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i.e. that either the air is saturated, that is, the water vapor content matches its
saturation value, qv = qvs(T, p), and the cloud water droplets can exist with qc > 0,
or the air is undersaturated , i.e. qv < qvs, in which case qc ≡ 0; see [29]. This
is also the viewpoint of the above mentioned references ([18, 17, 10]). Accordingly,
the involvement of thresholds for the cloud water condensation and evaporation
leads to the introduction of a Heaviside function, so that the equations for qv and
T (the temperature) appear as nonlinear, discontinuous and non-monotone. Nev-
ertheless, the above mentioned references managed to establish results of existence,
uniqueness and regularity of solutions. In [37], the authors provided another bulk
microphysics description, where they did not assume this limiting vapor-to-cloud
water conversion behavior from the outset and demonstrated how it may be derived
in a consistent asymptotic framework given large but finite condensation rates. This
model has recently been studied mathematically in [33], in which the authors proved
the global existence and uniqueness of uniformly bounded solutions of the model in
[37]. However, in the references [58, 60, 59, 16] cited below and in our current arti-
cle, we still used the classical formulation, which involves a discontinuous Heaviside
function, for the expression of cloud water condensation and evaporation rate. For
other equations of geophysics associated with a discontinuous Heaviside function,
we may refer the readers to, for instance, [20, 21, 25, 26, 28].

In trying to extend the study to the case where qvs is not constant [58], it was
found that the equations of the humid atmosphere in the classical references, e.g.
[32, 34, 55], are inconsistent for the extreme cases qv = 0 and qv = 1. whether qvs
is constant or not. Here qv = 0 corresponds to a totally dry atmosphere, qv = 1
corresponds to a totally humid atmosphere. A physically satisfactory resolution of
this difficulty is proposed in [58] and studied mathematically in [60], namely the
equation for qv is formulated as a variational inequality. For general results on
variational inequalities and their utilization in mechanics and physics, see among
a vast literature [12, 8, 9, 22, 24, 27, 36]. In [59], the authors investigateed the
time-discretization scheme of the solution to the variational inequality introduced
in [60].

After the references [60] and [58] resolved the inconsistency of humidity equa-
tions using the variational inequality under the simplifying assumption that qvs is
constant, a more recent article [16] generalized the model studied in [60] and [58] by
considering the more realistic situation where the humid atmosphere comprises three
components instead of only one, namely water vapor qv, rain water qr and cloud
condensates qc. Furthermore the saturation concentration is no longer assumed to
be a constant as it was in [60], [58]. With the nonlinear constraint that the vapor
mass ratio qv is less than the saturation concentration qvs, which depends itself on
the temperature T , the authors introduce and handle a system of equations and
inequations involving a so-called quasi-variational inequality for which they prove
the existence of solutions. Quasi-variational inequalities have been introduced in
[9], [4] by Bensoussan and Lions, motivated by the study of economical problems;
see also [2], [3], [6], [7], [5] and [8]. For general results on quasi-variational inequal-
ities and their applications in mechanics, physics and imagery, see for instance,
[39, 35, 42, 45, 50, 49, 48].
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The aim of the present article is to study the numerical approximation of the quasi
variational inequalities introduced in [16]. In the current work, we shall follow the
former works and assume, for simplicity, that the velocity u of the humid air is
known. We believe that, despite these simplifications, the resulting system contains
the essence of the nonlinearity that is present in the moist advection. See [15] for
the study on a coupled system involving qv, T and u where the velocity is no longer
prescribed. From the mathematical point of view, this article combines the methods
in [17, 18] with the methods for the 3-dimensional primitive equations (PEs) in [13],
[38]. As mentioned before, the existence of change in phases leads to the introduction
of a set-valued Heaviside function. The discontinuities due to the changes of phases
and the quasi-variational inequality resulting from the extreme cases for the vapor
concentration are the two distinct features of the model that we study and they
bring significant mathematical difficulties towards the understanding of the model.

In this article, we propose an implicit Euler scheme to approach the solutions to
the system. However, we can not simply proceed from this scheme directly as usual
due to the difficulties induced by the discontinuities and the physical requirement
for the vapor concentration qv. We need to approximate the original scheme by a
relatively standard nonlinear problem which can be treated by classical methods.
For that purpose, we first introduce a regularized version of the scheme where we
used a continuous function to approximate the Heaviside function. Meanwhile, the
unknown function qv should satisfy the range condition qv ≤ qvs a.e. in the under-
lying domain which is denoted by M below. To guarantee that the functions which
we recursively define in the Euler scheme obey this constraint, we have introduced
a penalization term in the form of 1

ε ((qv − qvs)
+)α in the regularized Euler scheme

to achieve this range condition in the limit through delicate energy estimates. Note
that the use of the penalization method is a convenient mathematical tool and we do
not try to give a physical meaning to the penalization term. Penalization has been
introduced by R. Courant [19] and it is very common in Optimization Theory (see
e.g. [14] and [53]). In summary, we discretize the quasi variational inequality using
an implicit Euler scheme and we use penalization and regularization techniques to
show the existence of solutions to the Euler scheme. Then to prove the convergence
of the Euler scheme, we classically need some strong convergence results which
follow from additional a priori estimates on the solutions of the discretized Euler
scheme. The most challenging part in our estimates is to show that the discrete
time derivative of qv will remain in a bounded set of the space Lβ(0, t1, V

∗) for some
β > 1, in view of using a suitable version of the Aubin-Lions compactness theorem
[41]. Here t1 > 0 is an arbitrary fixed time and the space V ∗ is the dual space of
V = H1(M). The challenge comes from the large factor 1

ε in the penalization term
in the qv equation, where ε is a positive parameter that is aimed at converging to
0. The key step in the proof is to show that the saturation concentration qvs in the
time-discretized Euler scheme will remain in a bounded set of Lβ(0, t1,H

2(M)). To
achieve this goal, we need to use the relationship between qvs and the temperature
T and prove higher order regularity in the space L2(0, t1;H

2(M)) ∩ L∞(0, t1;V )
for T , compared with what was done in [59] when qvs was assumed to be constant.
Moreover, the above a priori estimates also require delicate choices of the value
of α in the penalization term 1

ε ((qv − qvs)
+)α and of β in the space Lβ(0, t1, V

∗).
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Later in Section 2 and 3 we will see that α is set to 3
2 and β is set to 5

3 . From
the mathematical view point, we systematically use the tools (e.g., integration by
parts, interpolation inequalities, etc) found in [43, 56] and [57].

The rest of the article is organized as follows. In Section 2, we give a precise
formulation of the problem. In Section 3, we introduce the Euler scheme and derive
various uniform estimates for the functions associated with the penalized and reg-
ularized scheme. In Section 4, we investigate the convergence of the Euler scheme.
Lastly, in Section 5, we illustrate the theory studied in the previous sections with
some numerical simulations done in a slightly different setting where the viscosity
terms are omitted as they are not significant for short term forecast, and the space
dimension is 2 (with coordinates x and p, see below).

2. Formulation and setting of the exact problem

In this part, we shall introduce our system. We let M ⊂ R3 be the spatial
domain for our study in the x, y, p variables and a typical point in M is denoted
by x = (x, y, p) where p is the pressure.The boundary ∂M of the domain M is
decomposed as ∂M = Γi∪Γu∪Γl corresponding respectively to the bottom, top and
lateral boundaries of M. We use ρ, q, θ, T and evs to denote density, concentration,
potential temperature, temperature, and saturation vapor pressure, respectively.

In our current study, we will consider the water vapor, cloud-condensate and rain
water for the warm humid atmosphere (above freezing point T = 273K). For a
specific quantity, we shall use the subindices v, c, and r to represent this quantity
for the water vapor, cloud-condensate and rain water. For example, qv represents
the concentration of water vapor, qc is the concentration of cloud-condensate, and
qr is the concentration of rain water, etc.

Assuming that the velocity u = (u, v, ω) is known and sufficiently regular (see
(2.16) ), the unknowns for our current study are the potential temperature θ, the
concentrations of the water vapor, cloud-condensate and rain water qv, qc, qr and
the saturation concentration qvs. If T is the temperature then we classically have

(2.1) θ = T (
p0
p
)κ =

T

Π
, Π = (

p

p0
)κ,

where κ = (γ − 1)/γ and γ = cp/cv is the ratio of specific heats of dry air at
constant pressure and at constant volume, p is the pressure and p0 is a reference
pressure. The usual range for p and p0 in the atmosphere is [200, 1000] (see e.g. in
[11] and [23]).

Before going any further, we shall first make some simple observations. Of course,
the quantities qv, qc, qr, qvs being relative mass fractions ratios take their values in
the interval [0, 1]. Furthermore, following the common assumption that the vapor-
to-cloud water conversion is instantaneous (see e.g., [29]), the air can not be super-
saturated (in general). In other words, we have the constraint 0 ≤ qv ≤ qvs.

The function qvs is a diagnostic variable; it is explicitly given at each instant of
time as a function of p and T (or θ), that is

(2.2) qvs = Qvs(T, p).
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The expression of qvs as a function of T and p results from the application of the
Clausius–Clapeyron equation and it can be expressed as a function of the saturation
vapor pressure evs

(2.3) qvs =
3.8

p− 0.378 evs

evs
6.11

= 0.6219
evs

p− 0.378 evs
,

where by Tetens’ formula,

(2.4) evs = 6.11 exp(a
T − 273

T − b
).

Here T is in Kelvin, a = 17.27, b = 36 for T ≥ 273K in [40]. Because we only
consider the above freezing case in our model, b ≪ 273, b ≪ T , we may set b = 0
for simplicity. Considering the physical range of the temperature T found in the
troposphere, we can replace T by φ(T ) in (2.4) where φ is a smooth (e.g. C2)
positive real function with φ(T )

(2.5)


= T for T∗ ≤ T ≤ T∗∗,

≥ T∗/2 for T ≤ T∗,

= 0 for T ≥ 2T∗∗.

Here T∗ > 0 is smaller than any temperature on earth (e.g. 100K) and T∗∗ is larger
than any temperature on earth (e.g. 355K). By the above modification of (2.4), we
can avoid the singularity at T = 0, and thus evs and qvs = Qvs(T, p) can be viewed
as positive bounded smooth functions of p and T for all values of p ≥ 0 and T ∈ R.

With this expression for qvs, we notice that the constraint qv ≤ qvs itself
depends on the solution of the conservation equations; this leads us to formulate
the qv-equation in the form of a quasi-variational equation (for details, see [16]).

We then investigate the conservation equations for the relative mass densities
qv, qc, qr and for the temperature T (or more precisely the difference θ

′
between

the potential temperature θ and a reference temperature θh, θ
′
= θ − θh). For the

original model equations, we may refer the readers to [40], [46], [47] and [51].

2.1. Exact Problem. We set U = (qv, qc, qr, θ
′) and Ū = (qc, qr, θ

′). Let t1 ≥ 0 be
a fixed positive time and let K(U) be the non-empty closed convex set in H1(M)
defined as K(U) = {qv ∈ H1(M); qv ≤ qvs a.e.}; our problem is formulated as
follows:

To find Ū : [0, t1] → H1(M)3, qv : [0, t1] → K(U) and hqv ∈ H(qv − qvs), such

that for any qbv ∈ L2(0, t1;K(U)) and t ∈ [0, t1], there hold
(2.6)
⟨∂tqv, qbv − qv⟩+ (Avqv + v · ∇qv + ω ∂qv

∂p , q
b
v − qv) ≥ (fqv(U)− ω−

p Fhqv , q
b
v − qv),

∂tqc +Acqc + v · ∇qc + ω ∂qc
∂p = fqc(U)− ω−

p Fhqv ,

∂tqr +Arqr + v · ∇qr + ω ∂qr
∂p = fqr(U),

∂tθ
′ +Aθθ

′ + v · ∇θ′ + ω ∂θ′

∂p = fθ′(U) + L
cpΠ

ω−

p Fhqv ,

with the following initial and boundary conditions:

(2.7) U(x, y, p, 0) = U0(x, y, p) = (qv0, qc0, qr0, θ
′
0)

t(x, y, p),



732 Y. CAO, C. JIA, AND R. TEMAM

(2.8)


∂pqv = βv(qv∗ − qv) on Γi, ∂pqv = 0 on Γu, ∂nvqv = 0 on Γl,

∂pqc = βc(qc∗ − qc) on Γi, ∂pqc = 0 on Γu, ∂ncqc = 0 on Γl,

∂pqr = βr(qr∗ − qr) on Γi, ∂pqr = 0 on Γu, ∂nrqr = 0 on Γl,

∂pθ
′ = α(θ′∗ − θ′) on Γi, ∂pθ

′ = 0 on Γu, ∂nθ′θ
′ = 0 on Γl.

