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Definition 1.2. The function k is strongly degenerate (SD) if there exists
x0 ∈ (0, 1) such that k(x0) = 0, k > 0 on [0, 1] \ {x0}, k ∈ W 1,∞(0, 1) and there
exists M ∈ [1, 2) so that (x− x0)k

′ ≤Mk a.e. in [0, 1].

For example, as k one can consider k(x) = |x − x0|α, α > 0 (see [15] for similar
definitions).

Finally, in the model, χω is the characteristic function of the control region ω ⊂
(0, 1) which can contain x0 or can be the union of two intervals each of them lying
on different sides of the degeneracy point, more precisely:

ω = ω1 ∪ ω2

where
ωi = (λi, βi) ⊂ (0, 1), i = 1, 2, and β1 < x0 < λ2.

Thanks to the following transformation y(t, a, x) := e
∫ a
0 µ0(τ)dτu(t, a, x), (1.1) can

be rewritten as

(1.2)


∂y
∂t +

∂y
∂a − (kyx)x + µ(t, a, x)y = f(t, a, x)χω in Q,

y(t, a, 1) = y(t, a, 0) = 0 on QT,A,

y(0, a, x) = y0(a, x) in QA,1,

y(t, 0, x) =
∫ A
0 β(a, x)y(t, a, x)da in QT,1,

where f(t, a, x) := e
∫ a
0 µ0(τ)dτh(t, a, x), β(a, x) := γ(a, x)e−

∫ a
0 µ0(τ)dτ and y0(a, x) :=

e
∫ a
0 µ0(τ)dτu0(a, x). Thus, in place of (1.1), it is not restrictive to consider (1.2) as

we will make in the rest of the paper.

It is known that the asymptotic behavior of the solution for the Lotka-McKendrick
system depends on the so called net reproduction rate R0: indeed the solution can
be exponentially growing if R0 > 1, exponentially decaying if R0 < 1 or tends to the
steady state solution if R0 = 1. Clearly, if the system represents the distribution of a
damaging insect population or of a pest population and R0 > 1, it is very worrying.
For this reason, recently great attention is given to null controllability issues. For
example in [16], where (1.2) models an insect growth, the control corresponds to a
removal of individuals by using pesticides. If k is a constant or a strictly positive
function, null controllability for (1.2) is studied, for example, in [3]. If k degenerates
at the boundary or at an interior point of the domain and y is independent of a
we refer, for example, to [2], [10], [11] and to [12], [13], [14] if µ is singular at the
same point of k. Actually, [1] is the first paper where y depends on t, a and x and
the dispersion coefficient k degenerates. In particular, in [1], k degenerates at the
boundary of the domain (for example k(x) = xα, being x ∈ (0, 1) and α > 0). Using
Carleman estimates for the adjoint problem, the authors prove null controllability
for (1.2) under the condition T ≥ A. The case T < A is considered in [5], [7], [8]
and [9]. In [7] the problem is always in divergence form and the authors assume that
k degenerates only at a point of the boundary; moreover, they use the fixed point
technique in which the birth rate β must be of class C2(Q) (necessary requirement
in the proof of [7, Proposition 4.2]). A more general result is obtained in [8] where
β is only a continuous function, but k can degenerate at both extremal points. In
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[5] the problem is in divergence form and k degenerates at an interior point and it
belongs to C[0, 1] ∩ C1([0, 1] \ {x0}). Finally, in [9], we studied null controllability
for (1.2) in non divergence form and with a diffusion coefficient degenerating at a
one point of the boundary domain or in an interior point. In this paper we study
the null controllability for (1.2) assuming that k degenerates at x0 ∈ (0, 1) and
T < A or T > A. We underline that here, contrary to [5], the function k is less
regular, the control region ω not only can contain x0, but can be also the union of
two intervals each of them lying on one side of x0 and T can be greater than A.
Moreover, contrary to [1], where T > A and k degenerates at the boundary, here we
assume that T can be smaller than A and k degenerates at x0 ∈ (0, 1). Hence, this
paper is the completion of all the previous ones. Moreover, the technique used in
Theorem 4.10 can be also applied either when k degenerates at the boundary of the
domain, completing [8], or when k is in non divergence form and k degenerates at
the boundary or in the interior of the domain, completing [9]. Finally, observe that
in this paper, as in [8] or in [9], we do not consider the positivity of the solution, even
if it is clearly an interesting question to face: this problem is related to the minimum
time, i.e. T cannot be too small (see [17] for related results in non degenerate cases).
This topic will be the subject of further investigations.

A final comment on the notation: by c or C we shall denote universal strictly
positive constants, which are allowed to vary from line to line.

2. Well posedness results

For the well posedness of the problem, we assume the following hypotheses on
the rates µ and β :

Hypothesis 2.1. The functions µ and β are such that

(2.1)
• β ∈ C(Q̄A,1) and β ≥ 0 in QA,1,

• µ ∈ C(Q̄) and µ ≥ 0 in Q.

To prove well possessedness of (1.2), we introduce, as in [11], the following Hilbert
spaces

H1
k(0, 1) :=

{
u ∈W 1,1

0 (0, 1) :
√
ku′ ∈ L2(0, 1)

}
and

H2
k := {u ∈ H1

k(0, 1)| kux ∈ H1(0, 1)}.

We have, as in [11], that the operator

A0u := (kux)x, D(A0) := H2
k(0, 1)

is self–adjoint, nonpositive and generates an analytic contraction semigroup of angle
π/2 on the space L2(0, 1).

As in [8], setting Aau := ∂u
∂a , we have that

Au := Aau−A0u,
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for

u ∈ D(A) =

{
u ∈ L2(0, A;D(A0)) :

∂u

∂a
∈ L2(0, A;H1

k(0, 1)),

u(0, x) =

∫ A

0
β(a, x)u(a, x)da

}
,

generates a strongly continuous semigroup on L2(QA,1) := L2(0, A;L2(0, 1)) (see
also [4]). Moreover, the operator B(t) defined as

B(t)u := µ(t, a, x)u,

for u ∈ D(A), can be seen as a bounded perturbation of A (see, for example, [2]);
thus also (A+B(t), D(A)) generates a strongly continuous semigroup.

