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As is often the case a close form formula may not always be the best object
to numerically compute an extension and other choices may turn out to be more
efficient. In the literature on Imaging, extentions of a function defined at an infinite
number of points are called transfinite interpolations. For instance, the Transfinite
Mean Value Interpolation (TMI) in the seminal paper of Dyken and Floater [9] has
important applications in Imaging and in the construction of adaptive finite element
meshes. Roughly speaking, given an open subset Ω of Rn with a smooth compact
boundary Γ, a continuous function f : Γ → R is extended to Ω by introducing the
function

M(f)(y)
def
=

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥n+1 · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥n+1 · nΩ(ξ′)ReddΓ(ξ′)
ReddΓ(ξ), y ∈ Ω,(1.2)

where nΩ(ξ) is the unit exterior normal to Ω at the point ξ ∈ Γ. This interpola-
tion and its generalization from R2 to Rn by Bruvoll and Floater [4] both used a
parametrization of the boundary Γ. The proof that, for each x ∈ Γ, we have the
pointwise convergence M(f)(y) → f(x) as y → x is straightforward for a convex
set Ω, but is non-trivial when Ω is not convex. In both papers they assume that Ω
is a set of positive reach (see Definition A.3 (ii)) plus what they call a mild assump-
tion that turns out to be the key assumption in the proof of pointwise convergence
of M(f) to f at points of Γ. This positive reach assumption rules out non-convex
polygons in R2 that were previously studied by Hormann and Floater [17]. For non-
convex sets the difficulty is the presence of the normal to Ω that induces changes in
the sign of the integrand of the numerator and the denominator.

The object of this paper is fourfold. We first extend the family of TMI to a larger
parametrization-free family called k-Transfinite Mean Value Interpolations (k-TMI)
from Γ to Ω, Ωc, or Rn\Γ where the exponent n + 1 is replaced by a real number
k > n and the continuous function f : Γ → R by an L2-integrable function. We show
that this extension is the minimizing solution of local variational problems. For a
continuous f , we prove the pointwise convergence under a weaker local boundedness
condition that is verified for convex sets and non-convex n-polytopes as in [17].
Two questions remain open. Is the interpolation property true for all open domains
Ω with compact locally Lipschitzian boundary Γ? Is the positive reach property a
pertinent condition?

Secondly, we introduce the new k-Transfinite Barycentric Interpolation (k-TBI)
for a compact subset E of Rn with Hd(E) < ∞ (Hd, the d-dimensional Hausdorff
measure in Rn), a function f ∈ L2(E;Hd), and a real number k > n

B(f)(y)
def
=

∫
E
f(ξ)

1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd(ξ′)
dHd(ξ), y ∈ Rn\E.(1.3)

E can be a cloud of a finite number of points (d = 0) as in the early work of
Shepard [24] or a d-dimensional, 1 ≤ d < n, submanifold of Rn such as a piece of
curve (d = 1) or of surface (d = 2) in R3. One important technical advantage is that
the weight in the numerator and denominator is now a positive function that does
not involve the normal. Again, we show that this extension/interpolation is the
minimizing solution of local variational problems. Moreover, it is shown that, for
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a continuous f , we have pointwise convergence not only for smooth d-dimensional
submanifolds but also for arbitrary Hd-rectifiable sets of any dimension such as sets
that are locally Lipschitz d-graphs. In the case of an open subset Ω (not necessarily
connected) of Rn with compact locally Lipschitzian boundary, Γ is Hn−1-rectifiable
and the k-TBI is a competitive alternative to the k-TMI.

Thirdly, the constructions are extended by using the function and its derivatives
up to degree m. Knowing that the (n + 1)-TMI of Dyken and Floater [9] preserve
polynomials of degree one, we show that the enhanced (n+m)-TMI and (k,m)-TBI,
k > d, preserve polynomials of degree m ≥ 0.

Finally, a dynamical version of both families of transfinite interpolations is in-
troduced for applications in the construction of finite element meshes for mov-
ing/deforming bodies in a surrounding medium. In this approach a differential
interpolation equation is obtained by interpolating the rate of change at the bound-
ary of the object. Solving that equation numerically effectively constructs the rate
of change of the points of the surrounding medium from the rate of change of
the boundary points of the body. For instance, it allows without re-meshing a
complete rotation of an immersed solid body onto itself. The detailed numerical
implementation of the k-TMI and the k-TBI with extensive experimentation and
many comparisons are the object of the companion paper [13].

This paper is motivated by pressing numerical and theoretical applications. In
the numerical analysis of free/moving boundary problems, one of the challenging
issue is the re-meshing of the initial finite element grid as the boundary of a domain
or the interface evolves. It is also at the hearth of Arbitrary Lagrangian-Eulerian
(ALE) methods that try to alleviate the drawbacks of the traditional Lagrangian and
Eulerian-based finite element simulations. Such issues also naturally arise during
the successive iterations in shape/topological optimization and control.

Perspectives. In that context, the transfinite interpolations that originated in
Imaging are a serious alternative to pseudo-solid methods that involve heavy com-
putations of solutions of large systems of partial differential equations. In the
pseudo-solid method initiated by Lynch and O’Neil [22] in 1980, the linear elasticity
equations are solved to propagate the boundary deformations within the computa-
tional domain. The pseudo-solid method is certainly the most prevalent approach
and has been successfully applied to monolithic and loosely coupled simulations of
fluid-structure interaction problems.

There are many beautiful problems in Mechanics that could potentially benefit
from transfinite interpolations. For instance, the pioneering work of Soko lowski
and Zolésio [25, 26, 27, 28] for the sensitivity analysis of contact problems via
variational inequalities, the advanced formulations of Plotikov and Soko lowski [23]
for the moving obstacle in compressible gas, the drag minimization for the obstacle
in compressible flow by Kaźmierczak, Soko lowski, and Żochowski [18], the shape
and topology optimization for passive control of crack propagation by Leugering,
Soko lowski, and Żochowski [21], and the numerical methods currently developped
by Léger, Fortin, Tibirna, and Fortin [20] for very large deformation in elasticity
problems in the design of tires for the automotive industry, the anisotropic mesh
adaptation for scroll wave turbulence dynamics in reaction-diffusion systems by
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Belhamadia, Fortin, and Bourgault [3], and the fluid-structure interaction problems
by Hay, Etienne, Garon, and Pelletier [16].

Finally, there are genuine mathematical motivations that are not related to nu-
merical methods. Looking at transfinite interpolations as extensions of a function
defined on some subset of a normal topological space to some larger space as in
the generalization of the work of Tietze [29], the solution of the non-homogeneous
Dirichlet problem can be seen as an extension of a function specified on the bound-
ary Γ to a function defined on Ω with a trace at Hn−1 almost all points of Γ. As we
shall see in this paper, interpolation Hn−1 almost everywhere comes in naturally
and we have to live with it if we want general results for domains with non-smooth
boundaries. Another example is the double layer potential. So, there is a natu-
ral conceptual convergence of objectives and tools with Boundary Valued Problems
and, even more interesting, with Control Theory of Partial Differential Equations as
in the remarkable recent work of Lasiecka, Szulc, and Żochowski [19] on the bound-
ary control of small solutions to fluid-structure interactions arising in coupling of
elasticity with Navier-Stokes equation under mixed boundary condition.

Notation and Terminology. The n-dimensional volume Vn(r) and the surface
area An−1(r) of the n-ball of radius r in Rn are given by the formulae

Vn(r) = αn r
n, αn

def
= π

n
2 /Γ (n/2 + 1), An−1(r) =

d

dr
Vn(r) = αnn rn−1,

where Γ is Euler’s gamma function, αn is the volume and βn = αnn is the surface
area of the n-ball of radius one in Rn. Denote by md, 1 ≤ d ≤ n, the Lebesgue
measure and by Hd, 0 ≤ d ≤ n, the d-dimensional Hausdorff measure in Rn. The
distance function dE from a point x ∈ Rn to a subset E of Rn and the set of
projections ΠE(x) of a point x onto E are defined as follows

dE(x)
def
= inf

y∈E
∥y − x∥, ΠE(x)

def
= {p ∈ E : ∥p− x∥ = dE(x)}.(1.4)

ΠE(x) is compact and never empty. When ΠE(x) is a singleton, the projection is
denoted pE(x). The characteristic function χE(x) of a subset E is the function
equal to 1 if x ∈ E and 0 if x /∈ E. Other definitions and theorems are given in the
Appendix.

2. k-Transfinite mean value interpolation (k-TMI)

Let Ω be an open subset of Rn with compact boundary Γ. Denote by Ωc =
Rn\Ω the open domain associated with the complement of Ω. Assume that Ω is
locally Lipschitzian, that is, Ω is the hypergraph of a Lipschitzian function in the
neighbourhood of each point x ∈ Γ. Such domains can have several connected
components and/or holes. If, in addition, Γ is compact, the (n − 1)-dimensional
Hausdorff measure Hn−1(Γ) of Γ is finite, the exterior unit normal nΩ(ξ) to Ω and
the exterior unit normal nΩc(ξ) to Ωc exist at Hn−1-almost all points ξ ∈ Γ, and
the Gauss Divergence Theorem applies provided the integrand over the possibly
unbounded domains Ω or Ωc is integrable. This family of open domains includes all
bounded open convex domains and n-polytopes.
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We now extend the TMI of [9] to locally Lipschitzian domains and replace the
exponent n + 1 by a real number k > n. This creates two ranges: (n,n + 1) and
(n+1,∞) on each side of n+1. The parameter k actually controls the width of the
region in the neighbourhood of Γ where the interpolation is close to the value of the
function on Γ. The width is larger when k is large. We also extend the definition
of the TMI from continuous functions f on Γ to L2 functions by introducing a new
local variational problem.

2.1. Least Squares Locally L2-Interpolation. In this paper the transfinite mean-
value interpolation is introduced via a variational problem. Part (i) of the following
theorem generalizes [9, Thms. 1 and 2] and [4, Thm. 2] given for k = n + 1 and a
connected bounded open Ω with positive reach. Here, connectedness and positive
reach are both unnecessary properties.

Theorem 2.1. Let n ≥ 1 be an integer and k > n a real number. Assume that
Ω is an open subset of Rn with compact locally Lipschitzian boundary and that
f ∈ L2(Γ;Hn−1).

(i) The function

y 7→ ϕ(y)
def
=

∫
Γ

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1 : Rn\Γ → R(2.1)

is well defined, continuously infinitely differentiable, and

0 < ϕ(y) ≤ nαn/dΓ(y)k−n, y ∈ Ω,

0 < −ϕ(y) ≤ nαn/dΓ(y)k−n, y ∈ Ωc,
(2.2)

(αn, the n-dimensional volume of the ball of radius one in Rn).
(ii) The function

F̂ (y)
def
=

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1, y ∈ Rn\Γ,(2.3)

is well defined and infinitely continuously differentiable in Rn\Γ.

(iii) For each compact K ⊂ Rn\Γ, the restriction of F̂ to K is the unique solution
in L2(K) of the following minimization problem

inf
F∈L2(K)

∫
K

∫
Γ
|F (y) − f(ξ)|2

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 dy.(2.4)

This theorem provides a new angle to tackle the interpolation problem and allows
more general k > n, f , and Ω than the ones originally introduced in the seminal
paper of Dyken and Floater [9].