The regularity for Ū∗ and qv∗ will be specified below. In the above expressions,
H is the set-valued Heaviside function satisfying H(0) = [0, 1]. The heat and vapor
diffusion operators Aθ and Aq are described as

(2.9) Aθ = −µθ∆− νθ∂p
(
(
gp

Rθ̄
)2∂p

)
, Aq = −µq∆− νq∂p

(
(
gp

Rθ̄
)2∂p

)
,

where µq, νq (q ∈ {qv, qc, qr}), µθ, νθ, g, R, cp are all positive constants and θ̄ = θ̄(p)
is the average potential temperature over the isobar with pressure p. We assume
that θ̄ satisfies:
(2.10)
θ̄∗ ≤ θ̄(p) ≤ θ̄∗, |∂pθ̄(p)| ≤M, for some positive constants θ̄∗, θ̄

∗,M and p ∈ [p0, p1].

Throughout the paper, we shall assume that the boundary datum U∗ =
(qv∗, qc∗, qr∗, θ

′) satisfy

(2.11) U∗ ∈ L2(0, t1;L
2(Γi)

4).

Later, we will impose higher regularity assumptions on Ū∗ = (qc∗, qr∗, θ
′) for the

homogenization of the Robin boundary conditions.
In line with what we did in (2.3)-(2.5), we assume that the source terms

fqv(U), fqc(U), fqr(U), fθ′(U) are all continuous bounded functions of U , compactly
supported in the region of R3 corresponding to the domain of (qv, qc, qr). The
function F is defined as

(2.12) F = F (T ) = Qvs(T, p)φ(T )
( LR− cpRvφ(T )

cpRvφ(T )2 +Qvs(T, p)L2

)
,

and −ω−

p F is the expression for dqvs/dt. Here L is the latent heat of vaporization;

R, Rv are the gas constants for dry air and water vapor respectively and cp rep-
resents the specific heat of dry air at constant pressure (see [32] and [34]). From
the mathematical point of view, we can treat L, R, Rv and cp as constants. With
φ(T ) given as in (2.5), it can be easily verified that F (T ) is Lipschitz continuous
and uniformly bounded in T .

Notice that in (2.6), the equations for qc, qr, θ
′ have the same form, so that we

can rewrite them in the following compact form

(2.13) ∂tŪ + ĀŪ + u · ∇x · Ū = f̄(U)− ω−

p
F̄hqv ,

where Ā = diag{Ac,Ar,Aθ′}, F̄ = (−F, 0,− L
cpΠ

F )t. If we adopt the following

notations for Ū0 = U0(x, y, p), Ū∗ = U∗(x, y, p)

Ū0 = (qc0, qr0, θ
′
0)

t, Ū∗ = (qc∗, qr∗, θ
′
∗)

t,
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and define the coefficient matrix C̄ = diag{βc, βr, α}, then the initial and boundary
conditions associated with the system (2.13) can be written as follows

(2.14) Ū(x, y, p, 0) = Ū0(x, y, p),

(2.15) ∂pŪ = C̄(Ū∗ − Ū) on Γi, ∂nĀŪ = 0 on Γu ∪ Γl.

For the weak formulation in the coming subsection, we will treat differently the
equation for Ū = (qc, qr, θ

′) and the equation for qv which is subjected to the
constraint qv ≤ qs.

2.2. Notations and weak formulation. We denote as usual H = L2(M), V =
H1(M) and we set H = H ×H ×H ×H and V = V × V × V × V . We use (·, ·)L2

(regarded the same as (·, ·)H) and | · |L2 to denote the usual scalar product and
induced norm in H. In the space V , we will use ((·, ·)) to denote the scalar product
adapted to the problem under investigation

((φ, ϕ)) := (∇φ,∇ϕ) + (∂pφ, ∂pϕ) +

∫
Γi

φϕdΓi,

and the induced norm is denoted ∥ · ∥. The symbol ⟨·, ·⟩ will denote the duality pair
between a Banach space E and its dual space E∗. In relation with the Navier-Stokes
equations, we also use the following standard notations:

H = {u ∈ H ×H ×H
∣∣ div u = 0 and u · n = 0 on ∂M},

V = {u ∈ V × V × V
∣∣ div u = 0 and u · n = 0 on ∂M},

which will serve as the natural function spaces for the vector field u. In fact we will
assume that

(2.16) u ∈ L∞(0, t1;V) ∩ L∞((0, t1)×M).

In view of deriving the weak (variational) formulation of the boundary value
problem, we multiply e.g. the expression Aqvqv by a test function qbv. Assuming
smoothness and taking into account the boundary conditions (2.8) for qv we find

⟨Aqvqv, q
b
v⟩ =

(
−µqv∆qv − νqv∂p

(
(
gp

Rθ̄
)2∂pqv,

)
, qbv

)
:= µqv(∇qv,∇qbv)H + νqv

∫
M

( gp
Rθ̄

)2
∂pqv∂pq

b
v dM

+ νqv

∫
Γi

(gp1
Rθ̄

)2
βqv(qv − qv∗)q

b
v dΓi.(2.17)

We do the same for qc, qr and θ′ and thus

⟨Aqcqc, q
b
c⟩ = µqc(∇qc,∇qbc)H + νqc

∫
M

( gp
Rθ̄

)2
∂pqc∂pq

b
c dM

+ νqc

∫
Γi

(gp1
Rθ̄

)2
βqc(qc − qc∗)q

b
c dΓi,(2.18)

⟨Aqrqr, q
b
r⟩ = µqr(∇qr,∇qbr)H + νqr

∫
M

( gp
Rθ̄

)2
∂pqr∂pq

b
r dM

+ νqr

∫
Γi

(gp1
Rθ̄

)2
βqr(qr − qr∗)q

b
r dΓi,(2.19)
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and

⟨Aθθ
′, θ′b⟩ = µθ(∇θ′,∇θ′b)H + νθ

∫
M

( gp
Rθ̄

)2
∂pθ

′∂pθ
′b dM

+ νθ

∫
Γi

(gp1
Rθ̄

)2
α(θ′ − θ′∗)θ

′b dΓi.(2.20)

Consequently, we define the following bilinear forms
(2.21)

aθ(θ
′, θ′b) = µθ(∇θ′,∇θ′b)H + νθ

∫
M

( gp
Rθ̄

)2
∂pθ

′∂pθ
′b dM+ νθα

∫
Γi

(gp1
Rθ̄

)2
θ′θ′b dΓi,

(2.22)

aq(q, q
b) = µq(∇q,∇qb)H + νq

∫
M

( gp
Rθ̄

)2
∂pq∂pq

b dM+ νqβq

∫
Γi

(gp1
Rθ̄

)2
qqb dΓi.

Similarly, we define b(u, ψ, ψb) as follows:

(2.23) b(u, ψ, ψb) =

∫
M
(v · ∇ψ + ω∂pψ)ψ

b dM,

which we will use with (ψ,ψb) = (θ′, θ′b), (qv, q
b
v), (qr, q

b
r), (qc, q

b
c). We recall here

that u = (v, ω) is the three dimensional velocity, v is the horizontal velocity and ω
is the vertical velocity of the air in the x, y, p system.

Analogously, we define the linear functionals:

(2.24) lθ(θ
′b) = νθα

∫
Γi

(gp1
Rθ̄

)2
θ∗θ

′b dΓi, lq(q
b) = νqβq

∫
Γi

(gp1
Rθ̄

)2
q∗q

b dΓi,

(2.25) l(U b) = lqc(q
b
c) + lqv(q

b
v) + lqr(q

b
r) + lθ(θ

′b),

which correspond to the reference state terms on the boundary Γi in (2.17)-(2.20).
We introduce the multilinear forms for U and U b = (qbc, q

b
v, q

b
r, θ

′b)

(2.26) a(U,U b) = aqc(qc, q
b
c) + aqv(qv, q

b
c) + aqr(qr, q

b
r) + aθ(θ

′, θ′b),

(2.27) b(u, U, U b) =

∫
M
(u · ∇x,y,pU) · U b dM.

It is easy to see that

(2.28) b(u, U, U b) = b(u, qc, q
b
c) + b(u, qv, q

b
v) + b(u, qr, q

b
r) + b(u, θ′, θ′b).

In view of ∇ · u = 0, we readily see by performing integration by parts that

(2.29) b(u, ψ, ψ) = 0, ∀ ψ ∈ V.

Before we move further, we first give the following well-known estimates.
More precisely, we have the following lemma concerning the boundedness of the

above functionals.

Lemma 2.1. Assume U = (qv, qc, qr, θ
′), U b = (qbv, q

b
c, q

b
r, θ

′b) ∈ V and u ∈ V.
There exist universal positive constants Ca and Cb such that (q denotes here qv, qc
or qr):

(2.30) |aθ(θ, θb)| ≤ Ca∥θ′∥∥θb∥, aθ(θ, θ) ≥ Cb∥θ∥2;
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(2.31) |aq(q, qb)| ≤ Ca∥q∥∥qb∥, aq(q, q) ≥ Cb∥q∥2;

(2.32) |b(u, U, U b)| ≤ Ca∥u∥V|U |
1
2

L2∥U∥
1
2 ∥U ′b∥;

(2.33) |lθ(θ′b)| ≤ Ca∥θ′b∥, |lq(qb)| ≤ Ca∥qb∥.

The proof of Lemma 2.1 is based on a routine use of the Cauchy-Schwarz inequal-
ity and the trace theorem, see e.g. [54]. We shall omit the details here.

Weak Formulation
Now we can describe the weak formulation for the exact problem (2.6) as in [16].

Let U0 ∈ V be such that 0 ≤ qv0 ≤ qvs(t = 0) and let t1 > 0 be an arbitrary but fixed
time. A vector U = U(t) = (qv, Ū) ∈ L2(0, t1;K × V 3) ∩ C([0, t1];V) with ∂tŪ ∈
L2(0, t1; (V

3)∗), ∂tqv ∈ L5/3(0, t1;V
∗) is a solution to the initial-boundary value

problem (2.6)-(2.8), if, for almost every t ∈ [0, t1] and for every U b ∈ K×V ×V ×V ,
we have
(2.34)∫ t1

0

[
⟨∂tŪ , Ū b⟩+ ā(Ū , Ū b) + b̄(u, Ū , Ū b)− l̄(Ū b)

]
dt =

∫ t1

0
(f(Ū)− ω−

p
F̄hqv , Ū b)dt,

for all Ū b ∈ L2(0, t1; (H
1)3) with initial condition

Ū(t = 0) = Ū0,

and ∫ t1

0

[
⟨∂tqv, qbv − qv⟩+ aqv(qv, q

b
v − qv) + b(u, qv, q

b
v − qv)− lqv(q

b
v − qv)

]
dt

≥
∫ t1

0
(fqv(U)− ω−

p
Fhqv , q

b
v − qv)dt,(2.35)

for all qbv ∈ L∞(0, t1;H
1) with qbv ≤ qvs = Qvs(p, T ) and initial condition

(2.36) qv(t = 0) = qv0.

