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x̂, on the material parameters for mechanical and thermal properties, and on the
intensity of the heat source.

For the sake of simplicity the unique contrast 0 < γ < ∞ for the coefficients
of elliptic operators is introduced, which means that the material parameters for
mechanical and thermal properties of the small inclusion Bε are governed by the
scalar γ. This assumption can be relaxed for the specific applications, if necessary.
In addition we introduce the contrast 0 < γb ≤ 1 for the intensity of the heat source.

In this way an optimal location of small inclusion and its properties can be de-
termined in order to minimize the shape functional associated with the model. The
topological derivative of the elastic energy associated with such thermomechanical
model has been derived in [9]. However, to our best knowledge the topological sen-
sitivity analysis of a shape functional specially designed for topology optimization
purposes of thermomechanical actuators cannot be found in the literature. There-
fore, we derive in all details the topological asymptotic expansion of the adopted
shape functional and perform a complete mathematical justification for the obtained
formulas.

In the paper we consider the regular perturbations of the coefficients of elliptic
operators as well as of the right hand side for the purposes of asymptotic analysis.
The case of singular perturbations can be considered as well [17] along the lines of
the fundamental paper [16]. Self-adjoint extensions of elliptic operators can be used
to model defects for control problems, we refer the reader to [12] for some results in
this direction. Control problems for the wave equations [13] are considered in [14]
from the point of view of sensitivity analysis.

The paper is organized as follows. In Section 1.1 a simple example of a two-bar
structure is presented to illustrate the design evolution dependent on the stiffness
ratio of the interacting spring and bar. In Section 1.2 the topological derivative
concept is introduced in the framework of asymptotic analysis of singulary per-
turbed domain. The semi-coupled system modeling the thermomechanical actuator
as well as the adopted shape functional are presented in Section 2. The topological
optimization procedure is introduced in details in Section 3. In Section 4 some
numerical experiments of topology optimization of thermomechanical actuators are
presented. Finally, the concluding remarks and perspectives are given in Section 5.

1.1. Motivation: a simple example. As a motivation for this work, let us in-
troduce a simple analytical example on the optimal design of a thermomechanical
actuator. Consider a two-bar system with hinge supports at two points A and C;
and a hinge at a joint point B, see Fig. 1. At the connection point B the bars are
interacting with the rigidly supported spring of stiffness ks.

By heating the bars, the vertical displacement at point B is activated and the
induced spring force P = ks(h − h0) generates compressive force T = P

2 sinβ in the

bars. Assume the cross-section area Ar and the total length of bars to be fixed.
The optimal configuration of the bars specified by the angle β is to be determined,
such that the incremental displacement dh of the point B is maximized. Denoting
by θ the temperature and by α the thermal expansion coefficient, the optimization
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Figure 1. Two bars truss submitted to thermal effects.

problem can be stated as follows:

(1.1)

{
Maximize

β
F(β) = dh

αL
2
dθ
,

Subjected to L = constant,

Following Fig. 1, we have a = L
2 cosβ and h = L

2 sinβ. Therefore, the differential
elements da and dh are given by

da = −L
2 sinβdβ + dL

2 cosβ,(1.2)

dh = L
2 cosβdβ + dL

2 sinβ.(1.3)

To consider the restriction of the total length of the bars L must be constant, we
can set in (1.3) da = 0 and obtain the following relations

(1.4) dβ =
dL

L
cotβ , and dh =

dL

2 sinβ
.

The spring force increment dP = ksdh induces a compressive bar force increment
dT = dP

2 sinβ and the related strain increment dϵ is

(1.5) dϵ = − dP

2 sinβ

1

EAr
= − ksdh

2 sinβ

1

EAr
,

where E is the Young’s modulus of the material. The total bar elongation now
equals

(1.6) dL =
L

2

(
αdθ − ksdh

2 sinβ

1

EAr

)
= 2 sinβdh .

Therefore, from equations (1.1) and (1.6) it follows that

(1.7) F(β) =
1

2 sinβ + η
4 sinβ

=
1

D
,

where η = ks
EAr/L

is the ratio of the spring and bar stiffness. This is a fundamental

parameter of the structure response. It is seen that F(β) reaches its maximum
when the denominator D reaches a minimum, thus

(1.8)
dD

dβ
=

cosβ

4

(
8− η

sin2 β

)
= 0 ,
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Figure 2. Behaviour of the function F(β).

and the optimal configuration is specified for β satisfying the condition:

(1.9) sinβ =

√
η

8
=

1

2

√
η

2
, ⇒ η ≤ 8 and Fopt(β) =

1√
2η

For cosβ = 0, its follows that β = π
2 and a = 0 and the configuration correspond-

ing to two vertical bars, attains a local maximum of F(β). For η = 0, from (1.9)
it follows that the optimal configuration is at β = 0 and a = L

2 . It is represented
by two coaxial bars. This case was discussed in the paper [6]. For values of η > 8,
eq.(1.8) is satisfied only for β = π

2 . Figure 2 presents the dependence of F(β) on
β and η, and the optimal configurations depending on η are drawn in a dashed
line. For instance, in Figure 3 the optimal configurations for three values of the
parameter η are presented. Note that the optimal configuration of the truss does
not depend on the value of the temperature θ and the thermal expansion coefficient
α.