Setting L2(Q) := L2(0, T ;L2(QA,1)), the following well posedness result holds
(see [8] for the proof):

Theorem 2.1. Assume that k is weakly or strongly degenerate at 0 and/or at 1.
For all f ∈ L2(Q) and y0 ∈ L2(QA,1), the system (1.2) admits a unique solution

y ∈ U := C
(
[0, T ];L2(QA,1))

)
∩ L2

(
0, T ;H1(0, A;H1

k(0, 1))
)

and

(2.2)
sup
t∈[0,T ]

∥y(t)∥2L2(QA,1)
+

∫ T

0

∫ A

0
∥
√
kyx∥2L2(0,1)dadt

≤ C∥y0∥2L2(QA,1)
+ C∥f∥2L2(Q),

where C is a positive constant independent of k, y0 and f .
In addition, if f ≡ 0, then y ∈ C1

(
[0, T ];L2(QA,1)

)
.

3. Carleman estimates

In this section we show degenerate Carleman estimates for the following adjoint
system associated to (1.2):

(3.1)


∂z
∂t +

∂z
∂a + (k(x)zx)x − µ(t, a, x)z = f, (t, a, x) ∈ Q,

z(t, a, 0) = z(t, a, 1) = 0, (t, a) ∈ QT,A,

z(t, A, x) = 0, (t, x) ∈ QT,1.

On k we make additional assumptions:

Hypothesis 3.1. The function k is (WD) or (SD). Moreover, if M > 4
3 , then

there exists a constant θ ∈ (0,M ] such that

(3.2) x 7→ k(x)

|x− x0|θ

{
is non increasing on the left of x = x0,

is non decreasing on the right of x = x0.

In addition, when M > 3
2 the function in (3.2) is bounded below away from 0 and

there exists a constant Γ > 0 such that

(3.3) |k′(x)| ≤ Γ|x− x0|2θ−3 for a.e. x ∈ [0, 1].
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Now, let us introduce the weight function

(3.4) φ(t, a, x) := Θ(t, a)ψ(x),

where

(3.5) Θ(t, a) :=
1

[t(T − t)]4a4
and ψ(x) := c1

[∫ x

x0

y − x0
k(y)

dy − c2

]
.

The following estimate holds:

Theorem 3.1. Assume that Hypothesis 3.1 is satisfied. Then, there exist two
strictly positive constants C and s0 such that every solution v of (3.1) in

V := L2
(
QT,A;H

2
k(0, 1)

)
∩H1

(
0, T ;H1(0, A;H1

k(0, 1))
)

satisfies, for all s ≥ s0,∫
Q

(
sΘk(vx)

2 + s3Θ3 (x− x0)
2

k
v2
)
e2sφdxdadt

≤ C

(∫
Q
f2e2sφdxdadt+ sc1

∫ T

0

∫ A

0

[
kΘe2sφ(x− x0)(vx)

2dadt
]x=1

x=0
dadt

)
.

Clearly the previous Carleman estimate holds for every function v that satisfies
(3.1) in (0, T ) × (0, A) × (B,C) as long as (0, 1) is substituted by (B,C) and k
satisfies Hypothesis 3.1 in (B,C).

Proof of Theorem 3.1. The proof of Theorem 3.1 follows the ideas of the one of [8,
Theorem 3.1] or [9, Theorem 3.6] (for the non divergence case). As in the previous
papers, we consider, first of all, the case when µ ≡ 0: for every s > 0 consider the
function

w(t, a, x) := esφ(t,a,x)v(t, a, x),

where v is any solution of (3.1) in V, so that also w ∈ V, since φ < 0. Moreover, w
satisfies

(3.6)



(e−sφw)t + (e−sφw)a + (k(e−sφw)x)x = f(t, a, x), (t, x) ∈ Q,

w(0, a, x) = w(T, a, x) = 0, (a, x) ∈ QA,1,

w(t, A, x) = w(t, 0, x) = 0, (t, x) ∈ QT,1,

w(t, a, 0) = w(t, a, 1) = 0, (t, a) ∈ QT,A,

and [8, Lemma 3.1] still holds. In particular, setting{
L+
s w := (kwx)x − s(φt + φa)w + s2kφ2

xw,

L−
s w := wt + wa − 2skφxwx − s(kφx)xw,

we have
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Lemma 3.2 (see [8, Lemma 3.1]). Assume Hypothesis 3.1. The following identity
holds
(3.7)

< L+
s w,L

−
s w >L2(Q) =

s

2

∫
Q
(φtt + φaa)w

2dxdadt

+ s

∫
Q
k(x)(k(x)φx)xxwwxdxdadt

− 2s2
∫
Q
kφxφtxw

2dxdadt− 2s2
∫
Q
kφxφxaw

2dxdadt

+ s

∫
Q
(2k2φxx + kk′φx)w

2
xdxdadt

+ s3
∫
Q
(2kφxx + k′φx)kφ

2
xw

2dxdadt

+ s

∫
Q
φatw

2dxdadt.



{D.T.}

{B.T.}



∫
QT,A

[kwxwt]
1
0dadt+

∫
QT,A

[
kwxwa

]1
0
dadt

− s

2

∫
QA,1

[
φaw

2
]T
0
dxda.

+

∫
QT,A

[−sφx(k(x)wx)2 + s2k(x)φtφxw
2

− s3k2φ3
xw

2]10dadt

+

∫
QT,A

[−sk(x)(k(x)φx)xwwx]10dadt

+ s2
∫
QT,A

[
kφxφaw

2
]1
0
dadt

− 1

2

∫
QT,1

[
kw2

x

]A
0
dxdt+

1

2

∫
QT,1

[(
s2kφ2

x

− s(φt + φa)
)
w2
]A
0
dxdt.

We underline the fact that in this case all integrals and integrations by parts are
justified by the definition of D(A) and the choice of φ, while, if the degeneracy
is at the boundary of the domain as in [8], they were guaranteed by the choice of
Dirichlet conditions at x = 0 or x = 1, i.e. where the operator is degenerate.

As a consequence of the definition of φ, one has the next estimate:

Lemma 3.3. Assume Hypothesis 3.1. There exist two strictly positive constants C
and s0 such that, for all s ≥ s0, all solutions w of (3.6) satisfy the following estimate

sC

∫
Q
Θkw2

xdxdadt+ s3C

∫
Q
Θ3 (x− x0)

2

k
w2dxdadt ≤

{
D.T.