3. Time discretization: The Euler scheme

3.1. Time-discretization. Let N be an integer which will later go to ∞ and set
∆t := k = t1/N . We will define recursively a family of elements of K× V × V × V ,
say (qmv , Ū

m), m = 0, 1, . . . , N where (qmv , Ū
m) is intended to be an approximation

of (qv, Ū) at time m∆t.
We begin by defining um, ωm for m = 1, . . . , N :

(3.1) um =
1

k

∫ mk

(m−1)k
u(t)dt, ωm =

1

k

∫ mk

(m−1)k
ω(t)dt.

It is easy to observe that um inherits the divergence-free property of um, and also

(3.2) |um|L2 = |1
k

∫ mk

(m−1)k
u(t)dt|L2 ≤ 1

k

∫ mk

(m−1)k
|u(t)|L2dt ≤ |u|L∞(0,t1;H).

Now we discretize (2.34) and (2.35) in time using the semi-implicit Euler scheme.
The initial datum (Ū0, q0v) is given, and when (Ū0, q0v), (Ū

1, q1v), . . . , (Ū
m, qmv ) are

known, Ūm+1 ∈ V 3 and qm+1
v ∈ K(Um+1) are formally determined by:
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⟨ Ū
m+1 − Ūm

k
, Ū b⟩+ ā(Ūm+1, Ū b) + b̄(um+1, Ūm+1, Ū b)− l̄(Ū b)

= (f̄(Um)− [ωm]−

p
F̄(Tm)hqmv , Ū

b),(3.3)

⟨q
m+1
v − qmv

k
, qbv − qm+1

v ⟩+ aqv(q
m+1
v , qbv − qm+1

v ) + b(u, qm+1
v , qbv − qm+1

v )

−lqv(qbv − qm+1
v ) ≥ (fqv(U

m)− [ωm]−

p
F (Tm)hqmv , q

b
v − qm+1

v ),(3.4)

for any Ū b ∈ V 3, qbv ∈ K(Um+1).
To deal with the discontinuity of hqv and the constraint qv ≤ qvs, we consider the

associated regularized and penalized problem like in [16]:

⟨ Ū
m+1
ε − Ūm

ε

k
, Ū b⟩+ ā(Ūm+1

ε , Ū b) + b̄(um+1, Ūm+1
ε , Ū b)− l̄(Ū b)

= (f̄(Um
ε )− [ωm]−

p
F̄(Tm

ε )Hε2(q
m
vε − qmvs,ε), Ū

b),(3.5)

⟨q
m+1
vε − qmvε

k
, qbv⟩+ aqv(q

m+1
vε , qbv) + b(u, qm+1

vε , qbv) + (
1

ε1
((qm+1

vε − qm+1
vs,ε )+)3/2, qbv)

−lqv(qbv) ≥ (fqv(U
m
ε )− [ωm]−

p
F (Tm

ε )Hε2(q
m
vε − qmvs,ε), q

b
v)(3.6)

for all Ū b ∈ V 3, qbv ∈ V . Here, the function Hε2(r) is defined as

(3.7) Hε2(r) =


0 for r ≤ 0,

r/ε2 for r ∈ (0, ε2],

1 for r > ε2,

and qm+1
vs,ε = qvs(T

m+1
ε , p). When (Ū0, q0v), (Ū

1, q1v), . . . , (Ū
m, qmv ) are known, the

existence of solutions Ūm+1
ε , qm+1

vε to (3.5) and (3.6) follows from Theorem I-1.2 of
[57], using the Galerkin method. Due to the nonlinearity of the penalization term
1
ε1
((qm+1

vε − qm+1
vs,ε )+)3/2, the semi-implicit Euler scheme becomes fully implicit.

Remark 3.1. In the above scheme , we can replace hqmv (resp. Hε2(q
m
vε − qmvs,ε)) by

hqm+1
v

(resp. Hε2(q
m+1
vε − qm+1

vs,ε )). The a priori estimates in the following section

still hold.

3.2. A Priori Estimates for (Ūm
ε , q

m
vε). In this subsection, we aim to obtain some

a priori estimates on the (Ūm
ε , q

m
vε) that are independent of k, ε1 and ε2. The

dependence on ε = (ε1, ε2) will be omitted when there is no confusion in the text.
And we will use C and C1 to denote some generic constants which may depend on
the initial datum (Ū0, qv0), the velocity field u and the time t1 but are independent
of k and ε.
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Lemma 3.2. The following estimates hold:

|Ū j
ε |2L2 ≤ C(u, U0, t1), |qjvε|2L2 ≤ C(u, U0, t1), 1 ≤ j ≤ N, N =

t1
k
,

N−1∑
m=0

|Ūm+1
ε − Ūm

ε |2L2 ≤ C(u, U0, t1), k

N∑
m=1

||Ūm
ε ||2 ≤ C(u, U0, t1),

N−1∑
m=0

|qm+1
vε − qmvε|2L2 ≤ C(u, U0, t1), k

N∑
m=1

||qmvε||2 ≤ C(u, U0, t1).

(3.8)

Proof. We first prove that the above bounds hold for qmv ; setting qbv = 2kqm+1
v in

(3.6), we have

|qm+1
v |2 − |qmv |2 + |qm+1

v − qmv |2 + 2kaqv(q
m+1
v , qm+1

v )

+2kb(um+1, qm+1
v , qm+1

v ) +
2k

ε1
(((qm+1

v − qm+1
vs )+)3/2, qm+1

v )

=2k[lv(q
m+1
v ) + (fqv(U

m)− 1

p
[ωm]−F (Tm)Hε2(q

m
v − qmvs), q

m+1
v )]

≤k(Ca||qm+1
v ||2 + C(u, U0)).

(3.9)

Here we have used Lemma 2.1 and the fact that fqv(U
m)− 1

p [ω
m]−F (Tm)Hε2(q

m
v −

qmvs) is bounded in L∞(M) in (3.9).

Observing that the term (((qm+1
v −qm+1

vs )+)3/2, qm+1
v ) is positive and using Lemma

2.1 again in the LHS of (3.9), we conclude that

|qm+1
v |2 − |qmv |2 + |qm+1

v − qmv |2 + kCa||qm+1
v ||2 ≤ kC(u, U0).(3.10)

Summing (3.10) in m from 0 to N − 1 we obtain

|qNv |2 − |q0v |2 +
N−1∑
m=0

|qm+1
v − qmv |2 +

N−1∑
m=0

kCa||qm+1
v ||2 ≤ C(u, U0)t1,

which implies

(3.11)
N−1∑
m=0

|qm+1
v − qmv |2 ≤ C(u, U0, t1),

N−1∑
m=1

k||qmv ||2 ≤ C(u, U0, t1).

Summing (3.10) in m from 0 to j − 1 for any j between 1 and N and droping
some positive terms, we also have

(3.12) |qjv|2 ≤ |q0v |2 + Ct1 ≤ C(u, U0, t1), 1 ≤ j ≤ N.

So we have the desired estimates on qmvε. The estimates on Ūm
ε can be derived in

the same way and we omit the details here. □
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Remark 3.3. Equation (3.9) also implies

2k

ε1
(((qm+1

v − qm+1
vs )+)3/2, qm+1

v − qm+1
vs )

+
2k

ε1
(((qm+1

v − qm+1
vs )+)3/2, qm+1

vs )︸ ︷︷ ︸
≥0

+|qm+1
v |2 − |qmv |2

≤kC(u, U0, t1)

(3.13)

Summing (3.13) in m from m = 0 to m = N − 1 and dropping some positive terms
in the LHS, we obtain the additional a priori estimate

(3.14)
2k

ε1

N−1∑
m=0

|(qm+1
v − qm+1

vs )+|5/2 ≤ C(u, U0, t1).

Next, we will seek a priori bounds for the approximate time derivatives of Ū and

qv, namely, we will show that k
∑N−1

m=0 |
Ūm+1
ε −Ūm

ε
k |2L2 and k

∑N−1
m=0 |

qm+1
vε −qmvε

k |5/3v∗ are
bounded independently of k and ε. These estimates will be used later on in the
compactness argument when we pass to the limit k → 0. We have the following
estimate for the Ūm

ε :

Lemma 3.4. For any ε1 > 0, ε2 > 0, the inequality

(3.15) k

N−1∑
m=0

∣∣∣∣ Ūm+1
ε − Ūm

ε

k

∣∣∣∣2
L2

≤ C(u, U0, t1) <∞

holds for some constant C(u, U0, t1) depending on u, U0, t1 but not on ε and k.

Proof. Before we start to derive these a priori estimates, we need to homogenize
the boundary conditions on Ū . We introduce Ūs, the solution of the stationary
problem associated with (2.13). Namely,

(3.16) ĀŪm
s = 0, m = 1, 2, . . . , N

(3.17) Ū0
s = Ū0(x, y, p),

(3.18) ∂pŪ
m
s = C̄(Ūm

∗ − Ūm
s ) on Γi, ∂nĀŪ

m
s = 0 on Γu ∪ Γl,

where Ūm
∗ = 1

k

∫mk
(m−1)k Ū∗(t)dt. The regularity of the solutions Ūm

s of the stationary

problem (3.16)-(3.18) have been proved in Theorem 4.5 of [54]. To guarantee the
validity of Theorem 4.5 in [54], we add the following assumptions on the boundary
Γi and the boundary datum Ūm

∗ . We assume the boundary Γi is of class C3. For
the boundary datum Ū∗, we assume that it satisfies Ū∗ ∈ L2(0, t1;H

1
0 (Γi)

3), and

(3.19) k

N∑
m=1

∥ Ū
m+1
∗ − Ūm

∗
k

∥2H1(Γi)
≤ κ,
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where κ is some constant independent of k and depending only on M. Then
according to Theorem 4.5 of [54], there exists a unique solution Ūm

s ∈ H2(M) for
(3.16)-(3.18), and it satisfies

(3.20) ∥Ūm
s ∥H2(M) ≤ C∥Ūm

∗ ∥H1(Γi).

Due to the linearity of the system (3.16)-(3.18) and using the assumption (3.19),
we also have

(3.21) k

N∑
m=1

∥ Ū
m+1
s − Ūm

s

k
∥2H2(M) ≤ Ck

N∑
m=1

∥ Ū
m+1
∗ − Ūm

∗
k

∥2H1(Γi)
≤ Cκ.

We then consider the function Ūm
h = Ūm−Ūm

s which satisfies the following equation

Ūm+1
h − Ūm

h

k
+ ĀŪm+1

h + um+1 · ∇x · Ūm+1(3.22)

=f̄(Um)− 1

p
[ωm]−F̄(Tm)Hε2(q

m
v − qmvs)−

Ūm+1
s − Ūm

s

k
,

with homogeneous boundary conditions

(3.23) ∂pŪ
m
h + C̄Ūm

h = 0 on Γi, ∂nĀŪ
m
h = 0 on Γu ∪ Γl.

Multiplying (3.22) by
Ūm+1
h −Ūm

h
k , we have

(3.24)

∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

+ ⟨ĀŪm+1
h ,

Ūm+1
h − Ūm

h

k
⟩

=(f̄(Ūm)− [ωm]−

p
F̄mHε2(q

m
vε − qmvs,ε)

− um+1 · ∇3Ū
m+1 − Ūm+1

s − Ūm
s

k
,
Ūm+1
h − Ūm

h

k
)

≤Jm
1 +

1

2

∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

,

with
(3.25)

Jm
1 = C

∣∣∣∣f̄(Ūm)− [ωm]−

p
F̄mHε2(q

m
vε − qmvs,ε)− um+1 · ∇3Ū

m+1 − Ūm+1
s − Ūm

s

k

∣∣∣∣2
L2

.