(a) (b) (c)

Figure 3. Optimal configurations for (a) η = 0, (b) η = 4 and (c)
η > 8.

The present example illustrates the evolution of optimal design configuration
depending on the stiffness ratio . For the actuator not interacting with an external
body, the values η = 0 and β = 0 indicate the design, for which the maximal element
rotation and the presence of rotational hinges are required in the continuum to
promote the maximal deflection by the initial strain field. This case was analyzed
in the previous paper [6]. On the other hand, for increasing stiffness ratio η the
effect of the reaction force increases, requiring the stress carrying members oriented
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Figure 4. Topological derivative concept.

along the principal stress equilibrating the acting force, so the limiting configuration
tends to β = π

2 for η ≥ 8, thus resembling the familiar Michell structures composed
of bars carrying compressive or tensile forces.

1.2. Topological derivative concept. The model of coupled equations which we
are dealing with is linear elliptic, hence it is well posed from the point of view
of shape optimization. For numerical solution of optimum design problems it is
required to insert inclusions with different properties such as constitutive or heat
source, the new properties are characterized by contrast parameters. For numerical
solution of optimum design problems it is required to insert inclusions made from
different material, the new material is characterized by two contrast parameters for
elastic and thermal properties. The starting point of the numerical procedure of
structural optimum design is the evaluation of the topological derivatives for the
specific shape functionals which are taken into account for the optimization of the
structure. The robust formulas for the topological derivatives are important since
the precision of numerical evaluation of the formulas should be sufficient for the
identification of local minima or maxima of the derivatives.

In order to introduce these concepts, let us consider an open bounded domain
Ω ⊂ R2, which is subjected to a non-smooth perturbation in a small region Bε(x̂)
of size ε with center at an arbitrary point x̂ ∈ Ω. Thus, introducing a char-
acteristic function χ = 1Ω, associated to the unperturbed domain, it is possi-
ble to define the characteristic function associated to the topological perturbed
domain χε. Particularly, if the topological perturbation is a inclusion, we have
χε(x̂) = 1Ω − (1− γ)1Bε(x̂)

, where γ ∈ R+ is the contrast parameter, see Figure 4.

Then it is assumed that a given shape functional ψ(χε(x̂)), associated to the topo-
logical perturbed domain, admits the following topological asymptotic expansion

(1.10) ψ(χε(x̂)) = ψ(χ) + f(ε)Tχ(x̂) + o(f(ε)) ,

where ψ(χ) is the shape functional associated to the unperturbed domain, f(ε) is a
function such that f(ε) → 0+, with ε → 0+. A function x̂ 7→ Tχ(x̂) is the so-called
topological derivative of ψ in the point x̂. Thus, the topological derivative can be
seen as a first order correction factor over ψ(χ) to approximate ψ(χε(x̂)). Note that,
the shape functionals ψ(χε(x̂)) and ψ(χ) are associated to domains with different
topologies. Therefore, the unknown function Tχ(x̂) it is determined by performing
the topological asymptotic analysis (see, for instance, the book [17]).

In the following, we introduce the notation used in the paper for the contrasts,
which characterize the topological perturbation of the constitutive parameters and
heat source support. The continuous topological derivative is discretized for the
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purposes of the gradient type a level set numerical method. The structure under
considerations is defined in a subdomain Ω of the fixed hold all domain D ⊂ R2.
The characteristic function of Ω is denoted by χ. In the subdomain Σ ⊂ Ω the
heating source is applied. The characteristic function of Σ is denoted by χb. Thus,
within the numerical method the two characteristic functions are iterated in order
to achieve the local optimality of combined design. For a general description, it is
convenient to introduce two contrast functions γ and γb defined for our convenience
in D, the functions uniquely determine the domains Ω and Σ. Namely,

(1.11) γ(x) =

{
ρ0 if x ∈ Ω
ρ1 if x ∈ D \ Ω , , and γb(x) =

{
δ0 if x ∈ Σ
δ1 if x ∈ D \ Σ , .

where 0 < ρ0 << ρ1 and 0 < δ0 << δ1. In our analyses, we select ρ0 << 1, δ0 << 1,
ρ1 := ρ−1

0 and δ1 := δ−1
0 .

Remark 1.1. It is clear that the asymptotic analysis with respect to the coefficients
of the elliptic operator is involved. Such an analysis is simple in the case of the
source.

Remark 1.2. It is convenient to consider the evolution of the domain Ω during the
topological optimization in the whole hold all domain, that is why we can consider
the extensions of the contrast functions to the hold all domain D.

The topological derivative concept was rigorously introduced in [20]. Since then
this concept has been widely used in several research areas and engineering applica-
tions, see for instance the works by [10, 11, 3, 8, 7, 21, 1] and the books [17, 18]. In
particular, for the mathematical analysis related to the fully coupled piezoelectric
problem see [5]. In particular, in this work, the topological derivative Tχ(x̂) will
be used as a feasible descent direction in a computational framework for topology
optimization.