Definition 2.2. Let n ≥ 1 be an integer and k > n a real number. Assume
that Ω is an open subset of Rn with compact locally Lipschitzian boundary. Given
f ∈ L2(Γ;Hn−1), the infinitely continuously differentiable function

Mk(f)(y)
def
=

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1, y ∈ Rn\Γ.(2.5)
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will called the k-Transfinite Mean Value Interpolation (k-TMI) of f . □
Remark 2.3. The exterior normal nΩ to Ω can be replaced by the exterior normal
nΩc to Ωc

Mk(f)(y) =

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩc(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩc(ξ′) dHn−1
dHn−1, y ∈ Rn\Γ,(2.6)

since the minus signs in the numerator and the denominator cancel out. □
Corollary 2.4. For each compact K ⊂ Rn\Γ,∫

K

∫
Γ
|F̂ (y) − f(ξ)|2

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 dy

=

∫
K

(
Mk(f2) −Mk(f)2

)
dy.

Proof of Theorem 2.1. (i) It is sufficient to prove the result for y ∈ Ω. For ξ ∈ Ωc,
the computation of the following divergence yields

div ξ

(
ξ − y

∥ξ − y∥k

)
=

1

∥ξ − y∥k
div ξ(ξ − y) + (ξ − y) · ∇ξ

1

∥ξ − y∥k

=n
1

∥ξ − y∥k
− k(ξ − y) · ξ − y

∥ξ − y∥k+2
= (n− k)

1

∥ξ − y∥k
.

Since, as a function of ξ, it is integrable1 over Ωc for y ∈ Ω and k > n, we can use
Gauss Divergence Theorem on the complement Ωc to simplify the arguments in [9]
and [4] ∫

Γ

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1 = −

∫
Γ

ξ − y

∥ξ − y∥k
· nΩc(ξ) dHn−1

= −
∫
Ωc

div ξ

(
ξ − y

∥ξ − y∥k

)
dξ.

⇒
∫
Γ

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1 = (k − n)

∫
Ωc

1

∥ξ − y∥k
dξ > 0(2.7)

for k > n. From identity (2.7) for y ∈ Ω and the fact that BdΓ(y)(y) ⊂ Ω and
Ωc ⊂ Rn\BdΓ(y)(y)

ϕ(y) ≤(k − n)

∫
Rn\BdΓ(y)(y)

1

∥ξ − y∥k
dξ = (k − n)

∫
Rn\BdΓ(y)(0)

1

∥ξ∥k
dξ

= (k − n)

∫ ∞

dΓ(y)
βn

rn−1

rk
dr =

βn
dΓ(y)k−n

,

where βn = nαn is the surface area of the n-dimensional ball of radius one in
Rn. This proves the second inequality. So, ϕ(y) is well defined and continuously
infinitely differentiable in Ω.

1If Ω is bounded then the domain Ωc is infinite and the exponent k in the denominator of the
integrand must be strictly greater than n since for k ≤ n the integral over Ωc explodes.
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(ii) Given a compact K ⊂ Rn\Γ and f ∈ L2(Γ;Hn−1), consider the following
quadratic function of F ∈ L2(K)

∫
K

∫
Γ |F (y) − f(ξ)|2 ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy,(2.8)

for which the Taylor’s formula is exact: for all F, F̂ ∈ L2(K)

∫
K

∫
Γ |F (y) − f(ξ)|2 ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy

=

∫
K

∫
Γ |F̂ (y) − f(ξ)|2 ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy

+ 2

∫
K

∫
Γ

(
F̂ (y) − f(ξ)

)
(F (y) − F̂ (y)) ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy

+

∫
K

∣∣∣F (y) − F̂ (y)
∣∣∣2 ∫Γ ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1︸ ︷︷ ︸

=1

dy.

If F̂ is a minimizer, then for all F ∈ L2(K)

∫
K

∫
Γ

(
F̂ (y) − f(ξ)

)
(F (y) − F̂ (y))

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1 dy = 0(2.9)

∀F ∈ L2(K),

∫
K

∣∣∣F (y) − F̂ (y)
∣∣∣2 dy ≥ 0.(2.10)

The positivity condition (2.10) is always verified. As for condition (2.9),

F̂ (y) =

∫
Γ f(ξ) ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

for a.a. y ∈ K(2.11)

is the unique solution in L2(K). Therefore, F̂ ∈ L2(K) is the unique solution
of the minimizing problem (2.4). Finally, for any bounded open set O such that

O ⊂ Rn\Γ, F̂ is infinitely continuously differentiable and bounded in O and, hence,
infinitely continuously differentiable in Rn\Γ. □
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Proof of Corollary 2.4. Expand the quadratic term∫
K

∫
Γ |F̂ (y) − f(ξ)|2 ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy

=

∫
K
|F̂ (y)|2

∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1∫

Γ
ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1
dy +

∫
K

∫
Γ |f(ξ)|2 ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy

− 2

∫
K
F̂ (y)

∫
Γ f(ξ) ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

dy.

This yields the final expression∫
K
|F̂ (y)|2 + M(f2)(y) dy − 2|F̂ (y)|2 dy =

∫
K

(
M(f2) −M(f)2

)
dy.

□

The property that Mn+1 preserves first order polynomials as stated in [9] does
not extend from n + 1 to k, n + 1 ̸= k > n.

Theorem 2.5. Assume that Ω is an open subset of Rn with compact locally Lips-
chitzian boundary. For polynomials f ∈ P 1(Rn), Mn+1(f) = f in Rn\Γ.

Remark 2.6. Since the proof only requires the use of the divergence theorem, the
theorem seems to be true for Caccioppoli sets Ω. □

Proof. For f(ξ) = A0 + A1 · ξ, A0 ∈ R and A1 ∈ Rn, and y ∈ Rn\Γ, f(ξ) − f(y) =
A1 · (ξ − y),

Mk(f)(y) − f(y) =

∫
Γ

ξ−y
∥ξ−y∥k · nΩc(ξ)A1 · (ξ − y) dHn−1∫

Γ
ξ−y

∥ξ−y∥k · nΩc(ξ) dHn−1
.

Using the divergence theorem, the numerator is equal to

−
∫
Ωc

div

(
ξ − y

∥ξ − y∥k
A1 · (ξ − y)

)
dξ = −(n− k + 1)

∫
Ωc

A1 · (ξ − y)

∥ξ − y∥k
dHn−1.

For k = n+ 1 the integral is finite and (n− k+ 1) = 0. For y ∈ Ωc, we get the same
result and Mn+1(f)(y) = f(y) on Rn\Γ. □

2.2. Trace and Pointwise Convergence on Γ. We have proved in Theorem 2.1
that for k > n the denominator ϕ(y) ̸= 0 and that, for a continuous function f on

Γ, the function F̂ (y) is well defined and infinitely differentiable on Rn\Γ. Then,

given f ∈ C0(Γ) and x ∈ Γ, the necessary and sufficient condition for F̂ to be an
interpolation of f at x is

lim
y→x
y∈Ω

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.12)
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There are two variants: one for the interpolation in the complement Ωc = Rn\Ω)
of Ω and one for the interpolation in all of Rn:

lim
y→x
y∈Ωc

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x),(2.13)

lim
y→x

y∈Rn\Γ

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.14)

For the first case in Ω with k = n + 1, Dyken and Floater [9] and Bruvoll and
Floater [4] proved that it is true when Ω is convex and Hormann and Floater [17]
when Ω is a non-necessarily convex n-polytope. But, we don’t know if this is true for
an arbitrary compact locally Lipschitzian boundary Γ. Dyken and Floater [9] and
Bruvoll and Floater [4] working with a parametrization of the boundary Γ by the
unit sphere in Rn invoked the positive reach property of Ω and a local boundedness
condition. As we have seen in Theorem 2.1 and later in Theorem 2.7, the positive
reach property of Ω can be dropped. Note the analogy of this interpolation problem
with the double-layer potential theory (k = n) where there is a jump across Γ.

2.2.1. Case n = 1. In dimension n = 1 for an interval Ω = (a,b), the interpolation
is well defined and continuous for all y ∈ R since

g(y) =
− a−y

|a−y|2 f(a) + b−y
|b−y|2 f(b)

− a−y
|a−y|2 + b−y

|b−y|2
=

1

a− b
[(a− y) f(a) − (b− y) f(b)] ,

g′′(y) = 0, and g is harmonic. But the cases 0 ≤ k are allowed since

g(y) =
−(y − a) |y − b|k f(a) + (y − b) |y − a|k f(b)

−(y − a) |y − b|k + (y − b) |y − a|k

is well defined and continuous for all y ∈ R. However, the Divergence Theorem
cannot be applied since for 0 ≤ k ≤ 1∫

Ωc

1

|ξ − y|k
dξ =

∫ a

−∞

1

|ξ − y|k
dξ +

∫ +∞

b

1

|ξ − y|k
dξ = +∞.

For k = 0, the boundary expression is linear and hence harmonic. However, for
0 < k ̸= 2, to be harmonic we would need linearity and, in particular, g(0) = 0.
However, for a ̸= b, a ̸= 0, and b ̸= 0,

g(0) =

a
|a|k f(a) − b

|b|k f(b)

a
|a|k − b

|b|k
= 0 ⇒ f(b) =

∣∣∣∣ ba
∣∣∣∣k a

b
f(a).

For functions f that do not satisfy the above identity, the corresponding g is not
harmonic.



774 M. C. DELFOUR AND A. GARON

2.2.2. Preliminaries. In the following theorems the key property (and equivalent
definition) of an open domain Ω with a locally Lipschizian boundary Γ is that it
satisfies the so-called uniform cone property in each point of its boundary. Since
∂Ωc = Γ, the domain Ωc also has a locally Lipschizian boundary and satisfies a
uniform cone property2 at each boundary point. For Γ compact this means that
there exists ρ > 0, h > 0, and an angle 0 < θ < π such that at each point x ∈ Γ

there exists a direction d⃗x, ∥d⃗x∥ = 1, such that

∀x ∈ Γ,∀ξ ∈ Bρ(x) ∩ Ωc, ξ + C(d⃗x, h, θ) ⊂ Ωc,(2.15)

where C(d⃗x, h, θ) is the open cone with vertex 0, axis d⃗x, height h > 0, and angle
0 < θ < π.

The next theorem generalizes [9, Thm. 3, sec. 2.4] and [4, Thm. 3, sec. 2.4]
given for k = n + 1 and a connected bounded open domain Ω with positive reach.
That last property turns out to be an unnecessary restriction.

Theorem 2.7. Let n ≥ 1 be an integer and k > n a real number. Let Ω be an open
subset of Rn with compact locally Lipschitzian boundary and let ρ > 0, h > 0, and
0 < θ < π be the parameters associated with the uniform cone property (2.15) at

x ∈ Γ. For ρ
def
= min{ρ, h} and y ∈ Bρ(x) ∩ Ω

ϕ(y) ≥ (k − n)

n 2k
c(θ)

dΓ(y)k−n
and lim

y→x
y∈Ω

ϕ(y) = +∞,(2.16)

where c(θ) is the n-volume of the conical sector of angle θ and radius 1.