Now we introduce the piecewise linear function ˜̄Uhk : [0, t1] → V defined by

(3.26) ˜̄Uhk = Ūm+1
h − (1− t−mk

k
)(Ūm+1

h − Ūm
h ),

for t ∈ [mk, (m+ 1)k], m = 0, 1, . . . , N − 1. We see that

(3.27)
Ūm+1
h − Ūm

h

k
= ∂t

˜̄Uhk, k

N−1∑
m=0

∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

= |∂t ˜̄Uhk|2L2(0,t1;L2).
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Then in the LHS of (3.24), as Ūm
h satisfies the homogeneous boundary conditions

(3.23), we can use the symmetry of the operator Ā,

⟨ĀŪm+1
h ,

Ūm+1
h − Ūm

h

k
⟩

=
⟨
Ā
( ˜̄Uhk + (1− t−mk

k
)(Ūm+1

h − Ūm
h )

)
,
Ūm+1
h − Ūm

h

k

⟩
=(Ā ˜̄Uhk, ∂t

˜̄Uhk) +
1

k
(1− t−mk

k
)⟨Ā(Ūm+1

h − Ūm
h ), Ūm+1

h − Ūm
h ⟩

≥1

2

d

dt
(Ā ˜̄Uhk,

˜̄Uhk).

(3.28)

In the RHS of (3.24), the functions f̄(Ūm) and F̄(Tm) are uniformly continuous
bounded functions of Ūm and Tm respectively, so

k

N−1∑
m=0

|f̄(Ūm)− [ωm]−

p
F̄(Tm)Hε2(q

m
vε − qmvs,ε)|2L2 ≤ Ck

N−1∑
m=0

|Ūm|2L2 + C1.

Then by Lemma 3.2, we have k
∑N−1

m=0 |∇3Ū
m+1|2L2 ≤ C and the velocity um+1 is

assumed to be given in L∞(V ), 0 ≤ m ≤ N − 1. These estimates together with

(3.21) imply that the Jm
1 satisfy k

∑N−1
m=0 J

m
1 ≤ C, where C is some constant

independent of k and ε. Hence (3.24) implies∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

+
d

dt
(Ā ˜̄Uhk,

˜̄Uhk)

=

∣∣∣∣ ddt ˜̄Uhk

∣∣∣∣2
L2

+
d

dt
(Ā ˜̄Uhk,

˜̄Uhk)

≤2Jm
1 = G(t), t ∈ [mk, (m+ 1)k].

(3.29)

Here G(t) : [0, t1] → V is the function defined by G(t) = 2Jm
1 for t ∈ [mk, (m+1)k],

m = 0, ..., N − 1. We see that G(t) is a function bounded independently of k and
ε in L1(0, t1). We integrate (3.29) from 0 to t1, drop the positive term (AŪN

h , Ū
N
h )

in the LHS of (3.29) and use the fact that Ūh0 = Ū0 − Ūs(t = 0) = 0 to deduce that

∂t
˜̄Uhk is bounded independently of k and ε in L1(0, t1;L

2). In other words,

k
N−1∑
m=0

∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

≤ C(u, U0, t1),

where C(u, U0, t1) is some constant independent of k and ε. Therefore,

k
N−1∑
m=0

∣∣∣∣ Ūm+1 − Ūm

k

∣∣∣∣2
L2

≤ k
N−1∑
m=0

( ∣∣∣∣∣ Ūm+1
h − Ūm

h

k

∣∣∣∣∣
2

L2

+

∣∣∣∣ Ūm+1
s − Ūm

s

k

∣∣∣∣2
L2

)
≤ C(u, U0, t1).

□

Remark 3.5. By an argument similar to the proof of Lemma 3.4, we can also prove
higher-order uniform estimates for Ūm

h . First, with Ū0 ∈ V , integrating (3.29) from
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0 to t for any t ∈ [0, t1], we can also infer that

(3.30) ˜̄Ukh is bounded independently of k and ε in L∞(0, t1;V
3).

As ˜̄Ukh = Ūm+1
h − (1− t−mk

k )(Ūm+1
h − Ūm

h ) is a linear combination of Ūm+1
h and Ūm

h
on the interval t ∈ [mk, (m+ 1)k], (3.30) also implies

(3.31) ||Ūm
h ||V ≤ C(u, U0, t1) < +∞ for any m, 1 ≤ m ≤ N.

Moreover, if we multiply (3.22) by ĀŪm+1
h , following the similar steps as what

we did in (3.24)-(3.29) for d
dt
˜̄Ukh =

Ūm+1
h −Ūm

h
k , we obtain

(3.32) k

N−1∑
m=0

|ĀŪm+1
h |2L2 ≤ C(u, U0, t1) < +∞,

where C(u, U0, t1) is independent of k and ε. As Uh0 = 0, we infer that from (3.32),

(3.33) Ā ˜̄Ukh is bounded independently of k and ε in L2(0, t1;L
2(M)3).

On another note, in (3.28), if we keep the positive term 1
k (1−

t−mk
k )⟨Ā(Ūm+1

h −
Ūm
h ), Ūm+1

h − Ūm
h ⟩ which is equal to 1

k (1−
t−mk

k )∥Ūm+1
h − Ūm

h ∥2V , then (3.24) also
implies ∣∣∣∣∣ Ūm+1

h − Ūm
h

k

∣∣∣∣∣
2

L2

+
d

dt
(Ā ˜̄Uhk,

˜̄Uhk) +
1

k
(1− t−mk

k
)∥Ūm+1

h − Ūm
h ∥2V

≤2Jm
1 = G(t), for t ∈ [mk, (m+ 1)k].

(3.34)

Integrating (3.34) from t = mk to t = (m + 1)k and summing for m from 0 to
N − 1, we then find

(3.35)

N−1∑
m=0

∥Ūm+1
h − Ūm

h ∥2V ≤ C(u, U0, t1).

Because Ūm = Ūm
h +Ūm

s , thanks to (3.20) and (3.21), the above estimates (3.30)-
(3.35) also hold with Ūm

h being replaced by Ūm.

Lemma 3.4 and (3.30)-(3.35) will be useful in the estimation of k
N−1∑
m=0

|| q
m+1
vε −qmvε

k ||5/3v∗

and in the passage to limit k → 0+.
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Estimate of dqv/dt.
To estimate the approximate time derivative for qv, we first need to control the

penalization term which contains the ”large” factor 1
ε1
. For that purpose, we

establish the following technical lemma.

Lemma 3.6. For any ε1 > 0, ε2 > 0, the inequality

k

N−1∑
m=0

1

ε
5/3
1

|(qm+1
vε − qm+1

vs,ε )+|5/2
L5/2 ≤ C(u, U0, t1) <∞,

holds for some constant C(u, U0, t1) depending on u, U0, t1 but not on ε and k

Proof. Replacing qbv by (qm+1
v − qm+1

vs )+ in (3.6), we see that

⟨q
m+1
v − qmv

k
, (qm+1

v − qm+1
vs )+⟩+ aqv(q

m+1
v , (qm+1

v − qm+1
vs )+)− lqv((q

m+1
v − qm+1

vs )+)

+ b(um+1, qm+1
v , (qm+1

v − qm+1
vs )+) +

1

ε1
|(qm+1

v − qm+1
vs )+|5/2

L5/2

=
(
fqv(U

m)− [ωm]−

p
F (Tm)Hε2(q

m
v − qmvs), (q

m+1
v − qm+1

vs )+
)
.

(3.36)

In the RHS of (3.36)

⟨q
m+1
v − qmv

k
, (qm+1

v − qm+1
vs )+⟩

= ⟨(q
m+1
v − qm+1

vs )− (qmv − qmvs)

k
, (qm+1

v − qm+1
vs )+⟩

+ ⟨q
m+1
vs − qmvs

k
, (qm+1

v − qm+1
vs )+⟩.(3.37)

We denote qm+1
v − qm+1

vs by dm+1 and write dm+1 as (dm+1)+ − (dm+1)−; then the
first term in the RHS of (3.37) becomes

⟨(d
m+1)+ − (dm)+

k
, (dm+1)+⟩+ ⟨−(dm+1)− + (dm)−

k
, (dm+1)+⟩︸ ︷︷ ︸

≥0

≥ 1

2k

(
|(dm+1)+|2 − |(dm)+|2

)
.(3.38)

For the aqv -term in (3.36), we have

aqv(q
m+1
v , (qm+1

v − qm+1
vs )+)

=aqv((q
m+1
v − qm+1

vs )+, (qm+1
v − qm+1

vs )+) + aqv(q
m+1
vs , (qm+1

v − qm+1
vs )+)

≥aqv(qm+1
vs , (qm+1

v − qm+1
vs )+).(3.39)

We move the aqv -term, b-term and lqv -term to the RHS of (3.36) and recall the
definitions (2.21)-(2.23). Then it follows from (3.37)-(3.39) that

1

2k

(
|(dm+1)+|2 − |(dm)+|2

)
+

1

ε1
|(qm+1

v − qm+1
vs )+|5/2

L5/2
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≤
∣∣⟨qm+1

vs − qmvs
k

, (qm+1
v − qm+1

vs )+⟩+
(
Avq

m+1
vs , (qm+1

v − qm+1
vs )+

)
(3.40)

+
(
um+1 · ∇3q

m+1
v , (qm+1

v − qm+1
vs )+

)
−
(
fqv(U

m)− [ωm]−

p
F (Tm)Hε2(q

m
v − qmvs), (q

m+1
v − qm+1

vs )+
)∣∣.

Using the Hölder and Young inequalities, the first term in the RHS of (3.40) can
be estimated in the following way∣∣⟨qm+1

vs − qmvs
k

, (qm+1
v − qm+1

vs )+⟩
∣∣

=
∣∣ ∫

M
ε
2/5
1

(qm+1
vs − qmvs)

k
· (q

m+1
v − qm+1

vs )+

ε
2/5
1

dM
∣∣

≤Cε2/31

∣∣(qm+1
vs − qmvs)

k

∣∣5/3
L5/3 +

1

8ε1

∣∣(qm+1
v − qm+1

vs )+
∣∣5/2
L5/2 .

(3.41)

Treating the other terms in the RHS of (3.40) as in (3.41), we infer that

1

2k

(
|(dm+1)+|2 − |(dm)+|2

)
+

1

ε1
|(qm+1

v − qm+1
vs )+|5/2

L5/2

≤Cε2/31

(
|q

m+1
vs − qmvs

k
|5/3
L5/3 + |Avq

m+1
vs |5/3

L5/3 + |∇3q
m
v |5/3

L5/3 + |qmv |5/3
L5/3 + C1

)
(3.42)

+
1

2ε1
|(qm+1

v − qm+1
vs )+|5/2

L5/2 ,

where we have bounded
∣∣fqv(Um)− [ωm]−

p F (Tm)Hε2(q
m
v −qmvs)

∣∣5/3
L5/3 by |qmv |5/3

L5/3+C1.

Multiplying (3.42) by k and summing in m from m = 0 to N − 1, we obtain

1

2
|(qNv − qNvs)

+|2L2 −
1

2
|(q0v − q0vs)

+|2L2 + k

N−1∑
m=0

1

2ε1
|(qm+1

v − qm+1
vs )+|5/2

L5/2

(3.43)

≤ Cε
2/3
1 k

N−1∑
m=0

(
|q

m+1
vs − qmvs

k
|5/3
L5/3 + |Avq

m+1
vs |5/3

L5/3 + |∇3q
m
v |5/3

L5/3 + |qmv |5/3
L5/3 + C1

)
.

In the LHS of (3.43), The first term is positive and the second term is 0 because
of the constraint on the initial value q0v ≤ q0vs. We now estimate the RHS of (3.43)
term by term.