2. Problem Formulation

Let us now introduce the thermomechanical semi-coupled model. Firstly, consider
an open bounded domain D ∈ R2, with smooth boundary ∂D. Inside D is defined
the domain Ω of the structural part, such that Ω ⊆ D. Then, D is the so-called hold-
all domain. The displacement field in D is determined within the linear elasticity
with thermally induced stresses for isotropic materials. The temperature field is
described by the steady-state heat conduction equation. The state variables include
the displacement field and the temperature field. The shape functional which we
are dealing with is given by

(2.1) J (u) := −
∫

Γ⋆

e · u ,

where Γ⋆ is a part of the boundary ∂Ω where the displacement u has to be maximized
in a given direction specified by the unit vector e. The vector function u solves the
coupled system of boundary value problem, namely

(2.2) u ∈ V(D) :

∫
D
σ(u) · (∇ξ)s =

∫
D
ρβθdiv(ξ) +

∫
Γ⋆

ksu · ξ ∀ξ ∈ V(D) .
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The space of admissible displacements is defined as

(2.3) V(D) :=
{
ϕ ∈ H1(D) : ϕ|Γu

= 0
}
,

with H1(D) := H1(D;R2) and Γu is used to denote a part of the boundary ∂Ω
where the displacement u is prescribed. Also, in Γ⋆ is placed a spring with stiffness
ks. The parameter ρ in (2.2) is given by:

(2.4) ρ =

{
1 in Ω
ρ0 in D \ Ω .

The Cauchy stress tensor related to the total displacement gradient is defined as

(2.5) σ(u) := ρC(∇u)s ,

where (∇u)s is used to denote the symmetric part of the gradient of the displacement
field u, i.e.

(2.6) (∇u)s := 1

2
(∇u+ (∇u)⊤) .

In addition, C denotes the four-order elastic tensor given by

(2.7) C = 2µI+ λ(I⊗ I) ,

where µ and λ are the Lame’s coefficients. The coefficient β in (2.2) is defined as

(2.8) β = α(2µ+ 3λ) ,

and α is the thermal expansion coefficient. In terms of Young’s modulus E and
Poisson ratio ν, there are

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
.(2.9)

For plane stress assumption λ and β must be replaced respectively by λ⋆ in (2.7)
and β⋆ in (2.8), where

λ⋆ =
2µλ

λ+ 2µ
=

νE

1− ν2
, β⋆ = 2α(µ+ λ⋆).(2.10)

Moreover, the scalar function θ in (2.2) is solution to the following boundary
value problem

(2.11) θ ∈ H(D) :

∫
D
q(θ) · ∇η +

∫
Ω
bδη = 0 ∀η ∈ H1

0 (D) ,

where bδ is used to denotes a heat source applied in a region Σ ⊆ Ω. For our
convenience bδ is extended to Ω by the small parameter δ0:

(2.12) bδ =

{
1 in Σ
δ0 in Ω \ Σ .

See details of the coupled system in Fig. 5.
The set of admissible temperatures is defined as a cone in the Sobolev space

(2.13) H(D) :=
{
ϕ ∈ H1(D) : ϕ|Γθ

= θ
}
,
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Figure 5. Thermo-mechanical semi-coupled problem.

with Γθ used to denote a part of the boundary ∂D where the temperature θ is
prescribed by a given function θ. The heat flux vector is defined as

(2.14) q(θ) = −ρK∇θ ,

where K is a second order tensor representing the thermal conductivity of the
medium. In the isotropic case, the tensor K can be written as

(2.15) K = kI ,

being k the thermal conductivity coefficient. Let us also introduce the adjoint
problems in order to simplify further analysis. The mechanical adjoint problem
reads:

(2.16) v ∈ V(D) :

∫
D
σ(v) · (∇ξ)s =

∫
Γ⋆

(e+ ksv) · ξ ∀ξ ∈ V(D) .

The thermal adjoint problem is stated as

(2.17) φ ∈ H1
0 (D) :

∫
D
q(φ) · ∇η =

∫
D
ρβdiv(v) η ∀η ∈ H1

0 (D) ,

where v and φ denote the adjoint displacement and temperature.

3. Topology optimization problem formulation

In order to design thermo-mechanical devices, the shape functional J (u) was
proposed in eq. (2.1). The objective is to maximize the displacement u over Γ⋆ in
the direction e. Therefore, to obtain the topological sensitivity of the problem under
consideration it is necessary to define two classes of topological perturbations: (i)
in the mechanical state, and (ii) in the thermal state. Both cases are completely
independent.

3.1. Topological perturbation in the structural part. For this case of pertur-
bations, the disc Bε is introduced at x̂ ∈ D with constitutive properties characterized
by a contrast parameters γ given by (1.11).

By considering the definition of the constitutive properties and contrast param-
eters presented in (1.11) (see Fig. 6), the following theorem can be stated:
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Figure 6. Topological perturbation in the structural part.

Theorem 3.1. The topological derivative of the shape functional (2.1), for a topo-
logical perturbation characterized by the contrast parameters (1.11) is given by:

(3.1) Tχ(x̂) = −Pγσ(u)(x̂) · (∇p)s(x̂) + ρβ(1 + α1)
1− γ

1 + γα1
θ(x̂)div(v)(x̂)

− Pγq(θ)(x̂) · ∇φ(x̂)− (1− γ)bδφ(x̂) .

where the fourth- and second- order polarization tensors respectively denoted by Pγ

and Pγ, are defined as:

Pγ =
1− γ

1 + γα2

(
(1 + α2)I+

1

2
(α1 − α2)

1− γ

1 + γα1
I⊗ I

)
,(3.2)

Pγ = 2
1− γ

1 + γ
I .(3.3)

since the constants α1 and α2 are:

(3.4) α1 =
µ+ λ

µ
and α2 =

3µ+ λ

µ+ λ
.

