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A TURNPIKE RESULT FOR CONVEX HYPERBOLIC OPTIMAL
BOUNDARY CONTROL PROBLEMS

MARTIN GUGAT

ABSTRACT. In this paper the turnpike phenomenon is studied for problems of
optimal boundary control. We consider systems that are governed by a linear
2 x 2 hyperbolic partial differential equation with a source term. Turnpike results
are obtained for problems of optimal Dirichlet boundary control for such systems
with a convex objective function that depends on the control and the boundary
traces of the system states and is strongly convex with respect to the control.
In the problem we also allow for an additional convex inequality constraint. We
show that asymptotically for large 7" the influence of the initial state becomes
smaller and smaller in the sense that the L?-norm of the difference between the
dynamic optimal control and the stationary control that solves the corresponding
static optimal control problem remains uniformly bounded for arbitrarily large
T. As an application, we consider gas pipeline flow.

1. INTRODUCTION

The turnpike property has been discussed by P. A. Samuelson in mathematical
economics in 1949 (see [5]). Since this time, the turnpike phenomenon for optimiza-
tion problems has been analyzed in various contexts, see for example [21] and [4].
In the area of infinite dimensional control problems the turnpike phenomenon has
been investigated later, for example in [20]. For optimal control problems with par-
tial differential equations see [18] or [15], where distributed control is considered for
linear—quadratic optimal control problems. In this paper, we analyze the turnpike
phenomenon for the case of problems of optimal boundary control governed by a
2 x 2 hyperbolic partial differential equation. We present turnpike results that state
that the normalized L?-norm of the difference between the optimal dynamic control
and the optimal static control on the time interval (0, T") converges to zero as the
time-horizon T tends to infinity. Problems of optimal boundary control with hyper-
bolic systems have been considered in [9], where linear—quadratic optimal control
problems with the wave equation are studied. In this paper, we consider a sys-
tem that is governed by a 2 x 2 linear hyperbolic equation. In [7] we have already
shown turnpike results for such a system for problems of optimal Dirichlet boundary
control with quadratic objective functions and zero initial state. In this paper we
show turnpike results for problems of optimal Dirichlet boundary control with more
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general convex objective functions and arbitrary initial states and allow for convex
inequality constraints.

Our study is motivated by boundary control problems with hyperbolic systems as
described in [1] with applications in the control of gas flow in pipelines, water flow
in channels and traffic flow. In [17], both integral- and measure—turnpike properties
are considered. In this paper, we consider integral-turnpike properties.

This paper has the following structure. First we introduce some notation and
define the dynamic optimal control problem. Then we derive the corresponding
necessary optimality conditions, using the adjoint operator that corresponds to
the initial boundary value problem. We define the static optimal control problem
and derive the corresponding necessary optimality conditions. Then we state the
turnpike result. For the proof, we need several auxiliary results. We show that
certain operator norms remain uniformly bounded with respect to time. Moreover,
for constant (that is time-independent) inputs, certain operators generate outputs
whose norms on the time interval remain uniformly bounded with respect to time.
Our auxiliary results allow us to give a rather concise proof of the turnpike theorem.
At the end of the paper, we discuss the control of gas pipeline flow as an application.

1.1. Notation. Let alength L > 0 and a time interval [0, 7] be given. Let functions
d_ and dy € C*(]0, L]) be given such that for all z € [0, L] the inequality d_(z) <
0 < d4(x) holds. Define the (z-dependent) diagonal matrices

C(dy 0 , (0 (e 0
D_<O d_>’D_<O J and |D| = 0 ld| )
For all z € [0, L], let M(x) denote a symmetric 2 x 2 matrix that depends continu-

ously on x. Let 1y be a real number such that 79 < 0. Assume that for all z € [0, L]
the matrices

(1.1) |D| M + M |D|

and thus also |D(z)|™' M (z) + M (x) |D(x)|~! are positive semi-definite.

Let an initial state r% = (r%, %) € (L?(0, L))? be given. For ¢ € (0,T) and
x € (0, L) we consider a system that is governed by the initial boundary value
problem

r(0, z) =10,
re+Dry=mn9Mr,
re(t 0) = s (1)
r—(t, L) = u_(t).

(1.2)

For uy, u_ € L%(0, T), system (1.2) has a solution r € C([0,7], L?((0, L); R?)).
Moreover, for the boundary traces of the solution we have ri(-, L), r_(-,0) €
L%(0, T). This follows with a Picard iteration along the characteristic curves similar
as in [11], [12].