Firstly, for k
∑N−1

m=0 |
qm+1
vs −qmvs

k |5/3
L5/3 , we recall that qmvs = Qvs(T

m, p) and the func-

tion Qvs(T, p) is Lipschitz continuous in the variable T . Hence |qm+1
vs − qmvs| ≤

C|Tm+1 − Tm| pointwise for some constant C independent of k and ε. We have

shown in Lemma 3.4 that k
∑N−1

m=0

∣∣∣ Ūm+1−Ūm

k

∣∣∣2
L2

is uniformly bounded in terms of

k and ε; thus

k

N−1∑
m=0

|q
m+1
vs − qmvs

k
|5/3
L5/3 ≤ Ck

N−1∑
m=0

∣∣∣∣Tm+1 − Tm

k

∣∣∣∣5/3
L5/3
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≤
N−1∑
m=0

∣∣∣∣ Ūm+1 − Ūm

k

∣∣∣∣2
L2

(3.44)

≤ C(u, U0, t1).

Secondly, for |Avq
m+1
vs |5/3

L5/3 , because of the expression of Qvs(T, p) in (2.2)-(2.4), the

following inequalities hold pointwise (see also Lemma 4.2 in [16])∣∣∣∂2qm+1
vs

∂x2

∣∣∣ ≤ C

(∣∣∣∂Tm+1

∂x

∣∣∣2 + ∣∣∣∂2Tm+1

∂x2

∣∣∣) , ∣∣∣∂2qm+1
vs

∂y2

∣∣∣ ≤ C

(∣∣∣∂Tm+1

∂y

∣∣∣2 + ∣∣∣∂2Tm+1

∂y2

∣∣∣) ,
∣∣∣∂2qm+1

vs

∂p2

∣∣∣ ≤ C

(∣∣∣∂Tm+1

∂p

∣∣∣+ ∣∣∣∂Tm+1

∂p

∣∣∣2 + ∣∣∣∂2Tm+1

∂p2

∣∣∣+ C1

)
.

It follows that

(3.45) |Avq
m+1
vs |5/3

L5/3 ≤ C
(
|∆3T

m+1|5/3
L5/3 + |∇3T

m+1|10/3
L10/3 + C1

)
.

Then by the Gagliardo-Nirenberg interpolation inequality, we have

(3.46) |∇3T
m+1|10/3

L10/3 ≤ C
(
|∇3T

m+1|10/3
L2 + |∇3T

m+1|4/3
L2 |∆3T

m+1|2L2

)
.

With the help of Remark 3.5 and (3.31)-(3.32), we see that |∇3T
m+1|L2 ≤

C(u, U0, t1) for any m, 0 ≤ m ≤ N − 1; thus

k
N−1∑
m=0

|∆3T
m+1|2L2 ≤ C(u, U0, t1).

In view of (3.46) and the inclusion L2(M) ⊂ L5/3(M), after we multiply (3.45)
by k and sum from m = 0 to N − 1, we obtain

k

N−1∑
m=0

|Avq
m+1
vs |5/3

L5/3 ≤ C
(
k

N−1∑
m=0

|∆3T
m+1|5/3

L5/3 + sup
0≤m≤N−1

|∇3T
m+1|10/3

L2 · t1

+ sup
0≤m≤N−1

|∇3T
m+1|4/3

L2 · k
N−1∑
m=0

|∆3T
m+1|2L2 + C1t1

)
≤ C(u, U0, t1).(3.47)

The other terms in the RHS of (3.43) can be easily bounded by Lemma 3.2 due

to the inclusion L2(M) ⊂ L5/3(M), so that

(3.48) k
N−1∑
m=0

(
|∇3q

m+1
v |5/3

L5/3 + |qmv |5/3
L5/3 + C1

)
≤ C(u, U0, t1).

Now the RHS of (3.43) can be bounded by Cε
2/3
1 C(u, U0, t1). Dividing by ε

2/3
1

on both sides of (3.43), we find the desired estimate

k

N−1∑
m=0

1

ε
5/3
1

|(qm+1
v − qm+1

vs )+|5/2
L5/2 ≤ C(u, U0, t1).

□
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With the help of Lemma 3.6, we are ready to derive the needed estimate for the

term k
∑N−1

m=0 ||
qm+1
vε −qmvε

k ||5/3v∗ . We have the following lemma.

Lemma 3.7. For any ε1 > 0, ε2 > 0, the inequality

k

N−1∑
m=0

∥q
m+1
vε − qmvε

k
∥5/3V ∗ ≤ C(u, U0, t1) <∞,

holds for some constant C(u, U0, t1) depending on u, U0, t1 but not on ε and k

Proof. We estimate the duality pair ⟨ q
m+1
v −qmv

k , qbv⟩ for an arbitrary qbv ∈ V . Rear-
ranging (3.6), we find

(3.49)

|⟨q
m+1
v − qmv

k
, qbv⟩| =

∣∣∣− aqv(q
m+1
v , qbv)− b(u, qm+1

v , qbv)

− (
1

ε1
((qm+1

v − qm+1
vs )+)3/2, qbv) + lqv(q

b
v)

+ (fqv(U
m − [ωm]−

p
F (Tm)Hε2(q

m
v − qmvs), q

b
v)
∣∣∣

≤ C
(
∥qm+1

v ∥V + ∥um+1∥V∥qm+1
v ∥V

+
1

ε1
|(qm+1

v − qm+1
vs )+|3/2

L5/2

+ |qmv |L2 + C1

)
∥qbv∥V .

For the penalization term in (3.49), we have used the following fact

1

ε1

∫
M
((qm+1

v − qm+1
vs )+)3/2qbvdM ≤ 1

ε1
|((qm+1

v − qm+1
vs )+)3/2|L5/3 |qbv|L5/2

≤ (V ⊂ L5/2(M) in R3)

≤ 1

ε1
|(qm+1

v − qm+1
vs )+|3/2

L5/2∥qbv∥V .(3.50)

It then follows from (3.49) that

∥q
m+1
v − qmv

k
∥V ∗ ≤ C(∥qm+1

v ∥V + ∥um+1∥V∥qm+1
v ∥V

+
1

ε1
|(qm+1

v − qm+1
vs )+|3/2

L5/2 + |qmv |L2 + C1),(3.51)

∥q
m+1
v − qmv

k
∥5/3V ∗ ≤ C(∥qm+1

v ∥5/3V + ∥um+1∥5/3V ∥qm+1
v ∥5/3V

+
1

ε
5/3
1

|(qm+1
v − qm+1

vs )+|5/2
L5/2 + |qmv |5/3

L2 + C1).(3.52)

Multiplying (3.52) by k and summing in m from m = 0 to N − 1, we end up with

k

N−1∑
m=0

∥q
m+1
v − qmv

k
∥5/3V ∗ ≤ C(u, U0, t1),
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thanks to Lemma 3.2 and Lemma 3.6. □

Orientation

Now we have all the a priori estimates we need to pass to the limit ε = (ε1, ε2) →
(0+, 0+) in (3.5) and (3.6) for fixed k; we will pass to the limit k → 0+ in a second
step.

Recalling Lemma 3.2 and (3.31)-(3.32), since the inclusion H2 ⊂ V ⊂ H is
compact, we have, for m = 1, 2, . . . , N , there exist functions Um = (Ūm, qmv ) ∈
V 4 = V × V × V × V , such that,

Ūm
ε → Ūm strongly in V 3 and weakly in H2(M)3,(3.53)

qmvε → qmv strongly in H and weakly in V(3.54)

as ε→ (0+, 0+).
By an additional extraction of subsequences, we also have

Ūm
ε (x) → Ūm(x) a.e in M,(3.55)

qmvε(x) → qmv (x) a.e in M.(3.56)

Since qmvs = Qvs(T
m
ε , p) is a smooth function of Tm

ε , by Lemma 4.5 of [16], we have
qvs(T

m
ε , p) → qvs(T

m, p) strongly in V , and by extraction of a further subsequence

qvs(T
m
ε , p) → qvs(T

m, p) a.e in M.(3.57)

Meanwhile, for the source terms, thanks to the continuity and boundedness of
the functions f(U) and F(T ), we have

(3.58) f(Ūm
ε ) → f(Ūm), F(Tm

ε ) → F(Tm) strongly in L2(M),

(3.59) Hε2(q
m
vε − qvs(T

m
ε , p))⇀ hqmv weak* in L∞(M),

and

(3.60) F(Tm
ε )Hε2(q

m
vε − qvs(T

m
ε , p)) → F(Tm)hmqv weakly in L2(M)

for m = 1, 2, · · · , N .
For qbv ∈ Km+1 = {q ∈ V ; q ≤ qm+1

vs , a.e.}, we define qbvε = qbv − (qbv − qm+1
vs,ε )+ =

min(qbv, q
m+1
vs,ε ). Then we have

(3.61) qbvε → qbv strongly in V,

see Lemma 4.6 of [16].
Now we pass to the limit ε → (0+, 0+) in (3.5) and (3.6). As the proof for

the Ūm
ε equation (3.5) is easier than for the qmvε equation (3.6) , we only show the

details of the passage to limit in (3.6). We replace qbv in (3.6) by qbvε − qm+1
vε , with
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qbvε = min(qbv, q
m+1
vs,ε ), qbv ∈ Km+1. We arrive at

⟨q
m+1
vε − qmvε

k
, qbvε − qm+1

vε ⟩+ aqv(q
m+1
vε , qbvε − qm+1

vε ) + b(um+1, qm+1
vε , qbvε − qm+1

vε )

− lqv(q
b
vε − qm+1

vε ) + (
1

ε1
[(qm+1

vε − qvs(T
m+1
ε , p))+]3/2, qbvε − qm+1

vε )

=(fqv(U
m
ε )− [ωm]−

p
F (Tm+1

ε )Hε2(q
m+1
vε − qvs(T

m+1
ε , p)), qbvε − qm+1

vε ).

(3.62)

We first look at the aqv -term in (3.62)

lim sup
ε→0

aqv(q
m+1
vε , qbvε − qm+1

vε ) = lim
ε→0

aqv(q
m+1
vε , qbvε)− lim inf

ε→0
aqv(q

m+1
vε , qm+1

vε )

(by weak l.s.c of norm) ≤ aqv(q
m+1
vε , qbvε)− aqv(q

m+1
vε , qm+1

vε )

= aqv(q
m+1
vε , qbvε − qm+1

vε ).

Then for the trilinear b-term in (3.62) , we have

b(um+1, qm+1
vε , qbvε − qm+1

vε )− b(um+1, qm+1
v , qbv − qm+1

v )

=b(um+1, qm+1
vε , qbvε)− b(um+1, qm+1

v , qbvε) + b(um+1, qm+1
v , qbvε)− b(um+1, qm+1

v , qbv)

≤|b(um+1, qm+1
vε − qm+1

v , qbvε)|+ |b(um+1, qm+1
v , qbvε − qbv)|

≤C∥um+1∥(|qm+1
vε − qm+1

v |1/2
L2 ∥qm+1

vε − qm+1
v ∥1/2V ∥qbvε∥V + |qm+1

v |1/2
L2 |qm+1

v |1/2V ∥qbvε − qbv∥V ).

Since qm+1
vε → qm+1

v strongly in H, qbvε → qbv strongly in V as ε→ (0+, 0+) and the
other terms are bounded, we have

lim
ε→0

b(um+1, qm+1
vε , qbvε − qm+1

vε ) = b(um+1, qm+1
v , qbv − qm+1

v ).