Proof is given in Appendix.

3.2. Topological perturbation in the heat source. The aim of this case is to
design the support of the heat sources acting in the structural part of the device Ω.
To this end, the disc Bε is introduced at x̂ ∈ Ω, with a heat source characterized by
the contrast parameter γb, see Fig. 7. Therefore, the heat source for the perturbed
configuration for problem (2.11) is given by (1.11).

When a topological perturbation is only considered in the heat source, see (1.11),
the following theorem can be written:

Theorem 3.2. The topological derivative of the shape functional (2.1), for a topo-
logical perturbation characterized by the contrast parameter (1.11) is given by:

(3.5) Tχb
(x̂) = −(1− γb)bδφ(x̂) .

Proof is given in the Appendix.
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Figure 7. Topological perturbation in the heat source.

3.3. Topology optimization procedure. The optimization procedure is based
on representing the structural domain and the support of the heat source in a bi-
material fashion. The material distribution in D, Ω and Σ will be identified by
the characteristics functions χ and χb. The inclusions of weak (or less conductive)
material (γ < 1) are used to mimic the holes. Based on this approach, the properties
of the domains D, Ω and Σ, and its characteristics functions χ and χb, are correlated
with the contrast parameters γ and γb (see Figure 8). Note that the heat source
only can be applied on the structural part of the device (Σ ⊆ Ω). This condition
can be written as Supp(χb) ⊆ Supp(χ).

Figure 8. Bi-material distribution in the domains D, Ω and Σ.

A general optimization problem with a volume constraint on the structural part
can be stated as: Find the domains Ω ∈ D and Σ ∈ Ω (characterized by the
functions χ and χb, respectively) such that,

(3.6)

{
Minimize

χ,χb

Ψ(χ, χb) := J (u),

Subjected to c(χ) :=
∫
D(χ− V ∗)dx = 0,

where V ∗ is the required volume of the structural part at the end of the optimization
process.
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An efficient approach to solve problem (3.6) is the use of the method proposed
in [2]. The procedure relies on the level-set domain representation [19] and the
approximation of the topological optimality conditions by a fixed point iteration.
The topological derivative is used as a feasible descent direction to minimize the
cost function J (u). For completeness, in the following, some remarks about the
algorithm are detailed. For further details we refer to the work in [2, 3, 15].

• The definition of the domains lies on the level set functions ψ and ψb. The
design variables are no longer the characteristics functions χ and χb. In fact,
they are parametrized by the level-set ψ and ψb as

(3.7) χ(x) =

{
1 if ψ(x) < 0,

0 if ψ(x) > 0,
and χb(x) =

{
1 if ψb(x) < 0,

0 if ψb(x) > 0.

• In order to satisfy the constraint c(χ) = 0 an augmented Lagrangian method
is used, as in [4, 15]. Thereby, a Lagrange multiplier λ appears as a new
unknown, and a penalty parameter ρ must be provided. The optimization
problem (3.6) becomes the following saddle point problem,

(3.8) Maximize
λ

Minimize
χ,χb

Ψ(ψ,ψb) + λc(ψ) +
1

2
ρc(ψ)2 .

• An extended topological derivatives are defined as,

(3.9) g(x) :=

{
−Tχ(x)−max(0, λ+ ρc(ψ)) if ψ(x) < 0,

Tχ(x) + max(0, λ+ ρc(ψ)) if ψ(x) > 0.

(3.10) gb(x) :=

{
−Tχb

(x) if ψb(x) < 0,

Tχb
(x) if ψb(x) > 0.

• The optimality condition, see [2], is based on seeking ψ(x) parallel to g(x)
and ψb(x) parallel to gb(x). Thus, sharp interpolation schemes are used.
These schemes can be written for an iteration n+ 1 as

ψn+1 =
1

sin θn
[sin((1− κn)θn)ψn + sin(κnθn)

gn

||gn||L2

],(3.11)

ψn+1
b =

1

sin θnb
[sin((1− κnb )θ

n
b )ψ

n
b + sin(κnb θ

n
b )

gnb
||gnb ||L2

],(3.12)

where κn ∈ [0, 1] and κnb ∈ [0, 1] are a step size determined by a line-search
in order to decrease the value of the cost functional Ψ(χ, χb). To find κn the
level-set function ψb is kept fixed. On the other hand, to find κnb the level-set
function ψn is considered. The convergence criteria are based on the values
of θn and θnb , the angles between (ψn, gn) and (ψn

b , g
n
b ) , respectively, which

are obtained as

(3.13) θn = acos

[
⟨ψn, gn⟩

||ψn||L2 ||gn||L2

]
and θnb = acos

[
⟨ψn

b , g
n
b ⟩

||ψn
b ||L2 ||gnb ||L2

]
.