}
.
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Proof. Using the definition of φ, the distributed terms given in Lemma 3.2 take the
form

{D.T.} =



s

2

∫
Q
(Θtt +Θaa)ψw

2dxdadt− 2s2c1

∫
Q
ΘΘt

(x− x0)
2

k
w2dxdadt

− 2s2c1

∫
Q
ΘΘa

(x− x0)
2

k
w2dxdadt

+ sc1

∫
Q
Θ

(
2− k′

k
(x− x0)

)
k(wx)

2dxdadt

+ s3c31

∫
Q
Θ3

(
2− k′

k
(x− x0)

)
(x− x0)

2

k
w2dxdadt

+ s

∫
Q
Θtaψw

2dxdadt.

Because of the choice of φ(x), one has, as in [11],

2− (x− x0)k
′

k
≥ 2−M a.e. x ∈ [0, 1].

Thus, there exists C > 0 such that, the distributed terms satisfy the estimate

(3.8)

{D.T.} ≥ s

2

∫
Q
(Θtt +Θaa)ψw

2dxdadt− s2C

∫
Q
|ΘΘt|

(x− x0)
2

k
w2dxdadt

− s2C

∫
Q
|ΘΘa|

(x− x0)
2

k
w2dxdadt

+ sC

∫
Q
Θ(wx)

2dxdadt+ s3C

∫
Q
Θ3 (x− x0)

2

k
w2dxdadt

+ s

∫
Q
Θtaψw

2dxdadt.

By [9, Lemma 3.5], we conclude that, for s large enough,

s2C

∫
Q
(|ΘΘt|+ |ΘΘa|)

(x− x0)
2

k
w2dxdadt ≤ Cs2

∫
Q
Θ3 (x− x0)

2

k
w2dxdadt

≤ C3

4
s3
∫
Q
Θ3 (x− x0)

2

k
w2dxdadt.

Again as in [11, Lemma 4.1], we get

(3.9)

∣∣∣∣s2
∫
Q
(Θtt +Θaa)ψw

2dxdadt

∣∣∣∣ ≤ sC

∫
Q
Θ3/2w2dxdadt

≤ C

4
s

∫
Q
Θk(wx)

2dxdadt

+
C3

4
s3
∫
Q
Θ3 (x− x0)

2

k
w2dxdadt.
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Analogously, one has that the last term in (3.8), i.e. s
∫
QΘtaψw

2dxdadt, satisfies∣∣∣∣s∫
Q
Θtaψw

2dxdadt

∣∣∣∣ ≤ C

4
s

∫
Q
Θk(wx)

2dxdadt

+
C3

4
s3
∫
Q
Θ3 (x− x0)

2

k
w2dxdadt.

Summing up, we obtain

{D.T.} ≥ −C
4
s

∫
Q
Θ(wx)

2dxdadt− C3

4
s3
∫
Q
Θ3

(
x− x0
k

)2

w2dxdadt

− C3

4
s3
∫
Q
Θ3

(
x− x0
k

)2

w2dxdadt

+ sC

∫
Q
Θ(wx)

2dxdadt+ s3C

∫
Q
Θ3

(
x− x0
k

)2

w2dxdadt

− C

4
s

∫
Q
Θ(wx)

2dxdadt− C3

4
s3
∫
Q
Θ3(wx)

2dxdadt

≥ C

4
s

∫
Q
Θ(wx)

2dxdadt+
C3

4
s3
∫
Q
Θ3

(
x− x0
k

)2

w2dxdadt.

□
Proceeding as in [8] and in [11], one has for the boundary terms the following

lemma:

Lemma 3.4. Assume Hypothesis 3.1. The boundary terms in (3.7) reduce to

−sc1
∫ T

0

∫ A

0
Θ(t)k

[
(x− x0)(wx)

2
]x=1

x=0
dadt.

By Lemmas 3.2-3.4, there exist C > 0 and s0 > 0 such that all solutions w of
(3.6) satisfy, for all s ≥ s0,

s

∫
Q
Θkw2

xdxdadt+ s3
∫
Q
Θ3 (x− x0)

2

k
w2dxdadt

≤ C

(∫
Q
f2e2sφdxdadt+ sc1

∫ T

0

∫ A

0

[
Θk(x)(x− x0)(wx)

2
]x=1

x=0
dadt

)
.

Hence, if µ ≡ 0, Theorem 3.1 follows recalling the definition of w and the fact
that

L+
s w + L−

s w = esφf,

If µ ̸≡ 0, we consider the function f = f + µv. Hence, there are two strictly
positive constants C and s0 such that, for all s ≥ s0, the following inequality holds

(3.10)

∫
Q

(
sΘk(vx)

2 + s3Θ3 (x− x0)
2

k
v2
)
e2sφdxdadt

≤ C

(∫
Q
f̄2e2sφdxdadt+ s

∫ T

0

∫ A

0

[
kΘe2sφ(x− x0)(vx)

2dadt
]x=1

x=0
dadt

)
.



CONTROLLABILITY FOR A DEGENERATE POPULATION EQUATION 811

On the other hand, we have

(3.11)

∫
Q
f
2
e2sφ dxdadt ≤ 2

(∫
Q
|f |2e2sφ dxdadt+

∫
Q
|µ|2|v|2e2sφ dxdadt

)
.

Now, setting ν := esφv, we obtain

(3.12)

∫
Q
|µ|2|v|2e2sφ dxdadt ≤ ∥µ∥2∞

∫ 1

0
ν2dx

= ∥µ∥2∞
∫ 1

0

(
k1/3

|x− x0|2/3
ν2

)3/4(
|x− x0|2

k
ν2
)1/4

≤ C

∫ 1

0

k1/3

|x− x0|2/3
ν2dx+ C

∫ 1

0

|x− x0|2

k
ν2dx.

As in (3.9), proceeding as in [11] and applying the Hardy-Poincaré inequality proved

in [10] to the function ν with weight p(x) = |x − x0|4/3, if K ≤ 4
3 , or p(x) =

(k(x)|x− x0|4)1/3, if K > 4/3, we can prove that

(3.13)

∫ 1

0

k1/3

|x− x0|2/3
ν2dx ≤ C

∫ 1

0
k(νx)

2dx

≤ C

∫
Q
k(x)e2sφv2xdxdadt

+ Cs2
∫
Q
Θ2e2sφ

(x− x0)
2

k
v2dxdadt.