Next, for the penalization term we find( 1

ε1
[(qm+1

vε − qvs(T
m+1
ε , p))+]3/2, qbvε − qm+1

vε

)
=
( 1

ε1
[(qm+1

vε − qvs(T
m+1
ε , p))+]3/2, qvs(T

m+1
ε , p)− qm+1

vs

)
+
( 1

ε1
[(qm+1

vε − qvs(T
m+1
ε , p))+]3/2, qbvε − qvs(T

m+1
ε , p)︸ ︷︷ ︸

≤0

)
≤0

The passage to limit ε → (0+, 0+) in the other terms in (3.62) can be carried out
in a straightforward manner thanks to (3.53)-(3.60). Then dropping the negative
term in the LHS of (3.62), we can retrieve (3.4) from (3.62) after passing to the
limit ε→ (0+, 0+).

To see that the limit function qmv lies in the convex set Km = {q ∈ V, q ≤
qvs(T

m, p) a.e.}, we infer from (3.14) in Remark 3.3 , that as ε1 → 0+, with fixed
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k,

2k

N−1∑
m=0

|(qm+1
v − qm+1

vs )+|5/2 ≤ Cε1 → 0 as ε1 → 0+.

Together with (3.55),(3.57) we see that

qmv ≤ qvs(T
m, p) a.e. in M, m = 0, 1, . . . , N.

It remains to show that hqmv ∈ H(qmv − qmvs). As in [60], hqmv ∈ H(qmv − qmvs) is
characterized by

(3.63) ([qbv − qmvs]
+, 1)− ([qmv − qmvs]

+, 1) ≥ ⟨hqmv , q
b
v − qmv ⟩, 1 ≤ m ≤ N, ∀qbv ∈ V.

Consider the following antiderivative Kε2 of the function Hε2

(3.64) Kε2(r) =


0 for r ≤ 0,

r2/2ε2 for r ∈ (0, ε2],

r − ε2/2 for r > ε2.

Both Hε2 and Kε2 are Lipschitz functions and the following inequalities hold for
any r1, r2 ∈ R.

|Hε2(r1)−Hε2(r2)| ≤
1

ε2
|r1 − r2|,(3.65)

|Kε2(r1)−Kε2(r2)| ≤ |r1 − r2|.(3.66)

Moreover,

(3.67) |Kε2(r)− r| ≤ ε2
2
, ∀r ≥ 0.

We now consider the functional q → (Kε2(q), 1) from V to R. Observing that the
function Kε2 is a convex function on R, we know that the functional q → (Kε2(q), 1)
is convex on V . Since the function Kε2 is continuously differentiable, the functional
q → (Kε2(q), 1) is actually Fréchet differentiable with Fréchet derivative at q equal
to Hε2(q) ∈ V ∗. Considering its Gâteaux derivative at the point qmvε − qmvs,ε along

the direction qbv − qmvε , we end up with the following inequality(
Kε2(q

b
v − qmvs,ε), 1

)
−
(
Kε2(q

m
vε − qmvs,ε), 1

)
=
(
Kε2(q

m
vε − qmvs,ε + qbv − qmvε), 1

)
−
(
Kε2(q

m
vε − qmvs,ε), 1

)
(3.68)

≥⟨Hε2(q
m
vε − qmvs,ε), q

b
v − qmvε⟩.

Because the duality pair ⟨Hε2(q
m
vε − qmvs,ε), q

b
v − qmvε⟩ can be realized by an L2 inner

product, and we have the convergences that Hε2(q
m
v −qmvs)⇀ hqmv weak∗ in L∞(M)

and qmvε → qmv , qmvs,ε → qmvs strongly in H, we can then pass to the limit on ε in the
RHS of (3.68),

(3.69) ⟨Hε2(q
m
vε − qmvs,ε), q

b
v − qmvε⟩ → ⟨hqmv , q

b
v − qmv ⟩, for qb ∈ V.

As for the LHS of (3.68), we notice that Kε2(r) = 0 for r < 0, by (3.67) and∣∣(Kε2(q
b
v − qmvs,ε), 1

)
−
(
[qbv − qmvs]

+, 1
)∣∣
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≤
∣∣(Kε2([q

b
v − qmvs,ε]

+)− [qbv − qmvs,ε]
+, 1

)∣∣+ ∣∣([qbv − qmvs,ε]
+, 1

)∣∣− (
[qbv − qmvs]

+, 1
)∣∣

≤ε2
2
|M|+

√
|M|(|qmvs,ε − qmvs|L2 → 0, as ε→ (0+, 0+),

(3.70)

which implies

(3.71)
(
Kε2(q

b
v − qmvs,ε), 1

)
→

(
[qbv − qmvs]

+, 1
)

as ε→ (0+, 0+).

To show the convergence of
(
Kε2(q

m
vε − qmvs,ε), 1

)
to ([qmv − qmvs]

+, 1), we split the

difference
(
Kε2(q

m
vε − qmvs,ε), 1

)
− ([qmv − qmvs]

+, 1) into the following sum
(3.72)((

Kε2(q
m
vε− qmvs,ε), 1

)
−
(
Kε2(q

m
v − qmvs), 1

))
+
((

Kε2(q
m
v − qmvs), 1

)
− ([qmv − qmvs]+, 1)

)
.

The second term of (3.72) can be dealt with similarly as in (3.70). For the first
term, using (3.65) and the Cauchy-Schwarz inequality, we find∣∣(Kε2(q

m
vε − qmvs,ε), 1

)
−
(
Kε2(q

m
v − qmvs), 1

)∣∣
≤
(
|(qmvε − qmvs,ε)− (qmv − qmvs)|, 1

)
≤
√

|M|
(
|qmvε − qmv |L2 + |qmvs,ε − qmvs|L2

)
→ 0, as ε→ (0+, 0+),

in view of the strong convergence in L2(M) of qmvε and qmvs,ε. So we have

(3.73)
(
Kε2(q

m
vε − qmvs,ε), 1

)
→ ([qmv − qmvs]

+, 1) as ε→ (0+, 0+).

From (3.68),(3.69),(3.71) and (3.73), we can conclude that

([qbv − qmvs]
+, 1)− ([qmv − qmvs]

+, 1) ≥ ⟨hqmv , q
b
v − qmv ⟩, 1 ≤ m ≤ N, ∀qbv ∈ V,

which tells that hqmv ∈ H(qmv − qmvs) as desired.

4. Convergence of the Euler Scheme

In this section, we want to prove that the solutions of the Euler scheme converge
to the solutions of the system (2.34)-(2.35). As in the last section, we shall use the
same conventions on subsequences and indices in the limit process k → 0+ in this
part and up to subsequences.

Due to the weak lower semi-continuity property of the norms, we know that for
the limit functions Um = (Ūm, qmv ) which now have no dependence on ε, the bounds
in Lemma 3.2-Lemma 3.7 are now valid with Um

ε replaced by the limit functions
Um. Now we introduce some approximate functions associated with the elements

U1, . . . , UN . Consider the piecewise constant functions Ū
(i)
k , q

(i)
vk : [0, t1] → V , for

i ∈ 1, 2, defined by

Ū
(1)
k (t) = Ūm, Ū

(2)
k (t) = Ūm+1,

q
(1)
vk (t) = qmv , q

(2)
vk (t) = qm+1

v ,

on the time interval t ∈ [mk, (m+ 1)k), m = 0, . . . , N − 1. We also define ˜̄Uk, q̃vk
as the continuous functions from [0, t1] into V , which are linear on each interval

[mk, (m + 1)k], and satisfy ˜̄Uk(mk) = Ūm, q̃vk(mk) = qmv for m = 0, . . . , N . We

also denote (Ū
(i)
k , q

(i)
vk ) by U

(i)
k (i = 1, 2) and ( ˜̄Uk, q̃vk) by Ũk.
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Collecting the a priori estimates in Section 3, we can restate them in terms of

Ū
(i)
k , q

(i)
vk , i = 1, 2 and ˜̄Uk, q̃vk.

Lemma 4.1. As k → 0, the functions Ū
(i)
k , i = 1, 2 and ˜̄Uk remain in a bounded set

of L2(0, t1;H
2(M)3)∩L∞(0, t1;V

3); the functions q
(i)
vk , i = 1, 2 and q̃vk remain in a

bounded set of L2(0, t1;V ) ∩ L∞(0, t1;H). And the functions ∂t
˜̄Uk form a bounded

set in L2(0, t1;L
2(M)3); the functions ∂tq̃vk form a bounded set in L5/3(0, t1;V

∗).

Moreover, as k → 0, |Ū (2)
k − Ū

(1)
k | → 0 strongly in L2(0, t1;V

3); |q(2)vk − q
(1)
vk | → 0

strongly in L2(0, t1;H).

We also have the following estimates.

Lemma 4.2. For the Ū
(i)
k , q

(i)
vk , i = 1, 2 and ˜̄Uk, q̃vk defined above, there holds

|Ū (2)
k − ˜̄Uk|L2(0,t1;V 3) ≤ C(u, U0, t1)

√
k,(4.1)

|q(2)vk − q̃vk|L2(0,t1;H) ≤ C(u, U0, t1)
√
k.(4.2)

Proof. We recall the definition of ˜̄Uk, for t ∈ [mk, (m+ 1)k], m = 0, 1, . . . , N − 1

˜̄Uk = Ū
(2)
k − (1− t−mk

k
)(Ū

(2)
k − Ū

(1)
k ).

Then

(4.3) ∥Ū (2)
k (t)− ˜̄Uk(t)∥V =

(m+ 1)k − t

k
∥Ū (2)

k (t)−Ū (1)
k (t)∥V for t ∈ [mk, (m+1)k),

(4.4)

∫ (m+1)k

mk
∥Ū (2)

k (t)− ˜̄Uk(t)∥2V dt =
k

3
∥Ū (2)

k (t)− Ū
(1)
k (t)∥2V .

By (3.35), we obtain (4.1) by summation.
The proof for the estimate (4.2) is similar and can be found in e.g. [57] (see

Lemma 7.3 in Chapter 3). □

Now we define the functions uk : [0, t1] → V × V × V as follows:

uk(t) = um+1 =
1

k

∫ (m+1)k

mk
u(t)dt for t ∈ [mk, (m+ 1)k),m = 0, . . . , N − 1.

With u ∈ C1([0, t1];V
3), by Lemma 4.3 of [59], we have, for any r ≥ 1

(4.5) uk → u in Lr(0, t1;V
3) as k → 0.

We then define qkvs : [0, t1] → V by qkvs = Qvs(T
(2)
k , p). We observe that qkvs =

qm+1
vs on the time interval [mk, (m+ 1)k) for m = 0, . . . , N − 1.
For later use, we also define the linear averaging map for the test functions

U b = (Ū b, qbv) with Ū b ∈ L2(0, t1;V
3), qbv ∈ L∞(0, t1;K(U)). Namely, we define

Ū b
k : [0, t1] → V 3, qbvk : [0, t1] :→ V piecewise by

(4.6) Ū b
k(t) =

1

k

∫ (m+1)k

mk
Ū b(t)dt,
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qbvk =
1

k

∫ (m+1)k

mk
qbv(t)dt−

(1
k

∫ (m+1)k

mk
qbv(t)dt− qkvs(t)

)+
= min

(1
k

∫ (m+1)k

mk
qbv(t)dt, q

k
vs(t)

)
,(4.7)

for t ∈ [mk, (m+1)k], m = 0, . . . , N−1. When qbv ∈ K, we have qbvk ≤ min(qvs, q
k
vs).

To proceed, we interpret as follow the scheme (3.3)-(3.4) in terms of the functions

Ū
(i)
k , q

(i)
vk , i = 1, 2 and ˜̄Uk, q̃vk:

(4.8)

⟨∂t ˜̄Uk, Ū
b
k⟩+ā(Ū

(2)
k , Ū b

k)+b̄(uk, Ū
(2)
k , Ū b

k)− l̄(Ū b
k) = (f̄(U

(1)
k )− [ωk]

−

p
F̄(T

(1)
k )h

q
(1)
vk

, Ū b
k),

⟨∂tq̃vk, qbvk − q
(2)
vk ⟩+ aqv(q

(2)
vk , q

b
vk − q

(2)
vk ) + b(uk, q

(2)
vk , q

b
vk − q

(2)
vk )− lqv(q

b
vk − q

(2)
vk )

(4.9)

≥ (fqv(U
(1)
k )− [ωk]

−

p
F (T

(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk ).