Note that, in this fixed point scheme, the topological derivative plays the role of
the gradient in the steepest descent algorithm. Regarding to numerical aspects, a
standard FEM is used for solving problems (2.2), (2.11), (2.16) and (2.17). Based
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on the above description, the main steps of the algorithm can be summarized as
following:

(1) Choose an initial level-set functions (ψ0 and ψ0
b , with Supp(ψ0

b ) ⊆ Supp(ψ0))
by defining the initial guesses for the design domains;

(2) Define the characteristic functions χ and χb according to (3.7);
(3) Define the constitutive properties and the heat source for the finite elements

in each domain associated with χ and χb according to (1.11) (see Fig. 8);
(4) Obtain the discretized fields u, θ, v and φ by solving, respectively, the

problems (2.2), (2.11), (2.16) and (2.17);
(5) Compute the topological derivative fields Tχ and Tχb

from eqs. (3.1) and
(3.5) at Gauss point of the finite element and perform a standard nodal
averaging procedure;

(6) Obtain the functions g(x) and gb(x) according to (3.9) and (3.10) by using
the nodal values of the topological derivatives and compute the θ and θb
angles with (3.13);

(7) Update the level-set function ψn+1 according to (3.11) and update the char-
acteristic functions χ and χb according to (3.7);

(8) Check convergence θn+1 ≤ ϵθ where ϵθ is a pre-specified convergence toler-
ance. If True: Next. If False: goto 3.

(9) Compute functional Ψ(ψn+1, ψn
b ).

(10) Update the level-set function ψn+1
b according to (3.12) and update the char-

acteristic functions χb according to (3.7);
(11) Check convergence θn+1

b ≤ ϵθ. If True: Next. If False: goto 3.

(12) Compute functional Ψ(ψn, ψn+1
b ).

(13) Select the pair of level-set functions (ψn+1, ψn
b ) for Ψn+1 if Ψ(ψn+1, ψn

b ) ≤
Ψ(ψn, ψn+1

b ). Otherwise, select the pair (ψn, ψn+1
b ).

4. Representative numerical simulations

To illustrate the applicability of expression for the topological derivatives Tχ,
Tχb

and the optimization procedure presented in the previous Section, two numer-
ical examples are presented. All them are solved under 2D elastic plane stress
assumptions. In all examples we consider the following constitutive properties:
E = 1GPa (Young’s modulus), ν = 0.3 (Poisson’s ratio), α = 1.0 × 10−6 K−1 and
k = 1.0W/mK. The contrast parameters are given by ρ0 = 1.0 × 10−4, which are
used to mimic the voids, and δ0 = 1.0 × 10−7. In the part of the free boundary
where nothing is specified, we consider homogeneous Neumann boundary conditions
in both problems (mechanical and thermal). The direction e is given by a unit vec-
tor on Γ⋆. The thermo-mechanical problem (2.2), the steady-state heat conduction
problem (2.11) and the adjoint equations (2.16) and (2.17) are solved by using the
standard finite element method. The initial mesh is generated from a regular grid
of size 20 × 12 square elements, where each resulting square is divided into four
triangles, leading to 960 elements. Then, four steps of uniform mesh refinement are
performed during the iterative process. In the figures, black and white are respec-
tively used to represent solid and void faces in the structural part and the existence
(or not) of the heat source in the thermal problem.
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4.1. Example 1: Amplifier. The first example is the optimization of a displace-
ment amplifier. This device is used to amplify the displacements in a given direction
generated by thermal effects. In particular, the design domain considered is pre-
sented in Fig. 9, in which only one quadrant of the complete domain is represented,
based on horizontal and vertical symmetry assumptions (the dashed-dot lines in-
dicate the axes of symmetry). The objective is the maximization of the outward
output displacement in the direction e on Γ⋆ in response to a thermal excitation im-
posed on Γθ. In this case, the boundary condition is given by a linear temperature
distribution on Γθ, as shown in Fig. 9(b). The material properties are optimized
in white subdomains, while in the light grey regions of Figs. 9(a) and 9(b) the
material properties are fixed. For this example, the desired volume fractions of the
structural part were fixed in 30%, 40% and 60% of the initial domain.

(a) (b)

Figure 9. Example 1. Domain and boundary conditions: (a) me-
chanical problem and (b) heat problem (dimensions in mm).

In Figs. 10 to 13 the obtained results for 30% of volume fraction are shown. In
order to analyze the results from a quantitative point of view we define an effective-
ness factor Λ := JΩ(uopt)/JΩ(uini), where uini and uopt are the displacements of
the initial and optimized configurations, respectively. The behavior of effectiveness
factor Λ with respect to the spring stiffness ks for different values of the thermal
source bδ is presented in Fig. 14. Note that the highest value of Λ is achieved for
the lowest value of ks independently of the thermal source magnitude, the volume
fraction and the topology. A physical explanation of this behaviour can be drawn
by considering that when the spring stiffness ks decrease, the amplifier in this point
is free to move in the desired direction. The influence of the thermal source is negli-
gible for high values of the spring stiffness ks. This behaviour can be explained due
to the high spring stiffness, in fact the spring generate a resistance to the movement
in this point that cannot be compensated by the expansion introduced by thermal
source.
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(a) structural part (b) heat source

Figure 10. Example 1. Obtained topologies for 30% of volume
fraction, ks = 1 × 10−4 [kN/mm] and bδ = 1 × 10−6. Structural
response η = 5× 10−6.