In any case, by (3.11), (3.12) and (3.13), we have

(3.14)

∫
Q
|f̄ |2 e2sφ dxdadt ≤ 2

∫
Q
|f |2 e2sφ dxdadt+ C

∫
Q
k(x)e2sφv2xdxdadt

+ Cs2
∫
Q
Θ2e2sφ

(x− x0)
2

k
v2dxdadt

≤ C

∫
Q
|f |2 e2sφ dxdadt+ C

∫
Q
Θk(x)e2sφv2xdxdadt

+ Cs2
∫
Q
Θ3e2sφ

(x− x0)
2

k
v2dxdadt.

Substituting in (3.10), one can conclude∫
Q

(
sΘkv2x + s3Θ3 (x− x0)

2

k
v2
)
e2sφdxdadt ≤ C

(∫
Q
|f |2e2sφdxdadt

+ s

∫ T

0

∫ A

0

[
kΘe2sφ(x− x0)(vx)

2dadt
]x=1

x=0
dadt

)
,

for all s large enough.
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4. Observability and controllability

In this section we will prove, as a consequence of the Carleman estimates estab-
lished in Section 3, observability inequalities for the associated adjoint problem of
(1.2):

(4.1)


∂v
∂t +

∂v
∂a + (k(x)vx)x − µ(t, a, x)v + β(a, x)v(t, 0, x) = 0, (t, x, a) ∈ Q,

v(t, a, 0) = v(t, a, 1) = 0, (t, a) ∈ QT,A,

v(T, a, x) = vT (a, x) ∈ L2(QA,1), (a, x) ∈ QA,1

v(t, A, x) = 0, (t, x) ∈ QT,1.

From now on, we assume that the control set ω is such that

(4.2) x0 ∈ ω = (α, ρ) ⊂⊂ (0, 1),

or

(4.3) ω = ω1 ∪ ω2,

where

(4.4) ωi = (λi, ρi) ⊂ (0, 1), i = 1, 2, and ρ1 < x0 < λ2.

Remark 4.1. Observe that, if (4.2) holds, we can find two subintervals ω1 =
(λ1, ρ1) ⊂⊂ (α, x0), ω2 = (λ2, ρ2) ⊂⊂ (x0, ρ).

Moreover, on β we assume the following assumption:

Hypothesis 4.1. Suppose that there exists ā < A such that

(4.5) β(a, x) = 0 for all (a, x) ∈ [0, ā]× [0, 1].

Observe that Hypothesis 4.1 has a biological meaning. Indeed, ā is the minimal
age in which the female of the population become fertile, thus it is natural that
before ā there are no newborns. For other comments on Hypothesis 4.1 we refer to
[9].

In order to prove the desired observability inequality for the solution v of (4.1)
we proceed, as usual, using a density argument. To this purpose, we consider, first
of all the space

W :=
{
v solution of (4.1)

∣∣ vT ∈ D(A2)
}
,

where D(A2) =
{
u ∈ D(A)

∣∣ Au ∈ D(A)
}
. Clearly D(A2) is densely defined in

D(A) (see, for example, [6, Lemma 7.2]) and hence in L2(QA,1) and

W = C1
(
[0, T ] ;D(A)

)
⊂ V := L2

(
QT,A;H

2
k(0, 1)

)
∩H1

(
0, T ;H1(0, A;H1

k(0, 1))
)
⊂ U .

Proposition 4.2 (Caccioppoli’s inequality). Let ω′ and ω two open subintervals of
(0, 1) such that ω′ ⊂⊂ ω ⊂ (0, 1) and x0 ̸∈ ω̄′. Let ψ(t, a, x) := Θ(t, a)Ψ(x), where

(4.6) Θ(t, a) =
1

t4(T − t)4a4
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and Ψ ∈ C([0, 1], (−∞, 0)) ∩ C1([0, 1] \ {x0}, (−∞, 0)) is such that

(4.7) |Ψx| ≤
c√
k

in [0, 1] \ {x0}.

Then, there exist two strictly positive constants C and s0 such that, for all s ≥ s0,
(4.8)∫ T

0

∫ A

0

∫
ω′
v2xe

2sψdxdadt ≤ C

(∫ T

0

∫ A

0

∫
ω
v2dxdadt+

∫
Q
f2e2sψdxdadt

)
,

for every solution v of (3.1).

The proof of the previous proposition is similar to the one given in [8, Proposition
4.2] and [10, Proposition 4.2], so we omit it.

Moreover, the following non degenerate inequality proved in [9] is crucial:

Theorem 4.3 (see [9, Theorem 3.2]). Let z ∈ Z be the solution of (3.1), where
f ∈ L2(Q), k ∈ C1([0, 1]) is a strictly positive function and

Z := L2
(
QT,A;H

2(0, 1) ∩H1
0 (0, 1)

)
∩H1

(
0, T ;H1(0, A;H1

0 (0, 1))
)
.

Then, there exist two strictly positive constants C and s0, such that, for any s ≥ s0,
z satisfies the estimate

(4.9)

∫
Q
(s3ϕ3z2 + sϕz2x)e

2sΦdxdadt ≤ C

∫
Q
f2e2sΦdxdadt

− Csκ

∫ T

0

∫ A

0

[
ke2sΦϕ(zx)

2
]x=1

x=0
dadt.

Here the functions ϕ and Φ are defined as follows

(4.10)
ϕ(t, a, x) = Θ(t, a)eκσ(x),

Φ(a, t, x) = Θ(t, a)Ψ(x), Ψ(x) = eκσ(x) − e2κ∥σ∥∞ ,

where (t, a, x) ∈ Q, κ > 0, σ(x) := d
∫ 1
x

1
k(t)dt, d = ∥k′∥L∞(0,1) and Θ is given in

(4.6).

Remark 4.4. The previous Theorem still holds under the weaker assumption k ∈
W 1,∞(0, 1) without any additional assumption.
On the other hand, if we require k ∈ W 1,1(0, 1) then we have to add the following
hypothesis: there exist two functions g ∈ L1(0, 1), h ∈ W 1,∞(0, 1) and two strictly
positive constants g0, h0 such that g(x) ≥ g0 and

(4.11) − k′(x)

2
√
k(x)

(∫ 1

x
g(t)dt+ h0

)
+
√
k(x)g(x) = h(x) for a.e. x ∈ [0, 1].