Proof. Since the domain Ωc has a compact locally Lipschizian boundary, it satisfies
a uniform cone property : there exists ρ > 0, h > 0, and 0 < θ < π, such that the

uniform cone property (2.15) is satisfied at any x ∈ Γ. Choose ρ
def
= min{ρ/2,h}.

For y ∈ Bρ(x) and a projection p ∈ ΠΓ(y) of y onto Γ, dΓ(y) = ∥y− p∥ ≤ ∥y−x∥ <
ρ < min{ρ/2,h}. The ball BdΓ(y)(p)(x) ⊂ Bρ(x) since for z ∈ BdΓ(y)(p)(x)

|z − x| ≤ |z − p| + |p− x| < dΓ(y) + dΓ(y) < ρ.

So, the uniform cone property is verified at the point p: p + C(d⃗x, h, θ) ⊂ Ωc.
Therefore, ∫

Γ

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1 = (k − n)

∫
Ωc

1

∥ξ − y∥k
dξ

≥ (k − n)

∫
p+C(d⃗x,h,θ)

1

∥ξ − y∥k
dξ.

Since ∥ξ − y∥ ≤ ∥p− y∥ + ∥ξ − p∥ = dΓ(y) + ∥ξ − p∥,∫
p+C(d⃗x,h,θ)

1

∥ξ − y∥k
dξ ≥

∫
p+C(d⃗x,h,θ)

1

|dΓ(y) + ∥ξ − p∥|k
dξ

=

∫
C(d⃗x,h,θ)

1

|dΓ(y) + ∥ξ∥|k
dξ.

2Cf, for instance, [7, Chap. 2, Dfn. 5.1, p. 33, Dfn. 6.1 and Thm. 6.3, pp. 49–58] or [8, Chap.r 2,
pp. 114–116].
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Recalling that dΓ(y) ≤ h∫
C(d⃗x,h,θ)

1

|dΓ(y) + ∥ξ∥|k
dξ = c(θ)

∫ h

0

rn−1

(dΓ(y) + r)k
dr

≥ c(θ)

∫ dΓ(y)

0

rn−1

(dΓ(y) + r)k
dr

⇒ c(θ)

∫ dΓ(y)

0

rn−1

(dΓ(y) + r)k
dr =

c(θ)

dΓ(y)k−n

∫ 1

0

rn−1

(1 + r)k
dr

≥ c(θ)

dΓ(y)k−n

1

n 2k

⇒ (k − n)

∫
Ωc

1

∥ξ − y∥k
dξ ≥ (k − n)

c(θ)

dΓ(y)k−n

1

n 2k
,

where c(θ)) is the n-volume of the conical sector of angle θ and radius 1. □

2.2.3. Continuous Interpolation Theorems. The next task is to prove that, for f
continuous on Γ and k > n, Mk(f)(y) → f(x) as y ∈ Ω → x ∈ Γ. In view
of the fact that we have proved Theorems 2.1 and 2.8 without the positive reach
property, it is the so-called mild assumption of [9, eq. (18)] and [4, eq, (10)] and not
the positive reach property that makes the proof of interpolation work. Since the
positive reach property used in their Theorem 4 rules out non-convex n-polytopes,
is the positive reach property a sufficient condition to get their mild assumption?
If not, it might be unnecessarily restrictive and possibly redundant to prove the
interpolation.

We relax their mild assumption that is really a global boundedness property on
Γ ([9, first paragraph at the top of page 125]) to a local one at Hn−1 almost all
points of Γ. This weaker property is verified for Ω convex, but it is also verified for
non-necessarily convex n-polytopes where the Hn−1 almost everywhere exception
is important since the condition is verified everywhere except at the vertices in R2

and at the vertices and at the edges in R3.

Theorem 2.8. Let n ≥ 1 be an integer and k > n a real number. Let Ω be an open
subset of Rn with compact locally Lipschitzian boundary and let ρ > 0, h > 0, and
0 < θ < π be the parameters associated with the uniform cone property (2.15) at
x ∈ Γ.

(i) (Local Boundedness Property for Ω) Assume that there exists a constant
C(x) and a radius δ(x) > 0 at x ∈ Γ such that

∀y ∈ Bδ(x)/2(x) ∩ Ω,

∫
Γ∩Bδ(x)(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

≤ C(x).(2.17)

Then

lim
y→x
y∈Ω

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.18)
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(ii) (Local Boundedness Property for Ωc) Assume that there exists a constant
C(x) and a radius δ(x) > 0 at x ∈ Γ such that

∀y ∈ Bδ(x)/2(x) ∩ Ωc,

∫
Γ∩Bδ(x)(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩc(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩc(ξ) dHn−1

≤ C(x).(2.19)

Then

lim
y→x
y∈Ωc

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.20)

(iii) (Bilateral Local Boundedness Property) Assume that there exists a constant
C(x) and a radius δ(x) > 0 at x ∈ Γ such that

∀y ∈ Bδ(x)/2(x)\Γ,

∫
Γ∩Bδ(x)(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∣∣∣∫Γ ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

∣∣∣ ≤ C(x).(2.21)

Then

lim
y→x

y∈Rn\Γ

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.22)

(iv) If the condition of part (i), (ii), or (iii) is verified at Hn−1 almost all x ∈ Γ,
then the convergence is true at all x ∈ Γ.

Remark 2.9. Open question: is the bilateral local boundedness property verified
at all points x ∈ Γ where the normal exists. □
Proof. (i) Given ε > 0, there exists δ > 0 such that

∀ξ, ξ′ ∈ Γ, ∥ξ − ξ′∥ < δ, |f(ξ) − f(ξ′)| < ε, M
def
= max

ξ∈Γ
|f(ξ)| < ∞.

Given y ∈ Ω and the ball Bδ(x), split the integral into two parts

M(f)(y) − f(x) =

∫
Γ∩Bδ(x)

ξ−y
∥ξ−y∥k · nΩ(ξ) [f(ξ) − f(x)] dHn−1∫

Γ
ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1

+

∫
Γ\Bδ(x)

ξ−y
∥ξ−y∥k · nΩ(ξ) [f(ξ) − f(x)] dHn−1∫

Γ
ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1
.

Denote the first term I1(y,δ) and the second term I2(y,δ). We get |M(f)(y) −
f(x)| ≤ |I1(δ,y)| + |I2(δ,y)| and

|I1| ≤ ε

∫
Γ∩Bδ(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1︸ ︷︷ ︸

B1(y,δ)

|I2| ≤ 2M

∫
Γ\Bδ(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

.︸ ︷︷ ︸
B2(y,δ)

(2.23)



TRANSFINITE INTERPOLATIONS 777

To get convergence we need to show that B1(y,δ) is bounded and that B2(y,δ) → 0,
as y → x.

By assumption, it is verified for B1 by reducing the radius δ(x) to δ′(x) =
min{δ, δ(x)} so that for all y ∈ Bδ′(x)/2(x)

|I1(y,δ′(x))| ≤ ε

∫
Γ∩Bδ′(x)(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

≤ εC(x).

Now consider I2(y, δ
′(x)). For ξ ∈ Γ\Bδ′(x)(x) and y ∈ Bδ′(x)/2(x) ∩ Ω, ∥ξ − y∥ ≥

∥ξ − x∥ − ∥y − x∥ ≥ δ′(x) − δ′(x)/2 = δ′(x)/2 and∫
Γ\Bδ′(x)(x)

∣∣∣∣ ξ − y

∥ξ − y∥k
· nΩ(ξ)

∣∣∣∣ dHn−1 ≤
∫
Γ\Bδ′(x)(x)

1

∥ξ − y∥k−1
dHn−1

≤ Hn−1(Γ)

(δ′(x)/2)k−1
.

By (2.2) in Theorem 2.7, for ρ
def
= min{ρ, h} and y ∈ Bρ(x) ∩ Ω

ϕ(y) ≥ (k − n)

n 2k
c(θ)

dΓ(y)k−n
.(2.24)

So, for δ′(x) ≤ ρ̄ and y ∈ Bδ′(x)/2(x),∫
Γ\Bδ′(x)(x)

1
∥ξ−y∥k−1 dH

n−1

ϕ(y)
≤ Hn−1(Γ)

c(θ)

n 22k−1

(k − n)

dΓ(y)k−n

(δ′(x))k−1

that goes to zero as y → x. Replacing δ by a δ′(x) ≤ ρ̄ in the first part of the proof
for I1(δ

′(x),y), M(f)(y) → f(x) as y ∈ Ω ∩Bδ′(x)/2(x) goes to x.
(ii) The arguments for Ωc are the same as the ones for Ω in (i).
(iii) The arguments for Rn\Γ are the same as the ones for Ω in (i).
(iv) We give the proof for the condition of part (iii). The proof for parts (i) and

(ii) is similar. By uniform continuity of f on Γ, given ε > 0, there exists δ > 0 such
that

∀y, z ∈ Γ, ∥y − z∥ < δ, |f(y) − f(z)| < ε/2.

By assumption and part (iii), the function g=M(f) interpolates f on a subset E′

of Γ such that Hn−1(Γ\E′) = 0. Let x ∈ Γ\E′ and {yn} be an arbitrary sequence
in Rn\Γ that converges to x such that ∥yn − x∥ < δ/2.

Since Γ is locally Lipschitzian, it can be represented as a graph in a neighbourhood
N(x) of x. Therefore, there exists a sequence {xi} ⊂ E′ ∩ N(x) such that xi → x
and ∥xi − x∥ < δ/2. In view of condition (2.21) and part (ii), there exists 0 < δi ≤
min{δ(xi), δ} and yni ∈ Bδi/2(xi) such that |g(yni) − f(xi)| < ε/2. Hence

∥yni − x∥ ≤ ||yni − xi∥ + ∥xi − x∥ < δ,

|g(yni) − f(x)| ≤ |g(yni) − f(xi)| + |f(xi) − f(x)| < ε.

Therefore, the sequence {g(yni)} is bounded and there exist gx and a subsequence,
still denoted {g(yni)}, such that g(yni) → gx. Letting ni go to infinity, g(yi) → gx
and |gx − f(x)| < ε. Since this is true for all ε, gx = f(x). In conclusion, we have
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proved that for all sequences {yn} ⊂ Rn\Γ converging to x ∈ E′, the limit of g(yn)
is f(x). □

It will be useful to preserve some of the properties used in the proof of Theorem 2.8
in the form of the following lemma.

Lemma 2.10. Let n ≥ 1 be an integer and k > n a real number. Let Ω be an open
subset of Rn with compact locally Lipschitzian boundary and let ρ > 0, h > 0, and
0 < θ < π be the parameters associated with the uniform cone property (2.15) at

x ∈ Γ. Given ρ
def
= min{ρ, h}, for all 0 < δ ≤ ρ and y ∈ Bδ/2(x) ∩ Ω∫

Γ\Bδ(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1

ϕ(y)
≤ Hn−1(Γ)

c(θ)

n 22k−1

(k − n)

dΓ(y)k−n

δk−1
(2.25) ∫

∂Bδ(x)∩Ωc
1

∥ξ−y∥k−1 dH
n−1

ϕ(y)
≤ βn

c(θ)

n 22k−1

(k − n)

(
dΓ(y)

δ

)k−n

(2.26)

and they go to zero as y → x.

