(3.17) ∥vt∥2 +
m

2

∫ T

0
∥utt∥2 dt ≤ ∥vt(·, 0)∥2 +

2κ2

4m
G(T ) +

4

m
∥y′∥2L2[0,T ].

From (1.4), we have

vt

∣∣∣
(s,0)

= nu(u0), (v0)s)u0 + nz(u0, (v0)s) (v0)ss

Using (H2), we have

|vt
∣∣∣
(s,0)

|2 ≤ (κ2 + 1)|nz(u0(s)m(v0)s(s))|2(|(u0)s(s)|2 + |(v0)ss(s)|2).

Due to (3.17), with G1(T ) as in (3.2), we immediately obtain

(3.18) ∥vt∥2 +
m

2

∫ T

0
∥utt∥2 ≤ G1(T ).

Note that from the equation (1.4), we readily obtain

(3.19) vss = ust =
vt

nz(u, ut)
−
(
nu(u, ut)

nz(u, ut)

)
us.
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This implies

us(s, t) = us(s, 0) +

∫ t

0

vt
nz(u, ut)

dτ −
∫ t

0

(
nu(u, ut)

nz(u, ut)

)
us dτ.

Now taking the L2− norm in the space variable in this equation, using (H1), (H2)(i),
and the Minkowski inequality, we readily obtain

∥us∥ ≤ t(∥us(·, 0)∥+
1

m
G1(T ) + κ

∫ t

0
∥us∥ dτ.

Applying the (integral) Gronwall inequality, we obtain

(3.20) ∥us∥ ≤ TeκT
(
∥(u0)s∥+

1

m
G1(T )

)
= G2(T ).

In view of (H2) and (3.19), we also have

|vss| ≤
|vt|
m

+ κ|us|.

Consequently, from (3.20) and (3.18) and interpolation, we get

(3.21) ∥vss∥ ≤
√
G1(T )

m
+ κG2(T ).

Thus we have shown, given y ∈ Y = H1([0, T ]), that if a solution X of IBVP(x, y)
starts in X = H1(0, 1)) × H2(0, 1) at t = 0, then it stays in X with a uniform
bound. □

3.3. Pointwise Lower Bound for u. An important step in our analysis of the
IBVP is showing, for some suitable set of solutions, that one can restrict the domain
of n to a compact subset Ω0 ⊂ Ω, i.e., restricting the range of [u, z] over Q. This
essentially requires pointwise bounds for u, z and, in view of the embedding of
H1[0, 1] into C([0, 1]) and the estimates (3.20) and (3.21) for ∥us∥ and ∥vss∥ =
∥(ut)s∥, we already have such pointwise bounds:

|u(s, t)| ≤ Mu |ut(s, t)| ≤ Mz

Since Ω = (−1,∞) × R, any upper and lower bounds for ut and any upper bound
for u will serve our purpose, but a lower bound u ≤ u is useful precisely if u > −1.

It is not difficult to show that the estimates M we have obtained from (3.20),
(3.21) can be made arbitrarily close to 0 by taking the data x, y to be small enough
in X ×Y. If the force y is suitably small, then the solution can stay near the (trivial)
equilibrium in sup norm. With such a bound on the data y for Theorem 1.1 we
have an arbitrarily small uniform bound Mu so u = −Mu is a lower bound for u we
can take

Ω0 = [u,Mu]× [−Mv,Mv] ⊂ Ω.

The significance of having a compact domain Ω0 for the constitutive function n
is that we have assumed (H0), so n – and all its derivatives of the form ∂u

j∂z
kn

which have the same domain – will necessarily be bounded. In particular, n must
be Lipschitzian where relevant with a constant given by the bounds on |nu| and
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nz over Ω0. Similarly, using the Chain Rule, we see that if one had two sets of
arguments (û, ẑ) and (ũ, z̃) with difference (ū, z̄), then

n̄ = n(û, ẑ)− n(ũ, z̃) = nuū+ nz z̄ +R

where the remainder (error term) is uniformly O(ū2 + z̄2) since the functions
nuu, nzz, nuz are bounded uniformly on Ω0. It is this uniformity which immedi-
ately justifies the formal differentiation of n in IBVP(x, y) as a Fréchet derivative.