In this case, i.e. if k ∈W 1,1(0, 1), the function Ψ in (4.10) becomes

(4.12) Ψ(x) := −r

[∫ x

0

1√
k(t)

∫ 1

t
g(s)dsdt+

∫ x

0

h0√
k(t)

dt

]
− c,

where r and c are suitable strictly positive functions. For other comments on The-
orem 4.3 we refer to [9].
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In the following, we will apply Theorem 4.3 in the intervals [λ2, 1] and [−ρ1, ρ1]
under these weaker assumptions. In particular, on k we assume:

Hypothesis 4.2. The function k satisfies Hypothesis 3.1. Moreover, if
k ∈ W 1,1(0, 1), then there exist two functions g ∈ L∞

loc([−ρ1, 1] \ {x0}), h ∈
W 1,∞

loc ([−ρ1, 1] \ {x0}, L∞(0, 1)) and two strictly positive constants g0, h0 such that
g(x) ≥ g0 and

(4.13) − k̃′(x)

2
√
k̃(x)

(∫ B

x
g(t)dt+ h0

)
+

√
k̃(x)g(x) = h(x,B)

for a.e. x ∈ [−ρ1, 1], B ∈ [0, 1] with x < B < x0 or x0 < x < B, where

(4.14) k̃(x) :=

{
k(x), x ∈ [0, 1],

k(−x), x ∈ [−1, 0].

With the aid of Theorems 3.1, 4.3 and Proposition 4.2, we can now show ω−local
Carleman estimates for (3.1).

Theorem 4.5. Assume Hypothesis 4.2. Then, there exist two strictly positive con-
stants C and s0 such that every solution v of (3.1) in V satisfies, for all s ≥ s0,∫

Q

(
sΘkv2x + s3Θ3 (x− x0)

2

k
v2
)
e2sφdxdadt ≤ C

∫
Q
f2e2sΦ dxdadt

+ C

∫ T

0

∫ A

0

∫
ω
v2dxdadt.

Proof. First assume that ω satisfies (4.2) and take wi, i = 1, 2, as in Remark 4.1.
Now, fix λ̄i, ρ̄i ∈ ωi = (λi, ρi), i = 1, 2, such that λ̄i < ρ̄i and consider a smooth
function ξ : [0, 1] → [0, 1] such that

ξ(x) =


0 x ∈ [0, λ̄1],

1 x ∈ [λ̃1, λ̃2],

0 x ∈ [ρ̄2, 1],

where λ̃i = (λ̄i + ρ̄i)/2, i = 1, 2. Define w := ξv, where v is any fixed solution of
(3.1). Then w satisfies{

wt + wa + (kwx)x − µw = ξf + (kξxv)x + ξxkvx =: h, (t, a, x) ∈ Q,

w(t, a, 0) = w(t, a, 1) = 0, (t, a) ∈ QT,A.

Thus, applying Theorem 3.1, Proposition 4.2, and proceeding as in [8], we have

(4.15)

∫ T

0

∫ A

0

∫ λ̃2

λ̃1

(
sΘkv2x + s3Θ3 (x− x0)

2

k
v2
)
e2sφdxdadt

=

∫ T

0

∫ A

0

∫ λ̃2

λ̃1

(
sΘkw2

x + s3Θ3x
2

k
w2

)
e2sφdxdadt

≤ C

(∫
Q
f2e2sφdxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.
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Now, consider a smooth function η : [0, 1] → [0, 1] such that

η(x) =

{
0 x ∈ [0, λ̄2],

1 x ∈ [λ̃2, 1],

and define z := ηv. Then z satisfies

(4.16)

{
zt + za + (kzx)x − µz = ηf + (kηxv)x + ηxkvx =: h, in QT,A × (λ2, 1),

z(t, a, λ2) = z(t, a, 1) = 0, (t, a) ∈ QT,A.

Clearly the equation satisfied by z is not degenerate, thus applying Theorem 4.3
and [14, Lemma 4.1] on (λ2, 1), one has∫ T

0

∫ A

0

∫ 1

λ2

(s3ϕ3z2 + sϕz2x)e
2sΦdxdadt ≤ C

∫ T

0

∫ A

0

∫ 1

λ2

h2e2sΦdxdadt

≤ C

(∫
Q
f2e2sΦdxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Hence ∫ T

0

∫ A

0

∫ 1

λ̃2

(s3ϕ3v2 + sϕv2x)e
2sΦdxdadt

=

∫ T

0

∫ A

0

∫ 1

λ̃2

(s3ϕ3z2 + sϕz2x)e
2sΦdxdadt

≤ C

(∫
Q
f2e2sΦdxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
,

for a strictly positive constant C. Proceeding, for example, as in [11], one can prove
the existence of ς > 0, such that, for all (t, a, x) ∈ [0, T ]× [0, A]× [λ2, 1], we have

(4.17) e2sφ ≤ ςe2sΦ,
(x− x0)

2

k(x)
e2sφ ≤ ςe2sΦ.

Thus, for a strictly positive constant C,

(4.18)

∫ T

0

∫ A

0

∫ 1

λ̃2

(
sΘkv2x + s3Θ3 (x− x0)

2

k
v2
)
e2sφdxdadt

≤ C

(∫ T

0

∫ A

0

∫ 1

λ̃2

(s3ϕ3v2 + sϕv2x)e
2sΦdxdadt

)
≤ C

(∫
Q
f2e2sΦdxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Hence,

(4.19)

∫ T

0

∫ A

0

∫ 1

λ̃1

(
sΘkv2x + s3Θ3 (x− x0)

2

k
v2
)
e2sφdxdadt

≤ C

(∫
Q
f2e2sΦdxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.
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To complete the proof it is sufficient to prove a similar inequality for x ∈ [0, λ̃1]. To
this aim, we use the reflection procedure as in [9]; thus we consider the functions

W (t, a, x) :=

{
v(t, a, x), x ∈ [0, 1],

−v(t, a,−x), x ∈ [−1, 0],

f̃(t, a, x) :=

{
f(t, a, x), x ∈ [0, 1],

−f(t, a,−x), x ∈ [−1, 0],

µ̃(t, a, x) :=

{
µ(t, a, x), x ∈ [0, 1],

µ(t, a,−x), x ∈ [−1, 0],

so that W satisfies the problem{
Wt +Wa + (k̃Wx)x − µ̃W = f̃ , (t, x) ∈ QT,A × (−1, 1),