Proof. (i) For ξ ∈ Γ\Bδ(x) and y ∈ Bδ/2(x) ∩ Ω, ∥ξ − y∥ ≥ ∥ξ − x∥ − ∥y − x∥ ≥
δ − δ/2 = δ/2 and∫

Γ\Bδ(x)

∣∣∣∣ ξ − y

∥ξ − y∥k
· nΩ(ξ)

∣∣∣∣ dHn−1 ≤
∫
Γ\Bδ(x)

1

∥ξ − y∥k−1
dHn−1

≤ 1

(δ/2)k−1
βn δ

n−1.

By (2.16) in Theorem 2.7, for ρ
def
= min{ρ, h} and y ∈ Bρ(x) ∩ Ω

ϕ(y) ≥ (k − n)

n 2k
c(θ)

dΓ(y)k−n
.(2.27)

So, for δ ≤ ρ̄ and y ∈ Bδ/2(x),∫
Γ\Bδ(x)

1
∥ξ−y∥k−1 dH

n−1

ϕ(y)
≤ Hn−1(Γ)

c(θ)

n 22k−1

(k − n)

dΓ(y)k−n

δk−1
.

(ii) For ξ ∈ ∂Bδ(x) ∩ Ωc and y ∈ Bδ/2(x) ∩ Ω, ∥ξ − y∥ ≥ ξ − x∥ − ∥y − x∥ ≥
δ − δ/2 = δ/2 and∫

∂Bδ(x)∩Ωc

1

∥ξ − y∥k−1
dHn−1 ≤ 1

(δ/2)k−1
βn δ

n−1.

Again by (2.16) in Theorem 2.7, for δ ≤ ρ̄ and y ∈ Bδ/2(x),∫
∂Bδ(x)∩Ωc

1
∥ξ−y∥k−1 dH

n−1

ϕ(y)
≤ βn

c(θ)

n 22k−1

(k − n)

(
dΓ(y)

δ

)k−n

.

□

The next two theorems specialize Theorem 2.8.
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Theorem 2.11 (Convex Case). If Ω is a convex open domain with compact bound-
ary and k > n,

∀x ∈ Γ, lim
y→x
y∈Ω

∫
Γ
f(ξ)

ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dHn−1
dHn−1 = f(x).(2.28)

Proof. Given ε > 0, there exists δ > 0 such that

∀ξ, ξ′ ∈ Γ, ∥ξ − ξ′∥ < δ, |f(ξ) − f(ξ′)| < ε, M
def
= max

ξ∈Γ
|f(ξ)| < ∞.

If Ω is an open convex set, for any y ∈ Ω and ξ ∈ Γ, the vector y − ξ is contained
in the tangent space to Ω at the point ξ and (y − ξ) · ν ≤ 0 for all ν in the dual
cone (TξΩ)∗ = {ν ∈ Rn : ν · τ ≥ 0, ∀τ ∈ TξΩ}. Since the boundary Γ is locally
Lipschitzian, the unit exterior normal nΩ(ξ) exists at Hn−1 almost all points ξ and
−nΩ(ξ) ∈ (TξΩ)∗ and (ξ − y) · nΩ(ξ) ≥ 0. Therefore,

B1(δ,y) =

∫
Γ∩Bδ(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1∫
Γ

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1

=

∫
Γ∩Bδ(x)

ξ−y
∥ξ−y∥k · nΩ(ξ) dHn−1∫

Γ
ξ−y

∥ξ−y∥k · nΩ(ξ) dHn−1
≤ 1.

As for B2, we use (2.25) in Lemma 2.10,∫
Γ\Bδ(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1

ϕ(y)
≤ Hn−1(Γ)

c(θ)

n 22k−1

(k − n)

dΓ(y)k−n

δk−1

and |I2(δ,y)| goes to zero as y → x for k > n. □

Theorem 2.12. Let n ≥ 1 be an integer and k > n a real number. Let Ω be an
open subset of Rn with compact locally Lipschitzian boundary and let ρ > 0, h > 0,
and 0 < θ < π be the parameters associated with the uniform cone property (2.15)
at x ∈ Γ.

(i) Assume that, for Hn−1 almost each x ∈ Γ, there exists δ(x) > 0, such that

∀ξ ∈ Bδ(x)(x), ∀y ∈ Bδ(x)/2(x) ∩ Ω, (ξ − y) · nΩ(ξ) ≥ 0.(2.29)

Then, given ρ
def
= min{ρ, h} and δ′(x) = min{ρ, δ(x)}, for all y ∈ Bδ′(x)/2(x)∩

Ω, ∫
Γ∩Bδ′(x)(x)

1
∥ξ−y∥k |(ξ − y) · nΩ(ξ)| dHn−1

ϕ(y)
≤ 1 +

βn
c(θ)

n 22k−1

(k − n)
.

and M(f) interpolates f in Ω. In particular, condition (2.29) is verified for
Ω convex.

(ii) Assume that, for Hn−1 almost each x ∈ Γ, there exists δ(x) > 0, such that

∀ξ ∈ Bδ(x)(x),
∀y ∈ Bδ(x)/2(x) ∩ Ω, (ξ − y) · nΩ(ξ) ≥ 0,

∀y ∈ Bδ(x)/2(x) ∩ Ωc, (ξ − y) · nΩc(ξ) ≥ 0.
(2.30)

Then, M(f) interpolates f in Rn\Γ. In particular, condition (2.30) is ver-
ified for n-polytopes (non necessarily convex).
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Proof. (i) To simplify the notation let δ = δ(x). By assumption, given y ∈ Bδ/2(x)∩
Ω and ξ ∈ Bδ(x), using the Divergence Theorem∫

Γ∩Bδ(x)

∣∣∣∣ ξ − y

∥ξ − y∥k
· nΩ(ξ)

∣∣∣∣ dHn−1 =

∫
Γ∩Bδ(x)

ξ − y

∥ξ − y∥k
· nΩ(ξ) dHn−1

= −
∫
Ωc∩Bδ(x)

div
ξ − y

∥ξ − y∥k
dξ +

∫
∂Bδ(x)∩Ωc

ξ − y

∥ξ − y∥k
· nBδ(x)(ξ) dHn−1

= (k − n)

∫
Ωc∩Bδ(x)

1

∥ξ − y∥k
dξ +

∫
∂Bδ(x)∩Ωc

ξ − y

∥ξ − y∥k
· nBδ(x)(ξ) dHn−1

≤ (k − n)

∫
Ωc

1

∥ξ − y∥k
dξ +

∫
∂Bδ(x)∩Ωc

1

∥ξ − y∥k−1
dHn−1

≤ ϕ(y) +

∫
∂Bδ(x)∩Ωc

1

∥ξ − y∥k−1
dHn−1.

(2.31)

From (2.26) in Lemma 2.10, given ρ
def
= min{ρ, h} and δ′(x) = min{ρ, δ(x)}, for all

y ∈ Bδ′(x)/2(x) ∩ Ω, dΓ(y) < δ′(x) and∫
∂Bδ(x)∩Ωc

1
∥ξ−y∥k−1 dH

n−1

ϕ(y)
≤ βn

c(θ)

n 22k−1

(k − n)

(
dΓ(y)

δ′(x)

)k−n

≤ βn
c(θ)

n 22k−1

(k − n)

⇒

∫
Γ∩Bδ′(x)(x)

∣∣∣ ξ−y
∥ξ−y∥k · nΩ(ξ)

∣∣∣ dHn−1

ϕ(y)
≤ 1 +

βn
c(θ)

n 22k−1

(k − n)

and this proves the local boundedness assumption (2.17) of Theorem 2.8.
(ii) For an n-polytope, all the pieces of the boundary Γ that are k-polytopes, of

dimension k < n − 1 have zero Hn−1 measure and can be neglected. So we are
left with the faces which are (flat) (n − 1)-polytopes each contained in an affine
subspace of dimension (n − 1) where the positivity condition (2.30) is satisfied.
Hence, from part (i) the local boundedness assumption (2.17) of Theorem 2.8 (i) is
verified almost everywhere for Ω. By a similar argument from part (i) using Ωc in
place of Ω, the local boundedness assumption (2.19) of Theorem 2.8 (ii) is verified
almost everywhere for Ωc. We get the final result by combining the two. □

3. k-Transfinite barycentric interpolation (k-TBI)

We proceed as in the case of the k-TMI and replace Γ by a compact set E that
can be a smooth d-dimensional, 0 < d < n, submanifold of Rn such as a rectifiable
curve (d = 1) or surface (d = 2) in R3.

3.1. Least Squares Locally L2 Interpolation.

Theorem 3.1. Let 0 ≤ d < n be two integers, k > 0 a real number, E a non-empty
compact subset of Rn such that Hd(E) < +∞, and f ∈ L2(E;Hd).

(i) The function

F̂ (y)
def
=

∫
E
f(ξ)

1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd, y ∈ Rn\E,(3.1)
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is well defined and infinitely continuously differentiable in Rn\E.

(ii) For each compact K ⊂ Rn\E, the restriction of F̂ to K is the unique solution
in L2(K) of the minimization problems

inf
F∈L2(K)

∫
K

∫
E
|F (y) − f(ξ)|2 1

∥ξ − y∥k
dHd dy(3.2)

inf
F∈L2(K)

∫
K

∫
E
|F (y) − f(ξ)|2

1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd dy.(3.3)

(iii) If, in addition, f ∈ L∞(E;Hd), then F̂ is continuous and bounded on the
open set Rn\E.

Proof. The proof is similar to the one of Theorem 2.1, but the problem is simpler
since the weight function is non-negative. If fact, the solution of the minimization
problem (3.2) is the same as the solution of the minimization problem (3.3). □

3.2. Definition and Properties. In view of Theorem 3.1, we introduce the fol-
lowing definition.

Definition 3.2. Let 0 ≤ d < n be two integers, k > 0 a real number, E a non-
empty compact subset of Rn such that Hd(E) < +∞, and f ∈ L2(E;Hd). The
k-Transfinite Barycentric Interpolation is defined by

B(f)(y)
def
=

∫
E
f(ξ)

1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd, y ∈ Rn\E.(3.4)

□
Theorem 3.3. Let 0 ≤ d < n be two integers, k > 0 a real number, and E a
non-empty compact subset of Rn such that Hd(E) < +∞.

(i) Given f ∈ L2(E;Hd),3 the function B(f) is infinitely continuously differen-
tiable on Rn\E and

lim
∥y∥→+∞

B(f)(y) =

∫
E f(ξ) dHd∫

E dHd
.(3.5)

(ii) Given f ∈ L∞(E;Hd), B(f) is continuous and bounded on Rn\E,

sup
y∈Rn\E

∥B(f)(y)∥ ≤ M
def
= ∥f∥L∞(E[Hd).(3.6)

(iii) For each compact K ⊂ Rn\E,∫
K

∫
E
|F̂ (y) − f(ξ)|2 1

∥ξ − y∥k
dHn−1 dy

=

∫
K

[
B(f2) − B(f)2

]
ϕdy, ϕ(y)

def
=

∫
Γ

1

∥ξ − y∥k
dHn−1.