(a) structural part (b) heat source

Figure 11. Example 1. Obtained topologies for 30% of volume
fraction, ks = 1 × 104 [kN/mm] and bδ = 1 × 10−6. Structural
response η = 5× 102.

(a) structural part (b) heat source

Figure 12. Example 1. Obtained topologies for 30% of volume
fraction, ks = 1 × 10−4 [kN/mm] and bδ = 1 × 10−3. Structural
response η = 5× 10−6.
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(a) structural part (b) heat source

Figure 13. Example 1. Obtained topologies for 30% of volume
fraction, ks = 1 × 104 [kN/mm] and bδ = 1 × 10−3. Structural
response η = 5× 102.

(a) 30% of volume fraction (b) 60% of volume fraction

Figure 14. Example 1. Comparison of Λ vs. ks [kN/mm], for
different values of thermal source bδ.

Note that from the results presented previously, when the parameter η tends
to zero the main component of the optimal topology tend to a horizontal bar, see
Figs. 10 and 12. On the contrary, when η increase the main component tend to a
vertical bar, see Figs. 11 and 13. These conclusions are similar to the presented in
the motivational example in Section 1.1 and confirm the fundamental aspect of the
structural response parameter η.

4.2. Example 2: Inverter. The second example considers the same domain from
the previous experiment, however, the output displacement region Γ⋆ is changed
as depicted in Fig. 15. This apparently simple modification in the design domain
actually results in a completely different mechanism, since the optimizer seeks an
output displacement contrary to the natural movement of the thermo-mechanical
device. In addition, all symmetry assumptions remain valid and the boundary
condition for thermal problem is given by a linear temperature distribution on Γθ,
as shown in Fig. 15(b). The material properties are optimized in white subdomains,
while in the light grey regions of Figs. 15(a) and 15(b) the material properties are
fixed, as in the previous example.
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(a) (b)

Figure 15. Example 2. Domain and boundary conditions: (a) me-
chanical problem and (b) heat problem (dimensions in mm).

The obtained results for 40% and 60% of volume fraction are shown in Figs.
16 and 17, for a selected values of ks and bδ. The variation in the values for the
effectiveness factor Λ with respect to the spring stiffness ks and the thermal source
b for the obtained results are presented in Fig. 18. Note that the negative sign
for Λ indicates the inversion of the direction of the displacement. As analysed in
the previous example, the lowest value of Λ is achieved for the lowest value of ks,
independently of the thermal source magnitude, the volume fraction and the final
topology. Also, the influence of the thermal source value in Λ decreases for high
values of the spring stiffness ks.

(a) structural part (b) heat source

Figure 16. Example 2. Obtained topologies for 40% of volume
fraction, ks = 1 [kN/mm] and bδ = 1. Structural response η =
5× 10−2.
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(a) structural part (b) heat source

Figure 17. Example 2. Obtained topologies for 60% of volume
fraction, ks = 1 [kN/mm] and bδ = 1. Structural response η =
5× 10−2.

(a) 40% of volume fraction (b) 60% of volume fraction

Figure 18. Example 2. Comparison Λ vs. ks [kN/mm], for different
values of thermal source bδ.

5. Concluding remarks

In the paper a methodology for the optimal design of a thermo-mechanical device
are presented. For the optimal design procedure was considered as unknown the
topology of the structural part of the device and the support of the applied thermal
source. For this case, the topological derivative of the tracking-type shape func-
tional for the coupled models of thermo-mechanical type are derived in two spatial
dimensions. By introducing contrasts on the thermal conductivity coefficient, the
elastic modulus and the thermal source, an simple and analytical expressions of
the topological derivatives were obtained to be used in the topological design of
thermal-mechanical actuators. The information provided by Tχ(x̂) and Tχb

(x̂) can
be used as a steepest descent direction in an optimal design algorithm. To illustrate
this feature, two numerical experiment associated to the topology optimization of
actuators have been presented. These simples examples show the applicability of
the proposed methodology in the context of optimal design of thermal-mechanical
devices. Furthermore, we shown that the proposed methodology is able to design
the region where the heat source must be applied in order to maximize the efficiency
of the actuator. Also, a qualitative study of the influence of the spring stiffness in
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the optimal design and it’s efficiency was carried out. From this study, can be
concluded that the efficiency of the actuator decreases for high values of the spring
stiffness independently of the heat source value, final volume fraction and topology.
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Appendix A. Existence of the topological derivative

In order to prove the Theorems 3.1 and 3.2 we need technical results which are
given with proofs.

We recall that the scalar function θε solves the following perturbed variational
problem: Find the temperature field θε ∈ H(Ω), such that

(A.1)

∫
Ω
qε(θε) · ∇η +

∫
Ω
bεη = 0 ∀η ∈ H0(Ω),

where

(A.2) qε(θε) := −γTε K∇θε, bε := γTε bδ,

with the contrast on the thermal properties defined as

(A.3) γTε :=

{
1 in Ω \Bε

γT in Bε
.

Proposition A.1. Let θ and θε be solutions to (2.11) and (A.1), respectively. Then
we have that the following estimate holds true

(A.4) ∥θε − θ∥H1(Ω) ≤ Cε.