W (t, a,−1) =W (t, a, 1) = 0, t ∈ QT,A,

(by the way, observe that in [9] there is a misprint in the definition of µ; it clearly
must be defined in this way, otherwise W is not the solution of the associated
problem). Now, consider a cut off function ζ : [−1, 1] → [0, 1] such that

ζ(x) =


0 x ∈ [−1,−ρ̄1],
1 x ∈ [−λ̃1, λ̃1],
0 x ∈ [ρ̄1, 1],

and define Z := ζW . Then Z satisfies

(4.20)

{
Zt + Za + (k̃Zx)x − µ̃Z = h̃, (t, x) ∈ QT,A × (−ρ1, ρ1),
Z(t, a,−ρ1) = Z(t, a, ρ1) = 0, t ∈ QT,A,

where h̃ = ζf̃ + (k̃ζxW )x + ζxk̃Wx. Now, applying the analogue of Theorem 4.3 on
(−ρ1, ρ1) in place of (0, 1), using the definition of W , the fact that Zx(t, a,−ρ1) =
Zx(t, a, ρ1) = 0 and since ζ is supported in

[
−ρ̄1,−λ̃1

]
∪
[
λ̃1, ρ̄1

]
, we get

∫ T

0

∫ A

0

∫ λ̃1

0

(
sΘk(Wx)

2 + s3Θ3 (x− x0)
2

k
W 2

)
e2sφdxdadt

=

∫ T

0

∫ A

0

∫ λ̃1

0

(
sΘk(Zx)

2 + s3Θ3 (x− x0)
2

k
Z2

)
e2sφdxdadt

≤ C

∫ T

0

∫ A

0

∫ ρ1

0

(
sΘ(Zx)

2 + s3Θ3Z2
)
e2sΦdxdadt

≤ C

∫ T

0

∫ A

0

∫ ρ1

−ρ1

(
sΘ(Zx)

2 + s3Θ3Z2
)
e2sΦdxdadt
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≤ C

∫ T

0

∫ A

0

∫ ρ1

−ρ1
h̃2e2sΦdxdadt ≤ C

∫ T

0

∫ A

0

∫ ρ1

−ρ1
f̃2e2sΦdxdadt

+ C

∫ T

0

∫ A

0

∫ −λ̃1

−ρ̄1
(W 2 + (Wx)

2)e2sΦdxdadt

+ C

∫ T

0

∫ A

0

∫ ρ̄1

λ̃1

(W 2 + (Wx)
2)e2sΦdxdadt

≤ C

∫ T

0

∫ A

0

∫ ρ1

−ρ1
f̃2dxdadt+ C

∫ T

0

∫ A

0

∫ −λ1

−ρ1
W 2dxdadt

+ C

∫ T

0

∫ A

0

∫ ρ1

λ1

W 2dxdadt

(by [14, Lemma 4.1] and since f̃(t, a, x) = −f(t, a,−x), for x < 0)

≤ C

∫ T

0

∫ A

0

∫ 1

0
f2dxdadt+ C

∫ T

0

∫ A

0

∫
ω
v2dxdadt,

for some strictly positive constants C and s large enough. Here Φ is related to
(−ρ1, ρ1).

Hence, by definitions of Z, W and ζ, and using the previous inequality one has

(4.21)

∫ T

0

∫ A

0

∫ λ̃1

0

(
sΘk(vx)

2 + s3Θ3 (x− x0)
2

k
v2
)
e2sφdxdadt

=

∫ T

0

∫ A

0

∫ λ̃1

0

(
sΘk(Wx)

2 + s3Θ3 (x− x0)
2

k
W 2

)
e2sφdxdadt

≤ C

(∫
Q
f2dxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Moreover, by (4.19) and (4.21), the conclusion follows.
Nothing changes in the proof if ω = ω1 ∪ ω2 and each of these intervals lye on

different sides of x0, as the assumption implies. □

Remark 4.6. Observe that the results of Theorem 4.5 still hold true if we substitute
the domain (0, T ) × (0, A) with a general domain (T1, T2) × (γ,A), provided that
µ and β satisfy the required assumptions. In this case, in place of the function Θ
defined in (4.6), we have to consider the weight function

(4.22) Θ̃(t, a) :=
1

(t− T1)4(T2 − t)4(a− γ)4
.

Using the previous local Carleman estimates one can prove the next observability
inequalities.

Theorem 4.7. Assume Hypotheses 4.1, with ā < T ≤ A, and 4.2. Then, for every
δ ∈ (0, A), there exists a strictly positive constant C = C(δ) such that every solution
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v of (4.1) in V satisfies

(4.23)

∫ A

0

∫ 1

0
v2(T − ā, a, x)dxda ≤ C

∫ T

0

∫ δ

0

∫ 1

0
v2(t, a, x)dxdadt

+ C

(∫ T

0

∫ 1

0
v2T (a, x)dxda+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Moreover, if vT (a, x) = 0 for all (a, x) ∈ (0, T )× (0, 1), one has

(4.24)

∫ A

0

∫ 1

0
v2(T − ā, a, x)dxda ≤ C

∫ T

0

∫ δ

0

∫ 1

0
v2(t, a, x)dxdadt

+ C

∫ T

0

∫ A

0

∫
ω
v2dxdadt.

Observe that in [9, Theorem 4.4], which is the analogue of Theorem 4.7 in the
non divergence case, there is a mistake in the statement. Indeed, we assumed
k′√
k
∈ L∞

loc([0, 1] \ {x0}), which was a consequence of (4.13) below (see the remark

after (46) in [9]); the precise assumption is:

there exist two functions g ∈ L∞
loc([−ρ1, 1]\{x0}), h ∈W 1,∞

loc ([−ρ1, 1]\{x0}, L∞(0, 1))
and two strictly positive constants g0, h0 such that g(x) ≥ g0 and

(4.25)
k̃′(x)

2
√
k̃(x)

(∫ B

x
g(t)dt+ h0

)
+

√
k̃(x)g(x) = h(x,B)

for a.e. x ∈ [−ρ1, 1], B ∈ [0, 1] with x < B < x0 or x0 < x < B, where k̃ is defined
in (4.14). Indeed, in order to prove [9, Theorem 4.4], we use [9, Theorem 4.3]
which holds under (4.25). On the other hand, the statement of [9, Corollary 4.1],
which is also a consequence of [9, Theorem 4.4], is correct.