(3.7)

Remark 3.4. If we had the uniform continuity of B(f) in Rn\E, its continuous
trace on E would be well-defined. □
3In the case d = 0, E is a finite number of isolated points and any function defined on E is
continuous and, a fortiori, f ∈ L2(E;H0).
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Proof. (i) Since E is compact, its diameter is finite and for any points x ∈ Rn and
ξ ∈ E

dE(x) ≤ ∥ξ − x∥ ≤ dE(x) + diam (E), diam (E)
def
= max

ξ,ξ′∈E
∥ξ′ − ξ∥ < +∞.

Then, for y /∈ E∫
E

1
|dE(y)+diam (E)|k f(ξ) dHd∫

E
1

dE(y)k
dHd

≤

∫
E

1
∥y−ξ∥k f(ξ) dHd∫
E

1
∥y−ξ∥k dHd

≤

∫
E

1
dE(y)k

f(ξ) dHd∫
E

1
dE(y)+diam (E)k

dHd
.

From the above inequalities,(
dE(y)

dE(y) + diam (E)

)k
∫
E f(ξ) dHd∫

E dHd

≤ BΩ(f)(y) ≤
(
dE(y) + diam (E)

dE(y)

)k
∫
E f(ξ) dHd∫

E dHd
.

As |y| → +∞, dE(y) → ∞ and, since k > 0 is fixed,(
dE(y)

dE(y) + diam (E)

)k

→ 1 and

(
dE(y) + diam (E)

dE(y)

)k

→ 1.

(ii) For y ∈ Rn\E

|B(f)(y)| ≤

∫
E

1
∥y−ξ∥k |f(ξ)| dHd∫
E

1
∥y−ξ∥k dHd

≤ ∥f∥L∞(E)

and the continuous function B(f) is bounded on the open set Rn\E.
(iii) Similar to the proof of Theorem 2.1. □

3.3. Trace and Pointwise Convergence on E.

3.3.1. Case d = 0: Unstructured Cloud of Points E. For d = 0, the Hausdorff
measure H0 is the counting measure and for a finite number of isolated points
E = {x1, . . . , xM} in Rn the formula (3.4) becomes

B(f)(y) =
M∑
i=1

1
∥y−xi∥k∑M
ℓ=1

1
∥y−xℓ∥k

f(xi), y ∈ Rn\E,(3.8)

and the interpolation property is immediate.

Theorem 3.5. Let k > d = 0 be a real number and E = {x1, . . . , xM} be a set of
M ≥ 1 isolated points4 of Rn. The function B(f) on Rn\E continuously extends f
from E to Rn:

∀x ∈ E, lim
y→x

y∈Rn\E

B(f)(y) = f(x) or ∀xi ∈ E, lim
y→xi

y∈Rn\E

B(f)(y) = f(xi).

4Hence, E is a compact subset of Rn with finite measure H0(E) < ∞.
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Proof. For xj ∈ E and y ∈ Rn\E,

B(f)(y) − f(xj) =

∑M
i=1

1
∥y−xi∥k

[f(xi) − f(xj)]∑M
ℓ=1

1
∥y−xℓ∥k

=

∑
1≤i≤M
i ̸=j

1
∥y−xi∥k

[f(xi) − f(xj)]

1
∥y−xj∥k

+
∑

1≤ℓ≤M
ℓ ̸=j

1
∥y−xℓ∥k

and, for k > 0, this expression goes to zero since 1/∥y − xj∥ goes to infinity as
y → xj . □
Remark 3.6. In 1968 Shepard [24] defines for the first time this interpolation
method for unstructured data in dimension two. This method has become an es-
sential tool for data analysis in meteorology, biology, imagery, and geoscience. It
easily extends to higher dimensions of space and is in fact a generalization of the La-
grange approximation to multidimensional spaces. In recent years, Shepards method
has become a very competitive method for updating meshes in fluid-structure in-
teractions. We shall see in the following section how the generalization of this
interpolation for d ≥ 1 can handle structured meshes. □
3.3.2. Cases 1 ≤ d < n: Structured E. In this section we use definitions and theo-
rems from the Appendix.

Lemma 3.7. Let d, 1 ≤ d < n, be two integers and k > d be a real number. As-
sume that E is a non-empty compact Hd-rectifiable subset of Rn with finite measure
Hd(E). Then

for Hd a.a. x ∈ E, lim
y→x
y/∈E

∫
E

1

∥y − ξ∥k
dHd = +∞.

Proof. Given some ε > 0 and y ∈ Bε(x),

∀ξ ∈ Bε(x) ∩ E, ∥y − ξ∥ ≤ ∥y − x∥ + ∥ξ − x∥ < 2ε

and, using the characteristic function χE of E,∫
E

1

∥y − ξ∥k
dHd ≥

∫
E∩Bε(x)

1

∥y − ξ∥k
dHd

≥ 1

(2ε)k

∫
E∩Bε(x)

dHd ≥ αd

2k
1

εk−d

1

αdεd

∫
E∩Bε(x)

dHd

≥ αd

2d
1

(2ε)k−d

1

αdεd

∫
Bε(x)

χE(ξ) dHd

︸ ︷︷ ︸
→χE(x)=1Hd a.e.

by Theorem A.7 in the Appendix. Therefore, for k > d and for Hd almost all x ∈ E,

lim
y→x

∫
E

1

∥y − ξ∥k
dHd ≥ lim

ε↘0

αd

2d
1

(2ε)k−d
= +∞.

□
We need the notion of Lipschitz d-graph that is defined in Example A.1.



784 M. C. DELFOUR AND A. GARON

Theorem 3.8. Let d, 1 ≤ d < n, be an integer and k > d a real number. Assume
that E is a non-empty compact subset of Rn which is Hd-rectifiable with finite
measure Hd(E).

(i) The function B(f) on Rn\E interpolates f at Hd almost all points x ∈ E,
that is,

for Hd a.a. x ∈ E, lim
y→x

y∈Rn\E

B(f)(y) = f(x).

(ii) If, in addition, E is locally a Lipschitz d-graph, then the function B(f) on
Rn\E interpolates f at all points x ∈ E.

Remark 3.9. Note that, under the assumption that E is locally a Lipschitz d-
graph, E can have several connected components. In the case of an open subset Ω
of Rn with compact locally Lipschitzian boundary, Γ is Hn−1-rectifiable (Proposition
A.5), Also, from Theorem A.4, if E is a compact subset of Rn with positive reach,
then E is (n− 1)-rectifiable. □
Proof. (i) Given ε > 0, there exists δ > 0 such that

∀ξ,ξ′,z ∈ E, ∥ξ − ξ′∥ < δ, |f(ξ) − f(ξ′)| < ε, M
def
= max

ξ∈E
|f(ξ)| < ∞.

Using δ split the integral into two parts: for x ∈ E, and y ∈ Rn\E,

B(f)(y) − f(x) =

∫
E∩Bδ(x)

1
∥y−ξ∥k [f(ξ) − f(x)] dHd∫
E

1
∥y−ξ∥k dHd

+

∫
E\Bδ(x)

1
∥y−ξ∥k [f(ξ) − f(x)] dHd∫

E
1

∥y−ξ∥k dHd

and denote by I1 the first and by I2 the second. For the first integral

∥ξ − x∥ < δ ⇒ |I1| ≤ sup
E∩Bδ(x)

|f(ξ) − f(x)| < ε.

For the second integral, if ∥y − x∥ < δ/2

∀ξ ∈ E\Bδ(x), ∥ξ − y∥ ≥ ∥ξ − x∥ − ∥y − x∥ ≥ δ − ∥y − x∥ > δ/2 > 0

and

|I2| =

∫
E\Bδ(x)

1
∥y−ξ∥k [f(ξ) − f(x)] dHd∫

E
1

∥y−ξ∥k dHd
≤ 2M Hd(E)

(δ/2)k
1∫

E
1

∥y−ξ∥k dHd
.

By Lemma 3.7

lim
y→x
y/∈E

∫
E

1

∥y − ξ∥k
dHd = +∞.

So, given ε > 0, there exists 0 < δ1 < δ/2 such that

∀ y /∈ E, ∥y − x∥ < δ1,

∣∣∣∣∫
E

1

∥y − ξ∥k
dHd

∣∣∣∣ > 2M Hd(E)

(δ/2)kε

⇒ |I2| < ε ⇒ |I1| + |I2| < 2ε.
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Finally, given ε > 0, there exists δ1 > 0 such that

∀y ∈ Bδ1(x)\E, |B(f)(y) − f(x)| < 2ε

and B(f) interpolates f .
(ii) From part (i), the function g=B(f) interpolates f on a subset E′ of E such

that Hd(E\E′) = 0. Let x ∈ E\E′ and {yn} be an arbitrary sequence in Rn\E
that converges to x. Since g is bounded on Rn\E, there exist gx and a subsequence
of {yn}, still denoted {yn} such that g(yn) → gx. Since E is locally a Lipschitz
d-graph, it can be represented as a graph in a neighbourhood N(x) of x. Therefore,
there exists a sequence {xi} ⊂ E′ ∩N(x) such that xi → x. By uniform continuity
of f on E, given ε > 0, there exists δ > 0 such that

∀y, z ∈ E, ∥y − z∥ < δ, |f(y) − f(z)| < ε/2.

For each i, there exists δi, 0 < δi < δ, such that

∀y ∈ Rn\E, ∥y − xi∥ < δi, |g(y) − f(xi)| < ε/2.

Since we have convergence of g(y) to f(xi) at each xi, there exists xi ∈ E′ such that
∥xi − x∥ < δi/2 and there exists yni ∈ Rn\E such that ∥yni − x∥ < δi/2

⇒ ∥yni − xi∥ ≤ ∥yni − x∥ + ∥xi − x∥ < δi and |g(yni) − f(xi)| < ε/2

⇒ |g(yni) − f(x)| ≤ |g(yni) − f(xi)| + |f(xi) − f(x)| < ε,

since ∥xi−x∥ < δi/2 < δ. Letting ni go to infinity, g(yni) → gx and |gx−f(x)| < ε.
Since this is true for all ε, gx = f(x). In conclusion, we have proved that for all
sequences {yn} ⊂ Rn\E converging to x ∈ E′, the limit of g(yn) is f(x). □

4. Enhanced interpolations from the function f and its derivatives

In the previous sections the k-TMI (resp. k-TBI) was constructed using only
the function f on Γ (resp. E). The (n + 1)-TMI is remarkable in the sense that
it preserves P 1(Rn). The issue of constructing interpolations that preserve higher
order polynomials within the TMI framework was raised in 2008 by Floater and
Schulz [12] who proposed a construction using an Hermite interpolation where Γ is
parametrized by the unit sphere in Rn. Their construction requires the knowledge
of f and its higher derivatives and involves F̂ and its corresponding derivatives of
the same degree.