In the above equations h
q
(1)
vk

= hqmv for t ∈ [mk, (m + 1)k), and accordingly,

h
q
(2)
vk

= hqm+1
v

for t ∈ [mk, (m+ 1)k).

We are in a position to pass to the limit k → 0+ in (4.8)-(4.9). First, by Lemma
4.1 and Aubin-Lions compactness theorem (see e.g, [41]), we deduce the existence
of a subsequence, still denoted by the subscript k, and functions U = (Ū , qv),

Ũ = ( ˜̄U, q̃v) verifying (4.10)-(4.12) below

U, Ũ ∈ L∞(0, t1;L
2(M)4) ∩ L2(0, t1;V

4),(4.10)

Ū , ˜̄U ∈ L∞(0, t1;V
3) ∩ L2(0, t1;H

2(M)3),(4.11)

∂t
˜̄U ∈ L2(0, t1;H), ∂tq̃v ∈ L5/3(0, t1;V

∗),(4.12)

such that, as k → 0+

(i) Ū
(i)
k ⇀ Ū weakly in L2(0, t1;H

2(M)3) and weak∗ in L∞(0, t1;V
3), i=1,2;

(ii) q
(i)
vk ⇀ qv weakly in L2(0, t1;V ) and weak∗ in L∞(0, t1;H), i=1,2;

(iii) ˜̄Uk ⇀
˜̄U weakly in L2(0, t1;H

2(M)3) and weak∗ in L∞(0, t1;V
3);

(iv) q̃vk ⇀ q̃v weakly in L2(0, t1;V ) and weak∗ in L∞(0, t1;H);

(v) ∂t
˜̄Uk ⇀ ∂t

˜̄U weakly in L2(0, t1;L
2(M)3);

(vi) ∂tq̃vk ⇀ ∂tq̃v weakly in L5/3(0, t1;V
∗),

(vii) ˜̄Uk ⇀
˜̄U strongly in L2(0, t1;V

3) ;
(viii) qεv ⇀ q̃v strongly in L2(0, t1;H) .

In view of (iv) and (vi), we also have

(4.13) q̃vk(t1) → q̃v(t1) strongly in L2(M).
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Thanks to Lemma 4.2, we can conclude that U = Ũ and

(4.14) U
(i)
k (i = 1, 2), Ũk ⇀ U strongly in L2(0, t1;L

2(M)4).

In addition,

(4.15) Ū
(i)
k (i = 1, 2), ˜̄Uk → Ū strongly in L2(0, t1;V

3).

By (4.15) and the fact that qvs = Qvs(p, T ) depends smoothly on T , we can follow
the same argument as in Lemma 4.5 of [16] and deduce that

(4.16) qkvs = Qvs(p, T
(2)
k ) → Qvs(p, T ) = qvs strongly in L2(0, t1;V ).

Accordingly, recalling the definition of qbvk in (4.7), we also have

(4.17) qbvk → qbv strongly in L2(0, t1;V ).

Remark 4.3. The relationship between qkvs and T
(2)
k in (4.16) will allow us to

deduce that |∇3q
k
vs| ≤ C|∇3T

(2)
k | + C1. Then noting that ∇3T

(2)
k ∈ L∞(0, t1;H)

, qkvs actually lies in a bounded set of L∞(0, t1;V ). And by our assumption, qbv
belongs to the space L∞(0, t1;V ). Hence, qbvk = min

(
1
k

∫ (m+1)k
mk qbv(t)dt, q

k
vs

)
lies in

a bounded set of L∞(0, t1;V ) as well. Also qbvk converges to qbv almost everywhere
in V for t ∈ [0, t1]; (4.17) together with Lebesgue’s dominated convergence theorem
yields

(4.18) qbvk → qbv strongly in Lr(0, t1;V ) for any r > 1.

In particular, we will use the result with r = 5
2 for passing to limit in the term

⟨∂tq̃vk, qbvk⟩ in the qv-equation, as we only have weak convergence in the space

L5/3(0, t1;V
∗) for the term ∂tq̃vk .

For the forcing term f(U
(1)
k )− 1

p [ωk]
−F(T

(1)
k )h

q
(1)
vk

, we have

(4.19) f(U
(1)
k ) → f(U) strongly in L2(0, t1;L

2(M)4),

because of the continuity and boundedness of f(U); and

(4.20) F(T
(1)
k )h

q
(1)
vk

⇀ F(T )hqv weakly in L2(0, t1;L
2(M)),

as F is Lipschitz continuous and h
q
(i)
vk

⇀ hqv weak∗ in L∞([0, t1]×M) for i = 1, 2 .

Thanks to (4.14) and (4.16), by an additional extraction of subsequences, we have

U
(i)
k (x) → U(x) a.e. in [0, t1]×M, i = 1, 2,(4.21)

qkvs(x) → qvs(x) a.e. in [0, t1]×M.(4.22)

We are now in position to pass to the limit in (4.9). First we observe in advance
that the limit function qv lies in L2(0, t1;K) where K = {q ∈ V ; qv ≤ qvs a.e.}.
Indeed, by (3.14) and Lemma 3.6,

q
(2)
vk ≤ qkvs = Qvs(T

(2)
k , p) a.e. in [0, t1]×M.

Using (4.21) and (4.22), we pass to the limit k → 0+ in the inequality above , we
see that qv ≤ qvs a.e. in [0, t1]×M.
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Next we pass to the limit term by term in (4.9) after we integrate (4.9) form t = 0

to t1. The first term
∫ t1
0 ⟨∂tq̃vk, qbvk − q

(2)
vk ⟩dt is the the sum of

∫ t1
0 ⟨∂tq̃vk, qbvk − q̃vk⟩ dt

and
∫ t1
0 ⟨∂tq̃vk, q̃vk − q

(2)
vk ⟩ dt. For the first part, we integrate by parts and write

lim sup

∫ t1

0
⟨∂tq̃vk, qbvk − q̃vk⟩ dt

=− lim inf

∫ t1

0
⟨∂tq̃vk, q̃vk⟩ dt+ lim

∫ t1

0
⟨∂tq̃vk, qbvk⟩ dt

=− lim inf
1

2
|q̃vk(t1)|2L2 +

1

2
|qv0|2L2 +

∫ t1

0
⟨∂tqv, qbv⟩ dt

≤ ( by (4.13) and the lower semi-continuity of the norm )

≤− 1

2
|qv(t1)|2L2 +

1

2
|qv0|2L2 +

∫ t1

0
⟨∂tqv, qbv⟩ dt

=−
∫ t1

0
⟨∂tqv, qv⟩ dt+

∫ t1

0
⟨∂tqv, qbv⟩ dt

=

∫ t1

0
⟨∂tqv, qbv − qv⟩ dt.

(4.23)

For the second part
∫ t1
0 ⟨∂tq̃vk, q̃vk−q

(2)
vk ⟩ dt, we observe that ∂tq̃vk = qm+1

v −qmv
k and

q̃vk − q
(2)
vk = (t− (m+ 1)k)

qm+1
v − qmv

k
on [mk, (m+ 1)k);

then we have

∫ t1

0
⟨∂tq̃vk, q̃vk − q

(2)
vk ⟩dt =

N−1∑
m=0

∫ mk

(m+1)k
⟨q

m+1
v − qmv

k
, (t− (m+ 1)k)

qm+1
v − qmv

k
⟩ dt

=
N−1∑
m=0

∫ (m+1)k

mk

|qm+1
v − qmv |2L2

k2
(t− (m+ 1)k) dt ≤ 0.

(4.24)

Then we can conclude that

(4.25) lim sup

∫ t1

0
⟨(∂tq̃vk, qbvk − q

(2)
vk ⟩ dt ≤

∫ t1

0
⟨∂tqv, qbv − qv⟩ dt.

For the aqv -term, due to the lower semi-continuity of the norm, we have

lim sup

∫ t1

0
aqv(q

(2)
vk , q

b
vk − q

(2)
vk ) dt = lim

∫ t1

0
aqv(q

(2)
vk , q

b
vk) dt(4.26)

− lim inf

∫ t1

0
aqv(q

(2)
vk , q

(2)
vk ) dt

≤
∫ t1

0
aqv(qv, q

b
v) dt−

∫ t1

0
aqv(qv, qv) dt(4.27)

=

∫ t1

0
aqv(qv, q

b
v − qv) dt.
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By passing to the limit k → 0+ in the above two terms, we obtain the inequality in
the desired direction.

Using the divergence free property of u and uk,∫ t1

0
b(uk, q

(2)
vk , q

b
vk − q

(2)
vk )dt−

∫ t1

0
b(u, qv, q

b
v − qv)dt

=

∫ t1

0
b(uk, q

(2)
vk , q

b
vk)− b(u, qv, q

b
v)dt

=

∫ t1

0
b(uk − u, q

(2)
vk , q

b
vk)dt+

∫ t1

0
b(u, q

(2)
vk − qv, q

b
vk)dt+

∫ t1

0
b(u, qv, q

b
vk − qbv)dt

=I1 + I2 + I3.

By Lemma 2.1 and Hölder’s inequality, I1 + I2 can be controlled as follows,

|I1|+ |I2| ≤ C

∫ t1

0
∥uk − u∥V |q(2)vk |

1
2

L2∥q
(2)
vk ∥

1
2
V ∥q

b
vk∥V dt

+ C

∫ t1

0
∥u∥V |q(2)vk − qv|

1
2

L2∥q
(2)
vk − qv∥

1
2
V ∥q

b
vk∥V dt

≤ C∥uk − u∥Lr(0,t1;V )|q
(2)
vk |

1
2

L2(0,t1;H)
∥q(2)vk ∥

1
2

L2(0,t1;V )
∥qbvk∥Lr∗ (0,t1;V )

+ C∥u∥Lr(0,t1;V )|q
(2)
vk − qv|

1
2

L2(0,t1;H)
∥q(2)vk − qv∥

1
2

L2(0,t1;V )
∥qbvk∥Lr∗ (0,t1;V ),

where 1
r + 1

r∗ = 1
2 . By (4.5) and (4.14), we see that |I1| + |I2| → 0 as k → 0+. In

view of the strong convergence of qbvk to qbv in L2(0, t1;V ), we also have |I3| → 0 as
k → 0+.

Then as q
(2)
vk ⇀ qv weakly in L2(0, t1;V ) and qbvk → qbv strongly in L2(0, t1;V ), we

know by the Trace theorem that γ0(q
(2)
vk ) → γ0(qv) and γ0(q

b
vk) → γ0(q

b
v) weakly in

L2(0, t1;L
2(∂M)) where γ0 is the trace operator on ∂M. Hence,∫ t1

0
lqv(q

b
vk − q

(2)
vk )dt→

∫ t1

0
lqv(q

b
v − qv)dt as k → 0+.

For the convergence of the forcing terms, we first consider the discontinuous part.
We write the difference∫ t1

0

(
− 1

p
[ωk]

−F (T
(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk

)
dt−

∫ t1

0

(
− 1

p
[ω]−F (T )hqv , q

b
v − qv

)
dt

as the sum of the following two terms:∫ t1

0

(
− 1

p
([ωk]

− − [ω]−)F (T
(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk

)
dt,

∫ t1

0

(
− 1

p
[ω]−F (T

(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk

)
−
(
− 1

p
[ω]−F (T )hqv , q

b
v − qv

)
dt.
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The first term above can be bounded by∫ t1

0

(
− 1

p
([ωk]

− − [ω]−)F (T
(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk

)
dt

≤ C∥ωk − ω∥L2(0,t1;V )|qbvk − q
(2)
vk |L2(0,t1;H),

hence it tends to zero as k → 0+.
The second term above also tends to zero in view of (4.14),(4.17) and (4.20).
For the continuous part of the forcing terms we can pass to the limit k → 0+

using (4.19). Altogether we have

lim
k→0+

∫ t1

0

(
fqv(U

(1)
k )− 1

p
[ωk]

−F (T
(1)
k )h

q
(1)
vk

, qbvk − q
(2)
vk

)
dt

=

∫ t1

0

(
fqv(U)− 1

p
[ω]−F (T )hqv , q

b
v − qv

)
dt.