Formally, to linearize around a particular solution X∗ = (u∗, v∗) of (1.4) we
compute the coefficient functions

(3.22) c2∗ =
∂n

∂u
(u∗, (u∗)t) α∗ =

∂n

∂z
(u∗, (u∗)t)

and then consider the linear system

(3.23) ut = vs vt =
[
c2∗u+ α∗ut

]
s

for the corresponding variations; we adjoin the boundary conditions

(3.24) v
∣∣∣
s=0

= 0
[
c2∗u+ α∗vs

]∣∣∣
s=1

= y

and initial condition

(3.25) (u, v)
∣∣∣
t=0

= x = (u0, v0)

so (x, y) are the variations (perturbations) of the data (x, y).
It is not difficult to make this argument a rigorous verification of assumption

(A1) of the IFT (Theorem 2.1) by filling in the details of the error computation in
integral form.

3.4. Wellposedness. In this final subsection we turn to the verification of the
assumption (A0) for the rod model IBVP(x, y). We note that the arguments for
uniqueness and Lipschitzian dependence of solutions on data would use essentially
the same methods as were used above for differentiability so we can concentrate our
attention on showing existence.

Our strategy for this is the use of Faedo-Galerkin approximation: introducing
a sequence of finite-dimensional subspaces XK = UK × VK ⊂ X in which we seek
(U, V ) = (UK , VK) ∈ XK determined by the same weak formulation as in (1.5). It
is convenient to take VK to be the continuous piecewise linear functions V on [0, 1]

with nodes {sk = k/K : k = 0, . . . ,K} and fixing V
∣∣∣
s=0

= V0 = 0 and then to take

UK to be functions piecewise constant on the subintervals {(sk, sk+1)}
We can then require Z := U̇ = ∂sV ∈ UK for each V ∈ VK and will compute

n(U,Z) ∈ UK pointwise. The variational form of our system, corresponding to (1.5),
is now

(3.26) ⟨H, V̇ ⟩V + ⟨∂sH,n(U,Z)⟩U = [H(1)] y(t)

for allH ∈ V = VK . We must show that this weak formulation implicitly determines
ODEs for the time evolution of the state U, V , that (a subsequence) converges to
some limit X = (u, v), and that this limit is a solution of IBVP(x, y). Note that
y ∈ Y as before and for eachK we take the initial data (U, V )t=0 to be the projection
of x = (u0, v0) to XK .
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The same computation as for the first energy estimate in Lemma 3.1 — i.e.,
taking H = V in (3.26) — shows that (U, V ) remains bounded on each [0, t) so the
ODE is well-defined and, indeed, is bounded uniformly in K so (UK , VK) converges
subsequentially weakly in L2 to some limit (u, v). This weak convergence does not
show that (UK , ZK) ↪→ (u, z) implies wlimn(UK , ZK) = n(u, z) and so is insufficient
to show that the limit (u, v) is a solution of the limit problem. Fortunately, however,
(with some minor modification) the remaining estimates in Lemma 3.1 continue
to hold if one takes initial data x ∈ X . Thus, noting the compactness of the
embedding of H1 into the continuous functions, we actually have (for a subsequence)
convergence (U,Z) → (u, z) uniformly on Q so NK = n(UK , ZK) converges to the
correct limit.

4. Spectral expansion for the linearized model

In this section, we study the linearization at the equilibrium solution.
To this end, we introduce a (small) parameter ε ≥ 0 — replacing the forcing y

by εy — and linearize (1.4) around ε = 0 for which u = ws ≡ 0, v = wt ≡ 0 to get
the autonomous linear equation

(4.1) wtt = [c2ws + αwst]s on Q = R+ × (0, ℓ)

where c2 = φ′′(0), α = ∂σ/∂z (0, 0) assuming each of these is positive. We remark
that this is just the wave equation if α = 0 and is the usual diffusion equation (for
wt) if c = 0.

We can write (4.1) as a vector equation

(4.2) X ′ = AX with A :

(
u
v

)
7→
(

vs
c2us + αvss

)
for which we will begin by considering the initial/boundary value problem in the
state space X = {X : u, v ∈ L2(0, 1)}. Note that specification of the domain
of the operator A includes the homogeneous boundary conditions: v(0) = 0 and
c2u+ αvs = 0 at s = 1.

We then compute the eigenvalues and eigenfunctions of −A, i.e.,

(4.3) vs = −λu c2us + αvss = −λv

We first observe that λ ̸= 0. Indeed, in case λ = 0, it follows that vs = 0. The
condition v(0) = 0 then implies v ≡ 0. From the second equation in (4.3), it then
immediately follows that us = 0. The boundary condition c2u(1) + αvs(1) = 0,
together with v ≡ 0 implies u(1) = 0 which immediately yields u ≡ 0. In other
words, the boundary conditions ensure that A is injective and λ = 0 cannot be an
eigenvalue.