In this section we show that, when derivatives of f are available, relatively simple
constructions based on Taylor’s formula extend the constructions of the previous
sections to new interpolations F̂ that preserve higher order polynomials. To do that
we need some notation and Taylor’s formula for an m-times continuously differen-
tiable function f . Let α = (α1, . . . , αn) ∈ Nn be a multi-index and for x ∈ Rn,
xα =

∏n
i=1 x

αi
i , |α| =

∑n
i=1 αi, and α! = α1!α2! . . . αn!. The Taylor’s formula of

degree m ≥ 1 is

f(x) ∼= f(ξ) +
m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (x− ξ)α(4.1)

∂αf
def
= ∂α1

1 ∂α2
2 . . . ∂αn

n f =
∂|α|f

∂ξα1
1 ∂ξα2

2 . . . ∂ξαn
n

.(4.2)
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4.1. (k,m)-TBI Interpolation. Given a real k > 0, a Hd-rectifiable compact
E ⊂ Rn, and an m-times continuously differentiable function f , consider the mini-
mization of the following quadratic functionals∫

K

∫
E

∣∣∣∣F (y) −
[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

]∣∣∣∣2 1

∥ξ − y∥k
dHd dy(4.3)

∫
K

∫
E

∣∣∣∣F (y) −
[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

]∣∣∣∣2 1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd dy

(4.4)

with respect to F ∈ L2(K) for a compact subset K ⊂ Rn\E. The unique solution
of both problems is the restriction to K of the function

F̂ (y)=

∫
E

[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

] 1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd,(4.5)

which is well-defined and infinitely differentiable on Rn\E.

We introduce the notation Bk,m(f) for the function F̂ and call it the m-th order
k-TBI interpolation or simply (k,m)-TBI. So, the 0-th order k-TBI interpolation is
the interpolation of Definition 3.2 in section 3.

Theorem 4.1. Let d, 0 ≤ d < n, and m ≥ 0 be integers and k > d a real number.
Assume that E is a non-empty compact subset of Rn which is Hd-rectifiable with
finite measure Hd(E).

(i) For all f ∈ Pm(Rn), Bk,m(f) = f .

(ii) The function Bk,m(f) on Rn\E interpolates f at Hd almost all points x ∈ E,
that is,

for Hd a.a. x ∈ E, lim
y→x

y∈Rn\E

Bk,m(f)(y) = f(x).

(iii) If, in addition, E is locally a Lipschitz d-graph, then the function Bk,m(f)
on Rn\E interpolates f at all points x ∈ E.

Remark 4.2. For m = 1, Bk,1 preserves P 1(Rn) as the (n + 1)-TMI does, but it
requires the knowledge of f and its first order derivatives. □

Proof. (i) Let f ∈ Pm(Rn) and observe that at y ∈ Rn\E the difference

F̂ (y) − f(y)

=

∫
E

[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α − f(y)

] 1
∥ξ−y∥k dHd∫

E
1

∥ξ′−y∥k dHd
= 0

is zero since the term in the square bracket is zero for f ∈ Pm(Rn), m ≥ 0.
(ii) It is sufficient to consider the case m ≥ 1. Let x ∈ E and y → x. The

right-hand side of (4.5) is the sum of a first term involving only f(ξ) and a term
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containing all its derivatives. By applying Theorem 3.5 and 3.8 (i), the first term
converges to f(x) for d = 0 (resp. Hd a.e. for 0 < d < n). As for the second term∫

E

[ m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

] 1
∥ξ−y∥k∫

E
1

∥ξ′−y∥k dHd
dHd,(4.6)

it converges for d = 0 (resp. Hd a.e. for 0 < d < n) to

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(x) (x− x︸ ︷︷ ︸

=0

)α = 0.(4.7)

□

4.2. (k,m)-TMI Interpolation. Let k > n be a real number, Ω an open set with
compact locally Lipschitzian boundary Γ, and f an m-times continuously differen-
tiable function, m ≥ 0. Given K ⊂ Rn\Γ compact, consider the minimization of
the following quadratic functionals∫

K

∫
Γ

∣∣∣∣F (y)−
[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

]∣∣∣∣2 ξ − y

∥ξ − y∥k
· nΩ(ξ) dΓ dy(4.8)

∫
K

∫
Γ

∣∣∣∣F (y)−
[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

]∣∣∣∣2
ξ−y

∥ξ−y∥k · nΩ(ξ)∫
Γ

ξ′−y
∥ξ′−y∥k · nΩ(ξ′) dΓ

dΓ dy

(4.9)

with respect to F ∈ L2(K). They both have the same unique solution that is the
restriction to K of the infinitely differentiable function in Rn\Γ

F̂ (y)
def
=

∫
Γ

[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

] ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dΓ
dΓ

(4.10)

We denote it Mk,m(f) and call it the m-th order k-TMI interpolation or simply
(k,m)-TMI. So, the 0-th order k-TMI interpolation is the interpolation of Definition
2.2 in section 2.

Theorem 4.3. Assume that Ω is an open subset of Rn with compact locally Lips-
chitzian boundary.

(i) For an integer m ≥ 0, the Mn+m+1,m interpolation in Rn preserves polyno-
mials in Pm+1(Rn).

(ii) Under any one of the assumptions of Theorem 2.8, k > n, and m ≥ 0,
Mk,m interpolates m-times continuously differentiable functions.

Remark 4.4. Part (i) with m = 0 generalizes Theorem 2.5 in section 2. □
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Proof. (i) For f ∈ Pm+1(Rn), consider the difference F̂ (y) − f(y)∫
Γ

[
f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α!
∂αf(ξ) (y − ξ)α − f(y)

] ξ−y
∥ξ−y∥k · nΩ(ξ)∫

Γ
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dΓ
dΓ

at y ∈ Rn\Γ. But, since Taylor’s formula is exact for f ∈ Pm+1(Rn),

f(ξ) +

m∑
ℓ=1

∑
α, |α|=ℓ

1

α!
∂αf(ξ) (y − ξ)α − f(y) = −

∑
α, |α|=m+1

1

α!
∂αf(ξ) (y − ξ)α,

where the partial derivatives ∂αf(ξ) of order |α| = m + 1 are all independent of ξ.
Using the notation τα = ∂αf(ξ)/α! we have

F̂ (y) − f(y) = −
∫
Γ

[ ∑
α, |α|=m+1

τα (y − ξ)α
] ξ−y

∥ξ−y∥k · nΩ(ξ)∫
Γ

ξ′−y
∥ξ′−y∥k · nΩ(ξ′) dΓ

dΓ.

where the expression between square brackets is an (m + 1)-linear form. Using the
divergence theorem, rewrite the boundary integral of the numerator as an integral
over the complement Ωc of Ω as we did in the proof of Theorem 2.5 and notice that

−
∫
Γ

[ ∑
α, |α|=m+1

τα (y − ξ)α
]

ξ − y

∥ξ − y∥k
· nΩ(ξ) dΓ

=

∫
Ωc

div ξ

[ ∑
α, |α|=m+1

τα (y − ξ)α
ξ − y

∥ξ − y∥k

]
dξ

= (m + 1 + n− k)

∫
Ωc

[ ∑
α, |α|=m+1

τα (y − ξ)α
1

∥ξ − y∥k

]
dξ.

(4.11)

We have proved it for m = 0. For m = 1, f(ξ) is of the form f(ξ) = a+b ·ξ+(Qξ) ·ξ
for a ∈ R, b ∈ Rn, and Q a symmetric n× n matrix or 2-tensor. It is easy to check
that ∫

Ωc

div y

[
1

2
Q(ξ − y) · (ξ − y)

ξ − y

∥ξ − y∥k

]
dξ

= (2 + n− k)

∫
Ωc

1

2
Q(ξ − y) · (ξ − y)

1

∥ξ − y∥k
dξ.

For m > 1, Q is replaced by a symmetric (m + 1)-tensor τ constructed from the
τα’s. The last term in (4.11) is zero if k is chosen equal to m + 1 + n in which case
the interpolation preserves Pm+1(Rn).

(ii) For x ∈ Γ, let y → x. Isolate the first term in f(ξ) from the sum of terms
involving derivatives

F̂ (y) =

∫
E f(ξ) ξ−y

∥ξ−y∥k · nΩ(ξ) dΓ∫
E

ξ′−y
∥ξ′−y∥k · nΩ(ξ′) dΓ

+

∫
E

[ m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(ξ) (y − ξ)α

] ξ−y
∥ξ−y∥k · nΩ(ξ)∫

E
ξ′−y

∥ξ′−y∥k · nΩ(ξ′) dΓ
dΓ.
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By Theorem 2.8, the first term converges to f(x) for k > n. As for the second term
containing the derivatives, it converges to

m∑
ℓ=1

∑
α, |α|=ℓ

1

α !
∂αf(x) (x− x)α = 0.

□

5. Dynamical k-transfinite interpolations

5.1. Dynamics of the Parametrized Varying Body. Whether it is the bound-
ary Γ of an open subset Ω or a closed subset E of Rn, the following set-up will be
used to generate a dynamical interpolation where Ω or E are evolving according to
some known dynamics. Let µ, 0 ≤ µ ≤ 1, be a parameter that can be viewed as an
artificial time associated with the intermediary open sets Ωµ (resp. closed sets Eµ)
evolving from an initial state Ω0 = Ω (resp. E0 = E) at time 0 to a final state Ω1

(resp. E1) at time 1. Assume that those sets are characterized by the solutions of
the ordinary differential equation

dx

dµ
(µ) = V (µ, x(µ)), x(0) = x0,(5.1)

for some velocity field (µ, ξ) 7→ V (µ, ξ) : [0,1]×Rn → Rn such that (5.1) has a unique
solution x(µ) = x(µ; y0) for all x0 ∈ Ω (resp. x0 ∈ E). Assume, for simplicity, that
the solution is unique for all x0 ∈ Rn so that the solutions generate a family of
transformations of Rn

x0 7→ Tµ(x0)
def
= x(µ;x0) : Rn → Rn

that are bijective and bi-continuous. Further assume that the µ partial derivative
exists and that the function

x 7→ ∂Tµ

∂µ
(x) : Rn → Rn(5.2)

is continuous. As a result

V (µ,x) =

(
∂Tµ

∂µ
◦ T−1

µ

)
(x)(5.3)

is the the velocity of a point x ∈ Ωµ (resp. x ∈ Eµ) at time µ and, in view of the
previous assumptions, the function x 7→ V (µ,x) : Rn → Rn is continuous. Specific
conditions5 can be used to make Tµ a bi-Lipschitzian continuous transformation.

Define the intermediary sets

Ωµ
def
= Tµ(Ω)

(
resp. Eµ

def
= Tµ(E)

)
, 0 ≤ µ ≤ 1,(5.4)

and recall that for a bi-continuous bijection Tµ and an open subset Ω

Γµ = Tµ(Γ) and R\Ωµ = Tµ(Rn\Ω).(5.5)

The additional bi-Lipschitzian continuity is used to transport the set Γ of zero
measure onto sets Γµ of zero measure.

It is important to understand that the transformations {Tµ} and the velocity V
are not unique since it is always possible to use other transformations {T ′

µ} and a

5See, for instance, [8, Chapter 4, sec. 4, pp. 180–193].
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velocity V ′ such that Tµ(Γ) = T ′
µ(Γ). This will be illustrated later in the example

of section 5.4.