Proof of Theorem 4.7. The proof follows the one of [8, Theorem 4.4], but we repeat
here in a briefly way for the reader’s convenience underling the differences since
in [8, Theorem 4.4] k degenerates at the boundary of the domain, while here it
degenerates in the interior.

As in [9], using the method of characteristic lines, one can prove the following
implicit formula for v solution of (4.1):

(4.26) S(T − t)vT (T + a− t, ·),
if t ≥ T̃ + a and

(4.27) v(t, a, ·) =

{
S(T − t)vT (T + a− t, ·)+

∫ T+a−t
a F (s, t, a, x)ds, Γ= ā∫ A

a F (s, t, a, x)ds, Γ=ΓA,T ,

where F (s, t, a, x) := S(s−a)β(s, ·)v(s+ t−a, 0, ·), otherwise. Here (S(t))t≥0 is the
semigroup generated by the operator A0−µId for all u ∈ D(A0) (Id is the identity

operator), ΓA,T := A− a+ t− T̃ and

(4.28) Γ := min{ā,ΓA,T }.
In particular, it results

(4.29) v(t, 0, ·) := S(T − t)vT (T − t, ·),
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if t ≥ T − ā.
Proceeding as in [8, Theorem 4.4], with suitable changes, one has that there exists
a positive constant C such that:

(4.30)

∫
QA,1

v2(T̃ , a, x)dxda ≤ C

∫ T− ā
4

T− ā
2

∫
QA,1

v2(t, a, x)dxdadt.

Take δ ∈ (0, A). By the previous inequality, we have

(4.31)

∫
QA,1

v2(T̃ , a, x)dxda ≤ C

∫ T− ā
4

T− ā
2

(∫ δ

0
+

∫ A

δ

)∫ 1

0
v2(t, a, x)dxdadt.

Now, we will estimate the term
∫ T− ā

4

T− ā
2

∫ A
δ

∫ 1
0 v

2(t, a, x)dxdadt. It results that

(4.32)

∫ 1

0
v2dx ≤ C

(∫ 1

0
kv2xdx+

∫ 1

0

(x− x0)
2

k
v2dx

)
,

for a strictly positive constant C. Indeed, using the Young’s inequality to the func-
tion v, we obtain

(4.33)

∫ 1

0
|v|2 dx ≤ C

∫ 1

0

(
k1/3

(x− x0)2/3
v2

)3/4(
(x− x0)

2

k
v2
)1/4

dx

≤ C

∫ 1

0

k1/3

(x− x0)2/3
v2dx+ C

∫ 1

0

(x− x0)
2

k
v2dx.

Now, consider the term ∫ 1

0

k1/3

(x− x0)2/3
v2dx.

If M > 4
3 , take the function γ(x) = (k(x)|x − x0|4)1/3. Clearly, γ(x) =

k(x)
( (x−x0)2

k(x)

)2/3 ≤ Ck(x) and k1/3

(x−x0)2/3
= γ(x)

(x−x0)2 . Moreover, using Hypothesis

3.1, one has that the function γ(x)
|x−x0|q =

(
k(x)

|x−x0|θ

) 1
3
, where q := 4+ϑ

3 ∈ (1, 2), is non

increasing on the left of x = x0 and non decreasing on the right of x = x0. Hence,
by the Hardy-Poincaré inequality given in [10, Proposition 2.6],∫ 1

0

k1/3

(x− x0)2/3
v2dx =

∫ 1

0

γ(x)

(x− x0)2
v2dx ≤ C

∫ 1

0
kv2xdx.

Thus, if M > 4
3 , by (4.33), (4.32) holds. Now, assume M ≤ 4

3 and introduce the

function p(x) = |x−x0|4/3. Obviously, there exists q ∈
(
1, 43
)
such that the function

x 7→ p(x)
|x−x0|q is nonincreasing on the left of x = x0 and nondecreasing on the right
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of x = x0. Thus, applying again [10, Proposition 2.6], one has

(4.34)

∫ 1

0

k1/3

|x− x0|2/3
v2dx ≤ max

[0,1]
k1/3

∫ 1

0

1

|x− x0|2/3
v2dx

= max
[0,1]

k1/3
∫ 1

0

p

(x− x0)2
v2dx

≤ max
[0,1]

k1/3C

∫ 1

0
p(vx)

2dx

= max
[0,1]

k1/3C

∫ 1

0
k
|x− x0|4/3

k
(vx)

2dx

≤ max
[0,1]

k1/3C

∫ 1

0
k(vx)

2dx.

Hence, (4.32) still holds and
(4.35)∫ T− ā

4

T− ā
2

∫ A

δ

∫ 1

0
v2(t, a, x)dxdadt ≤ C

∫ T− ā
4

T− ā
2

∫ A

δ

∫ 1

0
Θ̃v2xe

2sφ̃dxdadt

+ C

∫ T− ā
4

T− ā
2

∫ A

δ

∫ 1

0
Θ̃3 (x− x0)

2

k
v2e2sφ̃dxdadt,

where Θ̃ is defined in (4.22) with T1 := T − ā, T2 := T , γ = 0 and φ̃ is the function

associated to Θ̃ according to (3.4). The rest of the proof follows as in [8, Theorem
4.4], so we omit it.