Proof. We start by subtracting the variational problem (2.11) from (A.1). After
some manipulations there is:

(A.5)

∫
Ω
qε(θε − θ) · ∇η = (1 − γT )

∫
Bε

q(θ) · ∇η + (1 − γT )

∫
Bε

bδη,

where we have used the fact that qε(ϕ) = q(ϕ) and bε = bδ in Ω \ Bε, and qε(ϕ) =
γT q(ϕ) and bε = γT bδ in Bε. By taking η = θε − θ as a test function in the above
equation we obtain the following equality

(A.6)∫
Ω
qε(θε− θ) ·∇(θε− θ) = (1− γT )

∫
Bε

q(θ) ·∇(θε− θ)+ (1− γT )
∫
Bε

bδ(θε− θ).
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From the Cauchy-Schwartz inequality it follows that

(A.7)

∫
Ω
qε(θε − θ) · ∇(θε − θ) ≤ C1∥q(θ)∥L2(Bε)∥∇(θε − θ)∥L2(Bε)

+ C2∥b∥L2(Bε)∥θε − θ∥L2(Bε)

≤ εC3∥θε − θ∥H1(Ω),

where we have used the interior elliptic regularity of function θ and the continuity
of the function b at the point x̂ ∈ Ω. Finally, from the coercivity of the bilinear
form on the left-hand side of (A.5), namely

c∥θε − θ∥2
H1(Ω) ≤

∫
Ω
qε(θε − θ) · ∇(θε − θ),(A.8)

we obtain the result with the constant C = C3/c independent of the small parameter
ε. □

The vector function uε is the solution to the perturbed coupled system, namely:
Find the displacement field uε ∈ V(Ω), such that

(A.9)

∫
Ω
σε(uε) · (∇v)s =

∫
Ω
βεθεdiv(v) ∀v ∈ V(Ω),

where

(A.10) σε(uε) := γMε C(∇uε)s = γMε σ(uε),

with the contrast on the elastic properties defined as

(A.11) γMε :=

{
1 in Ω \Bε

γM in Bε
.

Proposition A.2. Let u and uε be solutions to (2.2) and (A.9), respectively. Then
we have that the following estimate holds true

(A.12) ∥uε − u∥H1(Ω) ≤ Cε.

Proof. Let us subtract the variational problem (2.2) from (A.9), so that after some
manipulations we have:

(A.13)

∫
Ω
σε(uε − u) · (∇v)s =

∫
Ω
β(θε − θ)div(v) + (1− γM )∫

Bε

(σ(u) + βθ I) · (∇v)s − (1− γM )∫
Bε

β(θε − θ)div(v),

where we have used the fact that σε(ϕ) = σ(ϕ) and βε = β in Ω \ Bε, and σε(ϕ) =
γMσ(ϕ) and βε = γMβ in Bε. By taking v = uε − u as test function in the above
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equation we obtain the following equality

(A.14)

∫
Ω
σε(uε − u) · (∇(uε − u))s =

∫
Ω
β(θε − θ)div(uε − u) + (1− γM )∫

Bε

(σ(u) + βθ I) · (∇(uε − u))s − (1− γM )∫
Bε

β(θε − θ)div(uε − u).

From the Cauchy-Schwartz inequality it follows that

(A.15)

∫
Ω
σε(uε − u) · (∇(uε − u))s ≤ C1∥θε − θ∥L2(Ω)∥∇(uε − u)∥L2(Ω)

+ C2∥σ(u) + βθ I∥L2(Bε)∥∇(uε − u)∥L2(Bε)

+ C3∥θε − θ∥L2(Bε)∥∇(uε − u)∥L2(Bε)

≤ C4∥θε − θ∥H1(Ω)∥uε − u∥H1(Ω)

+ εC5∥uε − u∥H1(Ω),

where we have used the interior elliptic regularity of function u and the continuity
of the function β at the point x̂ ∈ Ω. From Lemma A.1 we have now

(A.16)

∫
Ω
σε(uε − u) · (∇(uε − u))s ≤ C6ε∥uε − u∥H1(Ω).

Finally, from the coercivity of the bilinear form on the left-hand side of (A.13),
namely

c∥uε − u∥2
H1(Ω) ≤

∫
Ω
σε(uε − u) · (∇(uε − u))s,(A.17)

we obtain the result with the constant C = C6/c independent of the small parameter
ε. □

Finally, the topologically perturbed counterpart of the mechanical adjoint prob-
lem (2.16) reads: Find the adjoint displacement field pε ∈ V(Ω), such that

(A.18)

∫
Ω
σε(pε) · (∇v)s =

∫
Γ⋆

e · v ∀v ∈ V(Ω),

while the topologically perturbed counterpart of the thermal adjoint problem (2.17)
is given by: Find the adjoint temperature field φε ∈ H0(Ω), such that

(A.19)

∫
Ω
qε(φε) · ∇η =

∫
Ω
βdiv(p) η ∀η ∈ H0(Ω).

Proposition A.3. Let p and pε be solutions to (2.16) and (A.18), respectively.
Then we have that the following estimate holds true

(A.20) ∥pε − p∥H1(Ω) ≤ Cε.