So we can obtain (3.4) after we pass to the limit k → 0+ in (4.9).
Finally we need to verify that hqv ∈ H(qv − qvs). Rewriting (3.63) in terms

of q
(2)
vk , q

b
vk, q

k
vs and integrating on [0, t1] we have, for every qb ∈ L2(0, t1;V ) and

qbvk = 1
k

∫ (m+1)k
mk qbv(t)dt,

(4.28)

∫ t1

0

(
[qbvk − qkvs]

+, 1
)
dt−

∫ t1

0
([q

(2)
vk − qkvs]

+, 1) dt ≥
∫ t1

0
⟨h

q
(2)
vk

, qbvk − qv⟩ dt.

Up to a subsequence, h
q
(2)
vk

converges to some limit hqv weak∗ in L∞([0, t1]×M)

and 0 ≤ hqv ≤ 1 a.e.; then in view of (4.17) and (4.14), we infer that

(4.29)

∫ t1

0
⟨h

q
(2)
vk

, qbvk − q
(2)
vk ⟩ dt→

∫ t1

0
⟨hqv , qbv − qv⟩ dt as k → 0+.

For the second term in the LHS of (4.28), we have∣∣ ∫ t1

0
([q

(2)
vk − qkvs]

+ − [qv − qvs]
+, 1) dt

∣∣
≤
∫ t1

0

(
|q(2)vk − qv|L2 + |qkvs − qvs|L2

)
|1|L2 dt

≤
(
|q(2)vk − qv|L2(0,t1;H) + |qkvs − qvs|L2(0,t1;H)

)√
|M|t1 → 0.

(4.30)

Hence ∫ t1

0
([q

(2)
vk − qkvs]

+, 1)dt→
∫ t1

0
([qv − qvs]

+, 1)dt.

Similarly as in (4.30), with the strong convergence of qbvk to qbv in L2(0, t1;V ), we
have:

(4.31)

∫ t1

0

(
[qbvk − qkvs]

+, 1
)
dt→

∫ t1

0

(
[qbv − qvs]

+, 1
)
dt.



756 Y. CAO, C. JIA, AND R. TEMAM

In view of (4.29)-(4.31), we conclude that, for every qbv ∈ L2(0, t1;V ), the following
inequality holds after passing to the limit in (4.28):

(4.32)

∫ t1

0

(
[qbv − qvs]

+, 1
)
dt−

∫ t1

0
([qv − qvs]

+, 1) dt ≥
∫ t1

0
⟨hqv , qbv − qv⟩ dt.

The above inequality implies that, for every qb ∈ L2(0, t1;V ), we have

(4.33)
(
[qbv − qvs]

+, 1
)
− ([qv − qvs]

+, 1) ≥ ⟨hqv , qbv − qv⟩, for a.e. t ∈ [0, t1],

which tells that hqv ∈ H(qv − qvs).
The passage to limit k → 0+ in the Ū -equation (4.8) is similar and easier, we

omit the details here.
To conclude, we have the following theorem.

Theorem 4.4. Given U0 = (Ū0, qv0) = (qc0, qr0, θ
′
0, qv0) ∈ V × V × V × V , with

qv0 ≤ qvs(t = 0) a.e. in M, the functions U
(1)
k , U

(2)
k , Ũk associated with the Euler

scheme (3.3) and (3.4) contain a subsequence k → 0+ which converges to a solution
U of the system (2.34)-(2.35) in the sense of (i)-(viii) and (4.14)-(4.15), and U
satisfies (4.10)-(4.12).

5. Numerical simulations

In this section, we illustrate the theory above with some numerical simulations
done in a slightly different setting, easier in some sense, and more challenging in
some sense.

We consider a two-dimensional problem with directions x (west-east) and p (the
pressure), and the domain is not rectangular, corresponding to the geometry above
one or two mountains. Finally, we omit the viscosity terms as the viscosity is not
significant for short term forecast (up to one week). As we shall see the mountains
produce a rain shadow on the leeward side of the mountains area, that is, away from
the wind. Hence, in the simulations, the following system of equations is used.

(5.1)



∂T

∂t
+ u

∂T

∂x
+ ω

∂T

∂p
=
ω

p

(
RT

Cp
− δ

LF
Cp

)
,

∂q

∂t
+ u

∂q

∂x
+ ω

∂q

∂p
= δ

F

p
ω,

∂u

∂t
+ u

∂u

∂x
+ ω

∂u

∂p
+ ϕx = 0,

∂ω

∂p
+
∂u

∂x
= 0,

∂ϕ

∂p
= −RT

p
,

ϕ = zg, z = z(x, p, t)

The unknown functions are

• T = T (x, p, t): local temperature
• q = q(x, p, t): specific humidity (called qv in Sections 1 to 4 of this article)
• u = u(x, p, t): the velocity in the x-direction
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• ω = ω(x, p, t): the vertical velocity in the x, p system

The variable ω is a diagnostic variable which will be computed using the prog-
nostic variable u. We treat the geopotential ϕ = ϕ(x, p, t) separately using (5.1)5.
All quantities are expressed in the metric system. The pressures are expressed in
millibars. Note that (5.1)1, (5.1)3, and (5.1)4 express the conservation of energy,
momentum in the x-direction, and mass, respectively.

Also, for the numerical simulations, the following values and functions are used.
See the details in [11]:

• δ = H(−ω)H(q − qvs), where H is the Heaviside function H(x) = 1
2(1 +

sign(x)).
• L(T ) = 2.5008 × 106 − 2.3 × 103(T − 275) J kg−1 is the latent heat of
vaporization.

• R = 287 J K−1 kg−1 is the gas constant for dry air.
• Rv = 461.50 J K−1 kg−1 is the gas constant for water vapor.
• pA ∈ [0, 200], usually ≃ 200 (chosen).
• p0 = 1000 (chosen).
• Cp = 1004 J K−1 kg−1 is the specific heat of dry air at constant pressure.
• F (T, p) is given by

(5.2) F (T, p) = qvs(T, p)T

(
LR− CpRvT

CpRvT 2 + qvs(T, p)L2(T )

)
.

• qvs(T, p) is the saturation specific humidity, defined by

(5.3) qvs(T, p) =
0.622evs(T )

p
,

where evs(T ) is the saturation vapor pressure. We approximate its value
with equation (2.17) in [55](compared with (2.4)):

(5.4) evs(T ) = 6.112 exp

(
17.67(T − 273.15)

T − 29.65

)
.

Compare (5.3) with (2.3), in which the term 0.378evs in the denominator
is neglected by comparison with p.

We performed simulations with three different domains. All simulations were
made with a west-east prevailing wind. (See the definition of u(x, p, t = 0) in (5.5)3
below.)

• In the first simulation, the domain represents the atmosphere above one
mountain. We set the domain as [x0, xf ] × [pA, pB(x)], where x0 = 0,
xf = 75000m, and pA = 250mb. The function pB(x), which defines the
topography along the mountain, is set to be

pB(x) = 1000− 250 exp

(
−(x− 37500)2

60002

)
.

• In the second simulation, the domain represents the atmosphere above two
mountains, with the left mountain lower than the right one. In this case,
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we choose the parameter values x0 = 0, xf = 150000m, and pA = 250mb
for the domain [x0, xf ]× [pA, pB(x)]. The topography is defined to be

pB(x) =


1000− 200 exp

(
−(x− 37500)2

60002

)
, x ≤ 75000

1000− 250 exp

(
−(x− 112500)2

60002

)
, x > 75000

.

• In the third simulation, the domain also represents two mountains, but in
this case, the left mountain is set to be higher than the right mountain,
thus blocking the wind coming from the west. The values of x0, xf , and pA
are the same as in the second simulation, while pB is defined as

pB(x) =


1000− 250 exp

(
−(x− 37500)2

60002

)
, x ≤ 75000

1000− 200 exp

(
−(x− 112500)2

60002

)
, x > 75000

.

We use the following initial conditions for all the simulations.

(5.5)


T (x, p, t = 0) = T̄ (p) = T0 −

(
1− p

p0

)
∆T,

q(x, p, t = 0) = qvs − 0.0052,

u(x, p, t = 0) = 7.5 + 2 cos

(
pπ

p0

)
cos

(
2πx

xf

)
,

where p0 = 1000, T0 = 300K, and ∆T = 50K.
The boundary conditions are

∂pB
∂x

= 0, at x = 0, xf ,

ω = u
∂pB
∂x

, at p = pB,

ω = ϕx = 0, at p = pA,

u = G(p), at x = 0,

∂u

∂n
= 0, at x = xf ,

∂ω

∂n
= 0, at x = {0, xf},

where u = (T, q, u) is the solution, and G = (gT , gq, gu) defines the boundary values
of the solution on the left boundary (at x = 0). The following definition of G is
used in all the simulations.

gT (p) = T̄ (p), gq(p) = qvs(T̄ (p), p), gu(p) = 7.5 + 2 cos

(
pπ

p0

)
.

In the numerical simulations, we used the upwind Godunov scheme with an
n × n mesh in the spatial domain and the 4th order Runge-Kutta method for the
time discretization. The details of the numerical scheme are given in [11] and
in [1] where one single mountain was considered. Now, we give the results of the
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numerical simulations.

Simulation 1

Figure 1. Solutions T and q are shown at initial time t = 0 and
at t = 20000s in the first simulation. Results were computed with a
spatial mesh of size 200 × 200 and a time step of ∆t = 0.5s. Note
that since u is positive, the flow moves from left to right. At the end
of the simulation, the temperature T is higher on the right side of the
mountain than on the left side. On the other hand, the humidity q
is higher in value on the left side of the mountain. These results are
coherent with the physical context.
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Simulation 2

Figure 2. Solutions T and q are shown at initial time and at
t = 40000s in the second simulation. In this simulation, a spatial
mesh of size 400× 400 and a time step of ∆t = 0.5s were used. The
flow moves from left to right, as in the first simulation. At the end
of the simulation, the temperature T has the lowest value on the
left side of the left mountain, and becomes higher as we cross the
mountains towards the right side. The humidity q is higher in value
on the left side of the left mountain and decreases in value going
towards the right. These results are also coherent with the physical
context.
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Simulation 3

Figure 3. Solutions T and q are shown at initial time and at
t = 40000s. In this simulation, a spatial mesh of size 400×400 and a
time step of ∆t = 0.5s were used. The flow moves from left to right,
as in the previous simulations. At the end of the simulation, the
temperature T has lower values on the left side of the left mountain
and assumes higher values in the area to the right of that mountain.
The humidity q is higher on the left side of the left mountain and is
lower in value on the right side of the left mountain. This indicates
the higher mountain blocks the passing of moist from the west side
and the air flow crossing the mountain is mostly dry. These results
are coherent with the physical context.
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inéquations quasi variationnelles non linéaires, C. R. Acad. Sci. Paris Sér. A 278 (1974),
675–679 (French) .

[6] A. Bensoussan and J. L. Lions, Contrôle impulsionnel et inéquations quasi-variationnelles
stationnaires, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1279–A1284 (French).

[7] A. Bensoussan and J. L. Lions, Nouvelle formulation de problèmes de contrôle impulsionnel et
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