5.2. k-Transfinite Mean Value Interpolation. Assume that, under appropriate
conditions on the velocity field V , the image Ωµ = Tµ(Ω) of a locally Lipschitzian
domain Ω that satisfies the conditions of Theorem 2.12 is also locally Lipschitzian
and satisfies the conditions of Theorem 2.12. Recall that the k-TMI on Γµ of a
function fµ : Γµ → R is defined as

M(fµ)(y)
def
=

∫
Γµ

(ξ − y) · nΩµ(ξ)

∥ξ − y∥k
fµ(ξ) dHn−1

∫
Γµ

(ξ − y) · nΩµ(ξ)

∥ξ − y∥k
dHn−1

.(5.6)

Consider at each µ the interpolation of the velocity field V (µ, ·):

V(µ,y)
def
=

∫
Γµ

(ξ − y) · nΩµ(ξ)

∥ξ − y∥k
V (µ, ξ) dHn−1

∫
Γµ

(ξ − y) · nΩµ(ξ)

∥ξ − y∥k
dHn−1

, y ∈ Rn\Γµ.(5.7)

Since ξ 7→ V (µ,ξ) is continuous, then y 7→ V(µ,y) is continuous and interpolates
ξ 7→ V (µ,ξ) from Γµ to Rn.

Assume that the differential equation

dy

dµ
(µ) = V(µ,y(µ)), y(µ) = y0 ∈ Ω0,(5.8)

has a solution such that y(µ; y0) ∈ Ωµ at each µ. Then, by using the expression of
V, the function y(µ) is a solution of the following differential interpolation equation

dy

dµ
(µ) =

∫
Γµ

(ξ − y(µ)) · nΩµ(ξ)

∥ξ − y(µ)∥k
V (µ, ξ) dHn−1

∫
Γµ

(ξ − y(µ)) · nΩµ(ξ)

∥ξ − y(µ)∥k
dHn−1

, y(0) = y0,(5.9)

for each y0 ∈ Rn\Γ0. Therefore, for x0 ∈ Γ0 and y0 ∈ Rn\Γ0 such that y0 → x0,

y(µ; y0) → x(µ;x0) and
dy

dµ
(µ; y0) →

dx

dµ
(µ;x0), 0 ≤ µ ≤ 1,

and we get an interpolation of the dynamics of Ωµ to Rn at each µ.

5.3. k-Transfinite Barycentric Interpolation. The family {Tµ : µ ≥ 0} of
transformations of Rn transforms the set E into the family of sets {Eµ = Tµ(E) :

µ ≥ 0}. If for each µ the transformation Tµ is Lipschitzian, then the Hd-rectifiable

set E is transformed into an Hd-rectifiable6 set Eµ and the k-TBI interpolation

6For instance, a d-rectifiable set E is the image L(K) of a compact subset of K ⊂ Rd by a
Lipschitzian map L : Rd → Rn. So if the transformation Tµ : Rn → Rn is Lipschitzian, then the
composition Tµ ◦L is Lipschitzian and Tµ(L(K)) = Tµ(E) is the image of the compact K ⊂ Rd by
the Lipschitzian map Tµ ◦ L. Hence, by definition, Tµ(E) = Tµ(L(K)) is d-rectifiable.
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can be applied with Eµ in place of E. Given fµ : Eµ → R a family of continuous
functions parametrized by µ their k-TBI is

B(fµ)(y)
def
=

∫
Eµ

1
∥ξ−y∥k fµ(ξ) dHd∫
Eµ

1
∥ξ−y∥k dHd

.(5.10)

For each µ consider the interpolation of the velocity field V (µ, ·):

V(µ,y)
def
=

∫
Eµ

1
∥ξ−y∥k V (µ, ξ) dHd∫
Eµ

1
∥ξ−y∥k dHd

, y ∈ Rn\Eµ.(5.11)

If ξ 7→ V (µ,ξ) is continuous, then y 7→ V(µ,y) is continuous and interpolates ξ 7→
V (µ,ξ) from Eµ to Rn:

∀x ∈ Eµ, lim
y→x
y/∈Eµ

V(µ,y) = lim
y→x

∫
Eµ

1
∥ξ−y∥k V (µ, ξ) dHd∫
Eµ

1
∥ξ−y∥k dHd

= V (µ, x)

∀x ∈ E, lim
y→Tµ(x)
y/∈Eµ

∫
Eµ

1
∥ξ−y∥k V (µ, ξ) dHd∫
Eµ

1
∥ξ−y∥k dHd

= V (µ, Tµ(x)) =
∂Tµ

∂µ
(x).

Assume that the differential equation

dy

dµ
(µ) = V(µ,y(µ)), y(µ) = y0 ∈ Rn\E0,(5.12)

has a solution y(µ) = y(µ; y0) ∈ Rn\Eµ for each µ. Then, by using the expression of
V, the function y(µ) is a solution of the following differential interpolation equation

dy

dµ
(µ) =

∫
Eµ

1

∥ξ − y(µ)∥k
V (µ, ξ) dHd∫

Eµ

1

∥ξ − y(µ)∥k
dHd

, y(0) = y0,(5.13)

for each y0 ∈ Rn\E0. Therefore, for x0 ∈ E0 and y0 ∈ Rn\E0 such that y0 → x0,

y(µ; y0) → x(µ;x0) and
dy

dµ
(µ; y0) →

dx

dµ
(µ;x0), 0 ≤ µ ≤ 1,

and we get an interpolation of the dynamics of Eµ to Rn at each µ.
The more delicate issue is to study the properties of the interpolation of the

velocity as a function of k. This last aspect has been numerically investigated in
[13].

5.4. A Simple Illustrative Example: Re-meshing a Finite Element Grid
around a Moving Object. Let D be a sufficiently large open set with a smooth
boundary ∂D that will serve as a fixed hold-all. For instance, D could be a control
volume in dimension three. Let A be a 2 × 2 invertible symmetric matrix. For
instance, given constants a > 0 and b > 0

A
def
=

[
a 0
0 b

]
, A−1

[
x1
x2

]
·A−1

[
x1
x2

]
=

(x1
a

)2
+
(x2
b

)2
.
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Using this function define the open ellipse E (resp. ellipse ∂E)

E
def
=

{
x ∈ R2 : A−1x ·A−1x < 1

}
,(5.14)

∂E =
{
x ∈ R2 : A−1x ·A−1x = 1

}
.(5.15)

The rotation matrix associated with a counterclockwise angle ϕ is

Bϕ
def
=

[
cosϕ − sinϕ
sinϕ cosϕ

]
.(5.16)

Think of E as a rigid body in a surrounding fluid D\E. We want to continuously
rotate the ellipse E from an angle 0 to an angle β, 0 < β < 2π, within the kold-all
D. Let µ, 0 ≤ µ ≤ 1 be an artificial time and let Bµβ be the rotation matrix
corresponding to a counterclockwise rotation by an angle µβ and let Tµ : R2 → R2

be the bijection

x 7→ Tµ(x) = Bµβx : R2 → R2, T−1
µ = T−µ,(5.17)

∂Tµ

∂µ
(x) = β

[
− sinµβ − cosµβ
cosµβ − sinµβ

] [
x1
x2

]
, x =

[
x1
x2

]
.(5.18)

The corresponding velocity is given by the expression

V (µ, x)
def
=

(
∂Tµ

∂µ
· T−1

µ

)
(x) = β

[
0 −1
1 0

] [
x1
x2

]
.(5.19)

Denote by Eµ the rotated ellipses by an angle µβ:

Eµ
def
= Tµ(E) = {Bµβξ : ξ ∈ E} =

{
x ∈ R2 : A−1B−µβx ·A−1B−µβx < 1

}
=

{
x ∈ R2 : BµβA

−2B−µβx · x < 1
}

∂Eµ =
{
x ∈ R2 : BµβA

−2B−µβx · x = 1
}
.

Given a finite element meshing in the open domain

Ω0
def
= D\E, Γ0 = ∂E ∪ ∂D,(5.20)

we want to move the nodes to remesh in the domains

Ωµ
def
= D\Eµ, Γµ = ∂Eµ ∪ ∂D(5.21)

by using the transfinite interpolations.

5.4.1. First Scenario. As a first scenario, choose the k-TBI with V (µ,x) on ∂Eµ

and 0 on ∂D. For each µ the interpolated velocity in Ωµ is given by

V1(µ,y)
def
=

∫
∂Eµ

1

∥ξ − y∥k
V (µ, ξ) dH1∫

∂Eµ∪∂D

1

∥ξ − y∥k
dH1

= β

[
0 −1
1 0

] ∫
∂Eµ

1

∥ξ − y∥k
ξ dH1∫

∂Eµ∪∂D

1

∥ξ − y∥k
dH1

,

since the velocity is zero on the component ∂D of Γµ. As seen in Figure 2 the
nodes in Ωµ near ∂Eµ follow the rotation of the object.
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Figure 1. Initial finite element grid in Ω0 = D\E.

Figure 2. First scenario: finite element grid in Ω1 for β = π/4.

5.4.2. Second Scenario. In the first scenario the rotation β can move some points of
Γ quite far from its initial position as seen by comparing their positions in Figures
1 and 2. In some applications the objective might be to generate a finite element
grid of Ωβ from the initial finite element grid of Ω that does move the points on Γ
too far. Intuitively, this can be done by having a new Tµ moving the points Tµ(x)
closer to the initial points x ∈ Γ along Γµ. There are many ways to do that. The
best reorganization of the correspondance between the points x ∈ ∂E and and those
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of ∂Eµ = Bµ(∂E) would be to minimize the distance from x to ∂Eµ, that is, to
project each point of x ∈ ∂E onto ∂Eµ:

T ′
µ(x)

def
= p∂Eµ(x), x ∈ ∂E, Eµ = Bµ(E),(5.22)

where p∂Eµ(x) denotes the projection of x onto ∂Eµ. This would guarantee that
the distance is minimum at each point. Yet, the projection might not be unique
as µ increases and T ′

µ(x) would be multivalued making it difficult to reproduce the
constructions of the previous section.

Figure 3. Transformation of the circle C into the rotated ellipse
∂Eβ that preserves the initial angle θ.

Consider now the construction given in [14]. Start with the circle C = {(x,y) ∈
R2 : x2 + y2 = 1}, rotate the points backward by an angle −β, parametrize the
ellipse as follows, and rotate the points by an angle β,[

cos θ
sin θ

]
7→

[
cos(θ − β)
sin(θ − β)

]
7→

[
a cos(θ̂ − β)

b sin(θ̂ − β)

]
7→

[
cosβ − sinβ
sinβ cosβ

][
a cos(θ̂ − β)

b sin(θ̂ − β)

]
,

where θ̂ − β is the pseudo angle associated with θ − β and the pseudo angle ϕ̂
associated with ϕ is defined through the identity[

a cos(ϕ̂)

b sin(ϕ̂)

]
= R(ϕ)

[
cos(ϕ)
sin(ϕ)

]
⇒ tan ϕ̂ =

a

b
tanϕ(5.23)

⇒ R(ϕ)2 = a2 cos2(ϕ̂) + b2 sin2(ϕ̂) =
1 + tan2(ϕ)

1
a2

+ 1
b2

tan2(ϕ)
.(5.24)

The transformation from C to ∂Eµ reduces to[
cos θ
sin θ

]
7→ BβR(θ − β)B−β

[
cos θ
sin θ

]
= R(θ − β)

[
cos θ
sin θ

]
: C → ∂Eβ.(5.25)
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What makes this transformation interesting is that an initial point p ∈ C with an
angle θ is moved to a new point pβ of ∂Eβ along the line defined by the angle θ
that is not affected by the rotation (see Figure 3) and this property is independent
of β. In particular for β = 0 (the horizontal ellipse)[

cos θ
sin θ

]
7→ R(θ)

[
cos θ
sin θ

]
: C → ∂E.