We will now reformulate the boundary condition at s = 1 for the eigenvalue
problem. From the first equation in (4.3), noting λ ̸= 0 we get u = − 1

λvs. So from

the boundary condition at s = 1 we get (α− c2

λ )vs(1) = 0. Thus if α− c2

λ ̸= 0, then

vs(1) = 0. We now claim that α ̸= c2

λ . From (4.3), we readily obtain

(4.4)

(
α− c2

λ

)
vss = −λv.
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If α = c2

λ and λ ̸= 0, then v ≡ 0. Thus from (4.3), u ≡ 0. However, [u v]t is
an eigenvector and therefore this is impossible. Thus, we see that the following
conditions hold for the eigenvalue λ,

λ ̸= 0, α ̸= c2

λ
.

Thus from (4.4), we obtain the eigenvalue problem for v, namely,

(4.5) −vss = µ2v; v(0) = 0, vs(1) = 0

with µ2 = λ2/(αλ−c2). We recognize (4.5) as a familiar Sturm-Liouville eigenvalue
problem for which the eigenvalues µ2 are strictly positive, given by

µk =

(
k − 1

2

)
π, k = 1, 2, 3, · · · .

The corresponding eigenvectors are

vk = vk(s) = Ck sin(µks)

where Ck are normalizing constants.
From (4.4), it follows that the eigenvalues λ of −Amust be roots of the quadratics

(4.6) λ2 − µ2
kαλ+ µ2

k c
2 = 0

Thus2 for each k = 1, 2, 3, · · · , we obtain two eigenvalues of −A, namely,

(4.7) λ±
k =

1

2
µ2
k α

[
1±

√
1− 4 c2

µ2
k α

]
for k = 1, 2, · · ·

Observe that

(4.8) lim
k→∞

λ+
k

µ2
k α

= 1 and lim
k→∞

λ−
k = c2.

The eigenvectors corresponding to λ±
k are

(4.9) w±
k := Ck

[(
µk

λ±
k

)
cos(µks) sin(µks)

]t
,

where Ck is again a normalizing constant. Setting Wk = Span±
{
w±
k

}
, we note

that for k ̸= l, we have Wk ⊥ Wl. By our nondegeneracy assumption, we have
dim.Wk = 2 for each k. We compare this with {

√
2[cos(µks) 0]

t,
√
2[0 sin(µks)]

t, }
which is an orthonormal basis of X . With respect to the orthogonal decomposition
X =

⊕∞
k=1Wk, and the orthogonal basis {

√
2[cos(µks) 0]

t,
√
2[0 sin(µks)]

t} for Wk,
the matrix of A is block diagonal with the k−th diagonal block given by the matrix

Ak =

[
0 µk

−c2µk −αµ2
k

]
, k = 1, 2, · · · .

A direct computation shows that λ±
k are the eigenvalues of −Ak. In view of (4.8),

it follows that the spectrum of −A is

(4.10) σ(−A) = {λ±
k : k = 1, 2, · · · } ∪ {c2}

2We will assume that 4c/π
√
α is not an odd integer to avoid the degenerate possibility that the

quadratic (4.6) has a double root.
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so ℜ(λ) > 0 for all λ ∈ σ(−A).

5. Conclusions

In this section we complete the proof of our principal result, Theorem 1.1 by
applying Theorem 2.1.

Proof. We need the assumptions (A0), (A1), (A2), (A3) of Theorem 2.1 in the
context of Theorem 1.1. We have treated the verification of (A0) and (A1) in
Subsection 3.4 and Subsection 3.3 and had already verified (A2) in Section 2. Thus,
it remains only to use the Separation of Variables computations of Section 4 for
verification of the invertibility assumption (A3).

Note that the spectral decomposition for (4.2) was purely formal without spe-
cific determination of the domain of AA. This was given in Section 4 as X =
L2((0, 1) → R2), which is justified once we observe that, although not orthonormal,
the eigenvector sequence {w±

k } of (4.9) is a Riesz basis for X .
To obtain a periodic solution with period T , we need to find x = X0 ∈ X such

that

(5.1) X0 = X(T ) = eTAX0 +

∫ T

0
e(T−τ)Ay(τ) dτ.

However, due to (4.10), our computation of the spectrum of the operator eTA yields

that σ(eTA) =
{
e−λ±

k T , k = 1, 2, · · ·
}
∪{ec2T } Thus, 1 /∈ σ(eTA). It follows that the

operator (I − eTA) is invertible and the inverse is a bounded operator on the phase
space X . Therefore a unique X0 satisfying (5.1) is given by

X0 = (I − eTA)−1

∫ T

0
e(T−τ)Ay(τ) dτ.

In particular, this also establishes the invertibility of ∂xF evaluated at the trivial
steady state. This completes the proof of Theorem 1.1. □
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