□

Corollary 4.8. Assume Hypotheses 4.1, with ā = T < A, and 4.2. Then, for every
δ ∈ (0, A), there exists a strictly positive constant C = C(δ) such that every solution
v of (4.1) in V satisfies∫ A

0

∫ 1

0
v2(0, a, x)dxda ≤ C

∫ T

0

∫ δ

0

∫ 1

0
v2(t, a, x)dxdadt

+ C

(∫ T

0

∫ 1

0
v2T (a, x)dxda+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Moreover, if vT (a, x) = 0 for all (a, x) ∈ (0, T )× (0, 1), one has∫ A

0

∫ 1

0
v2(0, a, x)dxda ≤ C

(∫ T

0

∫ δ

0

∫ 1

0
v2(t, a, x)dxdadt+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Proceeding as in Theorem 4.7, one can prove the analogous result in the case
T > A. Indeed, with suitable changes, one can prove again (4.26), if t ≥ T̃ + a, and
(4.27), otherwise. In particular, we have again (4.29). Thus:

Theorem 4.9. Assume Hypotheses 4.1, with ā < A < T , and 4.2. Then, for every
δ ∈ (0, A), there exists a strictly positive constant C = C(δ) such that every solution
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v of (4.1) in V satisfies

(4.36)

∫ A

0

∫ 1

0
v2(T − ā, a, x)dxda ≤ C

∫ T

0

∫ δ

0

∫ 1

0
v2(t, a, x)dxdadt

+ C

(∫ A

0

∫ 1

0
v2T (a, x)dxda+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

Moreover, if vT (a, x) = 0 for all (a, x) ∈ (0, A)× (0, 1), one has (4.24).

Actually, proceeding as in [9] with suitable changes, we can improve the previous
results in the following way:

Theorem 4.10. Assume Hypotheses 4.1 and 4.2. If T < A, then, for every δ ∈
(T,A), there exists a strictly positive constant C = C(δ) such that every solution v
of (4.1) in V satisfies
(4.37)∫ A

0

∫ 1

0
v2(T − ā, a, x)dxda ≤ C

(∫ δ

0

∫ 1

0
v2T (a, x)dxda+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

If A < T , then, for every δ ∈ (ā, A), there exists a strictly positive constant C =
C(δ) such that every solution v of (4.1) in V satisfies (4.37).

Proof. If T < A the proof of the previous theorem is analogous to the one of [9,
Theorem 4.6], with suitable changes, so we omit it.
Now, consider the case A < T and fix δ ∈ (ā, A). As in [8, Theorem 4.4], we can
prove

(4.38)

∫
QA,1

v2(T − ā, a, x)dxda ≤ C

∫
QA,1

v2(t, a, x)dxda.

Then, integrating over
[
T − ā

2 , T − ā
4

]
. Hence we have

(4.39)

∫
QA,1

v2(T − ā, a, x)dxda ≤ C

∫ T− ā
4

T− ā
2

(∫ δ−ā

0
+

∫ A

δ−ā

)∫ 1

0
v2(t, a, x)dxdadt.

Proceeding as before, one can prove the analogous of (4.35). Thus, using Theorem
4.5, we can prove

(4.40)

∫ T− ā
4

T− ā
2

∫ A

δ−ā

∫ 1

0
v2(t, a, x)dxdadt ≤ C

∫ ā

0

∫ 1

0
v2T (a, x)dxda

+ C

∫ T

0

∫ A

0

∫
ω
v2dxdadt.

It remains to estimate ∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0
v2(t, a, x)dxdadt.

Observe that t ≥ T − ā
2 ≥ T − ā and a ∈ (0, δ− ā).Thus T − t ≤ ā ≤ δ− a ≤ A− a.

Hence, Γ = ā (to this purpose recall that δ ∈ (ā, A) and Γ is defined in (4.28)).
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Hence in (4.27) we have to consider the first formula, i.e.

v(t, a, ·) = S(T − t)vT (T + a− t, ·)+
∫ T+a−t

a
S(s− a)β(s, ·)v(s+ t− a, 0, ·)ds.

It follows:

(4.41)

∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0
v2(t, a, x)dxdadt

≤ C

∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0
v2T (T + a− t, x)dxdadt

+ C

∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0

(∫ T+a−t

a
v2(s+ t− a, 0, x)ds

)
dxdadt

= C

∫ ā
2

ā
4

∫ δ−ā

ā

∫ 1

0
v2T (a+ z, x)dxdadz

+ C

∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0

(∫ T−a−t

−a
v2T (a+ z, x)dz

)
dxdadt

≤ C

∫ δ− ā
2

ā
4

∫ 1

0
v2T (σ, x)dxdσdz

+ C

∫ T− ā
4

T− ā
2

∫ δ−ā

0

∫ 1

0

(∫ T−t

0
v2T (σ, x)dσ

)
dxdadt

≤ C

∫ δ

0

∫ 1

0
v2T (σ, x)dxdσ + C

∫ T− ā
4

T−ā

∫ δ−ā

t−T+ā

∫ 1

0

(∫ ā

0
v2T (σ, x)dσ

)
dxdadt

≤ C

∫ δ

0

∫ 1

0
v2T (σ, x)dσdx.

By (4.39)-(4.41), (4.37) follows. □

By Theorem 4.10 and using a density argument, one can deduce the following
observability result:

Proposition 4.11. Assume Hypotheses 4.1 and 4.2. If T < A, then, for every
δ ∈ (T,A), there exists a strictly positive constant C = C(δ) such that every solution
v ∈ U of (4.1) satisfies
(4.42)∫ A

0

∫ 1

0
v2(T − ā, a, x)dxda ≤ C

(∫ δ

0

∫ 1

0
v2T (a, x)dxda+

∫ T

0

∫ A

0

∫
ω
v2dxdadt

)
.

If A < T , then, for every δ ∈ (ā, A), there exists a strictly positive constant C =
C(δ) such that every solution v of (4.1) satisfies (4.42).
Here vT (a, x) is such that vT (A, x) = 0 in (0, 1).
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Observe that in the statements of the analogous results given in [9] for the non
divergence case there is a misprint. Indeed the constant C depends on δ, as one can
deduce by the proofs. The right statement is

...for every δ ∈ (T,A), there exists C = C(δ) such that...

We underline that the results are correct and in the correct way they are used to
prove [9, Theorems 4.7 and 4.8].

As a consequence of Proposition 4.11 one can prove, as in [8, Theorem 4.7], the
following null controllability result:

Theorem 4.12. Assume Hypotheses 4.1 and 4.2 and take y0 ∈ L2(QA,1). Then for
every δ ∈ (T,A), if T < A, or for every δ ∈ (ā, A), if A < T , there exists a control
fδ ∈ L2(Q) such that the solution yδ of (1.2) satisfies

(4.43) yδ(T, a, x) = 0 a.e. (a, x) ∈ (δ,A)× (0, 1).

Moreover, there exists C = C(δ) > 0

(4.44) ∥fδ∥L2(Q) ≤ C∥y0∥L2(QA,1).
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