From this the transformation Tβ from the ∂E to ∂Eβ is

R(θ)

[
cos θ
sin θ

]
︸ ︷︷ ︸

ξ

7→ Tβ

(
R(θ)

[
cos θ
sin θ

])
︸ ︷︷ ︸

ξ

=
R(θ − β)

R(θ)

(
R(θ)

[
cos θ
sin θ

])
︸ ︷︷ ︸

ξ

: ∂E → ∂Eβ.

Tβ extends to a non-linear bijection from R2 to R2 such that Tβ(∂E) = ∂Eβ:

ξ 7→ Tβ(ξ) =
R(θξ − β)

R(θξ)
ξ : R2 7→ R2,(5.26)

ζ 7→ T−1
β (ζ) =

R(θζ)

R(θζ − β)
ζ : R2 7→ R2,(5.27)

where θξ and θζ are the respective angles associated with the vectors ξ and ζ in R2.
The maximum distance between corresponding points is

sup
θ∈[0,2π)

|R(θ − β) −R(θ)|.(5.28)

Introducing a parameter µ, 0 ≤ µ ≤ 1, and replacing β by µβ we get

Tµ (ζ) =
R(θζ − µβ)

R(θζ)
ζ.(5.29)

From this we can compute

∂Tµ

∂µ
(ζ) = −β

R′(θζ − µβ)

R(θζ)
ζ,(5.30)

where R′(ϕ) is the derivative of R(ϕ):

R′(ϕ)
def
=

dR

dϕ
(ϕ) =

(
1

a2
− 1

b2

)
R3(ϕ) sin(ϕ) cos(ϕ)

=

(
1

a2
− 1

b2

)[
1 + tan2(ϕ)

1
a2

+ 1
b2

tan2(ϕ)

]3/2

sin(ϕ) cos(ϕ).

The inverse of Tµ and the velocity are given by the expressions

T−1
µ (ξ) =

R(θξ)

R(θξ − µβ)
ξ, V (µ,ξ) = −β

R′(θξ − µβ)

R(θξ − µβ)
ξ.(5.31)

After substitution

V (µ,ξ) = −β

(
1

a2
− 1

b2

)
R2(θξ − µβ) sin(θξ − µβ) cos(θξ − µβ) ξ.
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This yields the differential interpolation equation

dy

dµ
(µ; y0) =

∫
∂Eµ

1

∥ξ − y(µ; y0)∥k
V (µ, ξ) dH1∫

∂Eµ∪∂D

1

∥ξ − y(µ; y0)∥k
dH1

, y(0,y0) = y0(5.32)

and its implementation gives excellent results as seen in Figure 4. More complex
examples can be found in [14].

Figure 4. Finite element grid in Ω1 for β = π/4 using V .

5.4.3. Third Scenario. The choice of Tµ is not unique. We can slightly modify
the parametrization of the ellipses of the second scenario. Start with the circle
C = {(x,y) ∈ R2 : x2 +y2 = 1}, rotate the points back by an angle −β on the circle,
change the circle into an ellipse, and rotate the ellipse by an angle β[

cos θ
sin θ

]
7→

[
cos(θ − β)
sin(θ − β)

]
7→ A

[
cos(θ − β)
sin(θ − β)

]
7→ BβA

[
cos(θ − β)
sin(θ − β)

]
︸ ︷︷ ︸
=BβAB−β

[
cos θ
sin θ

]
,

and in term of the initial ellipse

A

[
cos θ
sin θ

]
7→ BβAB−βA

−1

(
A

[
cos(θ)
sin(θ)

])
: E → Eµ.(5.33)

The distance between the initial and final points is now

sup
θ∈[0,2π)

∥∥∥∥[BβAB−β −A]

[
cos θ
sin θ

]∥∥∥∥(5.34)
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to be compared with the distance of the second scenario.
Introducing a parameter µ, 0 ≤ µ ≤ 1, and replacing β by µβ we get

ξ 7→ Tµ(ξ) = BµβAB−µβA
−1ξ : E → Eµβ(5.35)

that naturally extends to a linear bijection from R2 to R2. Therefore,

T−1
µ (ζ) = ABµβA

−1B−µβ ζ,

∂Tµ

∂µ
(ξ) =

[
(Bµβ)′AB−µβA

−1 + BµβA(B−µβ)′A−1
]
ξ,

where

(Bµβ)′ = β

[
− sin(µβ) − cos(µβ)
cos(µβ) − sin(µβ)

]
= β J Bµβ, J

def
=

[
0 −1
1 0

]
,

(B−µβ)′ = −β J B−µβ,

∂Tµ

∂µ
(ξ) = β

[
J BµβAB−µβA

−1 −BµβAJ B−µβA
−1

]
ξ.(5.36)

Hence,

V (µ,ζ) = β
[
J −BµβAJ A−1B−µβ

]
ζ.(5.37)

This yields the differential interpolation equation

dy

dµ
(µ; y0) =

∫
∂Eµ

V (µ,ξ)

∥ξ − y(µ; y0)∥k
dH1∫

∂Eµ∪∂D

1

∥ξ − y(µ; y0)∥k
dH1

, y(0; y0) = y0.(5.38)

The rotated ellipse Tµ(∂E) is given by

Tµ(∂E) =

{[
x
y

]
: BµβA

−1B−µβ

[
x
y

]
·BµβA

−1B−µβ

[
x
y

]
= 1

}
=

{[
x
y

]
: BµβA

−2B−µβ

[
x
y

]
·
[
x
y

]
= 1

}
.

(5.39)

Appendix A. Rectifiable sets and sets of positive reach

We recall some mathematical notions and results.

Definition A.1 ([11, pp. 251–252]). Let E be a subset of a metric space X.
E ⊂ X is d-rectifiable7 if it is the image of a compact subset K of Rd by a Lipschitz
continuous function f : Rd → X. □
There are several extensions of the d-rectifiability to non-compact sets.

Definition A.2 ([1, Dfn. 2.57, p. 80]). Let E ⊂ Rn be Hd-measurable.

(i) E is countably d-rectifiable if there exist countably many Lipschitzian func-
tions fi : Rd → Rn such that

E ⊂ ∪∞
i=0fi(Rd).(A.1)

7In [10, Dfn. 2.7, p. 422] bounded is used in place of compact.
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(ii) E is countably Hd-rectifiable if there exist countably many Lipschitz func-
tions fi : Rd → Rn such that E\ ∪i fi(Rd) is Hd-negligible:

Hd
(
E\ ∪∞

i=0 fi(Rd)
)

= 0.(A.2)

(iii) E is Hd-rectifiable if it is countably Hd-rectifiable and Hd(E)<∞. □
We recall the definition of positive reach introduced by [10, p. 419].

Definition A.3 (Federer [10, p. 419]). Let E be a closed subset of Rn.

(i) The set of points in Rn having a unique projection onto E:

Unp (E)
def
= {y ∈ Rn : ∃ a unique x ∈ E such that dE(y) = ∥y − x∥},

where dE(y) is the distance function from a point y to E.
(ii) The reach of a point x ∈ E and the reach of E are defined as

reach (E,x)
def
= sup{r > 0 : Br(x) ⊂ Unp (E)}

reach (E)
def
= inf

x∈E
reach (E,x).

E is said to be a set with positive reach if reach (E) > 0. □
The definition of Unp (E) implies the existence of a function pE : Unp (E) → E
which assigns to y ∈ Unp (E) the unique point pE(y) ∈ E such that such that
dE(y) = ∥pE(y) − x∥.

Theorem A.4 ([1, Prop. 3, p. 743, and Corollary 3, p. 744]). If E is a compact
subset of Rn with positive reach, then E is (n− 1)-rectifiable.

If f : Rn → Rm is a Lipschitz function of Lipschitz constant Lip (f), then
Hd(f(E)) ≤ [Lip (f)]dHd(E) for all Borel sets E ⊂ Rn. An immediate conse-
quence of [1, Prop. 2.49 (iv), p. 80] is the fact that rectifiable sets are stable under
Lipschitz transformations. An important example of countably d-rectifiable set is
the graph of a Lipschitz function of d variables in Rn (briefly, a Lipschitz d-graph).

Example A.1 (Lipschitz d-graphs [2, Example 2.58, p. 80]). Let π ⊂ Rn be a
d-plane, 1 ≤ d < n, and ϕ : π → π⊥ be a Lipschitz function. Let

Γ
def
= {x ∈ Rn : ϕ(πx) = π⊥x}(A.3)

be the graph of ϕ. Then, choosing an orthonormal basis e1, . . . , ed of π and setting

y 7→ f(y)
def
=

d∑
i=1

yiei + ϕ (yiei) : Rd → Γ(A.4)

we obtain that Γ is countably d-rectifiable. By [2, Proposition 2.49 (iv)], we conclude
that any compact subset of Γ is Hd-rectifiable. □
Example A.2. A locally Lipschtzian domain Ω in Rn is an open subset of Rn

such that its boundary Γ is a Lipschitz (n − 1)-graph in a neighbourhood of each
point x ∈ Γ. So the boundary of a locally Lipschitzian domain is an example of
Hn−1-rectifiable set. □
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Proposition A.5 ([1, Prop. 1, p. 732]). If E ⊂ Rn is a compact set with Lipschitz
boundary, then Hn−1(∂E) < +∞.

For a Lebesgue measurable set E we have the Lebesgue-Besicovitch Differentia-
tion Theorem which involves the n-dimensional density of E in Rn

Θn(E,x)
def
= lim

r↘0

mn(Br(x) ∩ E)

mn(Br(x))
= χE(x), mn-a.e. in Rn,(A.5)

where χE is the characteristic function of E and mn is the n-dimensional Lebegue
measure. There is also a notion of d-dimensional density and a similar result for a
Hd-rectifiable set.

Definition A.6 ([2, Dfn. 2.55, p. 78]). Given a Borel subset E of Rn such that
Hd(E) < +∞, the upper and lower d-dimensional densities of Hd at x are respec-
tively defined as

Θ∗
d(E,x)

def
= lim sup

r↘0

Hd(Br(x) ∩ E)

αd rd
, Θ∗d(E,x)

def
= lim inf

r↘0

Hd(Br(x) ∩ E)

αd rd
.

If they agree, we denote the common value of these densities by Θd(E,x). □
We shall need the Besicovitch-Marstrand-Mattila Theorem.

Theorem A.7 ([2, Thm. 2.63, p. 83]). Let E be a Borel set in Rn with Hd(E) < ∞.
Then, E is Hd-rectifiable if and only if Θd(E,x) = 1 for Hd-a.e. x ∈ E (that is,
Θd(E,x) = χE(x) for Hd-a.e. x ∈ Rn).
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Note added in the proofs

It is shown in the new paper [6] that the additional assumptions on Γ in Theorem
2.8 (iii) can be dropped for the k-TMI from Γ to Rn if f is assumed to be a Lipschitz
continuous function on Γ. Similarly, the additional assumptions on Γ in Theorem 4.3
(ii) can be dropped for the (k,m)-TMI from Γ to Rn if f and its partial derivatives
are Lipschitz continuous up to order m in a tubular neighbourhood of Γ. It is
also shown that Mk,m(f) and its partial derivatives interpolate f and its partial
derivatives up to order m from Γ to Rn solving a problem raised in [12].
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