Proof. After subtracting the variational problem (2.16) from (A.18) we have:∫
Ω
σε(pε − p) · (∇v)s = (1− γM )

∫
Bε

σ(p) · (∇v)s,(A.21)
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where we have used the fact that σε(ϕ) = σ(ϕ) in Ω\Bε and σε(ϕ) = γMσ(ϕ) in Bε.
By taking v = pε − p as test function in the above equation we obtain the following
equality

(A.22)

∫
Ω
σε(pε − p) · (∇(pε − p))s = (1 − γM )

∫
Bε

σ(p) · (∇(pε − p))s.

From the Cauchy-Schwartz inequality it follows that

(A.23)∫
Ω
σε(pε−p)·(∇(pε−p))s ≤ C1∥σ(p)∥L2(Bε)∥∇(pε−p)∥L2(Bε) ≤ εC2∥pε−p∥H1(Ω),

where we have used the interior elliptic regularity of function p. Finally, from the
coercivity of the bilinear form on the left-hand side of (A.21), namely

c∥pε − p∥2
H1(Ω) ≤

∫
Ω
σε(pε − p) · (∇(pε − p))s,(A.24)

we obtain the result with the constant C = C2/c independent of the small parameter
ε. □

Proposition A.4. Let φ and φε be solutions to (2.17) and (A.19), respectively.
Then we have that the following estimate holds true

(A.25) ∥φε − φ∥H1(Ω) ≤ Cε.

Proof. After subtracting the variational problem (2.17) from (A.19) there is:∫
Ω
qε(φε − φ) · ∇η = (1− γT )

∫
Bε

q(φ) · ∇η,(A.26)

where we have used the fact that qε(ϕ) = q(ϕ) in Ω \Bε and qε(ϕ) = γT q(ϕ) in Bε.
By taking η = φε−φ as test function in the above equation we obtain the following
equality

(A.27)

∫
Ω
qε(φε − φ) · ∇(φε − φ) = (1 − γT )

∫
Bε

q(φ) · ∇(φε − φ).

From the Cauchy-Schwartz inequality it follows that

(A.28)∫
Ω
qε(φε−φ)·∇(φε−φ) ≤ C1∥q(φ)∥L2(Bε)∥∇(φε−φ)∥L2(Bε) ≤ εC2∥φε−φ∥H1(Ω),

where we have used the interior elliptic regularity of function φ. Finally, from the
coercivity of the bilinear form on the left-hand side of (A.26), namely

c∥φε − φ∥2
H1(Ω) ≤

∫
Ω
qε(φε − φ) · ∇(φε − φ),(A.29)

we obtain the result with the constant C = C2/c independent of the small parameter
ε. □
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Appendix B. Proof of Theorem 3.1

The reader interested in a complete development of the proof of this result may
refer to [6]. For completeness, the main ingredients of the calculation of the topo-
logical derivative Tχ(x̂) are presented in the following. First consider the variation
of the shape-functional (2.1) when a topological perturbation is introduced in the
domain, given by

(B.1) δJε(u) := −
∫

Γ⋆

e · (uε − u) ,

where uε is the solution of the perturbed counterpart of the problem (2.2). After
some tedious calculation, the variation δJε(u) can be written as:

(B.2)

δJε(u) = −1− γ

γ

∫
Bε

ρσ(pε) · (∇u)s

+ (1− γ)βρ

∫
Bε

θdiv(pε)

− 1− γ

γ

∫
Bε

δq(φε) · ∇θ

− (1− γ)δ

∫
Bε

bδφε.

where pε and φε are the solutions of the perturbed counterparts of the problems
(2.16) and (2.17), respectively. By applying classical asymptotic analysis technics,
see for instance [17], the stress and flux fields ρσ(pε) and δq(φε) inside the ball Bε

can be written as:

(B.3) ρσ(pε) = Pγσ(p)(x̂) and δq(φε) = Pγq(φ)(x̂)

where the tensors Pγ and Pγ are defined in (3.2)-(3.3). Next, the above results must
be introduced in the expression of δJε(u) and the regularity of the fields pε and φε

inside the ball Bε will be considered. The proof is completed by integrating theses
fields in Bε, dividing the result by πε2 and taking the limit ε→ 0+.

Appendix C. Proof of Theorem 3.2

Proof. The reader interested in a complete development of the proof of this result
may refer to [6]. For completeness, the main ingredients of the calculation of the
topological derivative Tχb

(x̂) are presented in the following. First consider the vari-
ation of the shape-functional (2.1) when a topological perturbation is introduced in
the domain affecting only the thermal source in problem (2.11), given by

(C.1) δJε(u) := −
∫

Γ⋆

e · (uε − u) ,

where uε is the solution of the perturbed counterpart of the problem (2.2). After
some tedious calculation, the variation δJε(u) can be written as:

(C.2) δJε(u) = −(1− γb)δ

∫
Bε

bδφε.



TOPOLOGY DESIGN OF THERMOMECHANICAL ACTUATOR 847

where φε is the solution of the perturbed counterpart of the problem (2.17). Next,
the regularity of the field φε inside the ball Bε will be considered. The proof is
completed by integrating this field in Bε, dividing the result by πε2 and taking the
limit ε→ 0+. □
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