Remark 1.1. An example for a system of the form (1.2) are the linearized Saint-
Venant equations that can be used as a model for the flow of water through channels,
see [2].
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For z = (x4, z_) € R?, we use the notation ||z|gz = y/2% +2%. For T > 0
define the Hilbert space

H(T) = L*(0, T) x L*(0, T)

with the scalar product (u, v) g () = f(;f u' (1) v(r) dr and the corresponding norm

Nl ey = </0T [u(T)| 3 d7'>

1.2. A dynamic optimal control problem. In this section we define our problem
of dynamic optimal Dirichlet boundary control with the hyperbolic system (1.2).
Let the function f: R* — [0, co) be convex.

Assume that f is continuously differentiable. For the partial derivatives of f with
respect to the first two components we use the notation f, = (fu,, fu_). For the
partial derivatives of f with respect to the last two components we use the notation
fr= (fR+’ fr_)

We assume that f is strongly convex with respect to the first two components
(these will later be the components of the control «) in the sense that there exists
a number s > 0 such that for all uy, us, r1, ro € R? we have

(1.3)  [fulus, 1) = fuluz, r2)]" (ur — us) + [fr(u, 11) — fr(uz, 12)]" (11 — r2)
> £ [lur — ugl|Re-

Assume that for all u, r € H(T) we have f(u(:), r(-)) € L*(0,T). For u =
(ug, u—) € H(T) and the generated state r = (ry, r_) that solves (1.2) define the
objective function

T
(1.4) Jr(u) = /0 flug (), u—(7), r4(7, L), r_(7, 0)) dr.

Then Jr is strongly convex in the sense that there exists a constant x > 0 that is
independent of T such that for all 7' > 0 and all u, v € H(T') we have

(1.5) (Jp(u) = Jp(v), w = 0) gy > Ellu = vll5 -

Note that (1.3) holds for example if f is strongly convex (see [13]). It also holds
if f(u, ) = g1(u) + g2(r) with a strongly convex function g; and a convex function
g2.

The choice of the objective function is motivated by the situation in the opera-
tion of transportation networks such as gas pipeline networks where the customer’s
preferences depend on the input and the output at the boundary nodes. The objec-
tive function in this application is determined by the desired nodal profiles, see also
[8]. The quadratic objective function for the optimal Dirichlet boundary control
problem with the wave equation studied in [9] has a similar structure.

Let a convex continuously differentiable function Gr : H(T) — R be given.
Define the convex set Kr = {u € H(T) : Gr(u) < 0}. Assume that there exists a
SLATER point ug € R? such that for all T > 0 we have Gr(ug) < 0. Assume that
for all 77 > 0, T5 > 0 we have

(1.6) Kr, NR? = Ky, NR%

1/2
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Remark 1.2. For optimal control problems without additional constraints, define
Gr=-—1.
We consider the dynamic optimal control problem

in .J
(1.7) g Jriw)
subject to (1.2).

Due to the strong convexity assumption (1.3) the existence of an optimal control
follows with the Direct Method of the Calculus of Variations.

1.3. An adjoint operator. For the analysis of the boundary control problem, the
study of certain adjoint operators is essential. For a given time T > 0, we define
the operator Fr (u, r¥) that maps the initial state r® and the boundary control
u= (uy(-), u—(-)) € H(T) to the boundary trace (r4(-,L), r—(-, 0)) € H(T) of the
solution of the linear initial boundary value problem (1.2). Thus we have

u ()

(1.8) Fr u58 _ ( :+ELO; )

Lemma 1.3 states that the operator norm of Fr is uniformly bounded with respect
to T.

Lemma 1.3. The operator Fr is uniformly bounded with respect to T as an operator
from the Hilbert space H(T) x (L*(0,L)?) to H(T). For the corresponding operator
norm of Fp for all T > 0 we have

1.9 Fril < 1 - : '
(1.9) IE || _max{ ’Ig[%?u{\/dgx)’ \/Id—(:r)|}}

For the operator Fr (u) = Fr (u, 0) we have ||Fr| < 1. Moreover, we have

1.10 Fr(0, r° < 1 1 } 0 .
L10) O < s {h ke LI s

Proof: Let uy, u_ € L?(0,T) be given. Let r,, r_ denote the generated solution
of (1.2). Due to (1.2) we have

lullr ) — 1Pz (7 e

_ /T P (8,002 41— (t, L)% — ro (£, 1) — r_(t,0)% dt
° T L
= —/ / (r+(t,x)2)m - (r,(t,m)Q)m dx dt
0 0

T L
= —/ / 2r"|D|"' Dr, ddt
0 0

T L
= / / 21D vy + 2| mo| T | DT M da dt.
0 0
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Hence due to (1.1) we have

allZzery = I1F7 (s 7)1y

L T
— //<rTyD|1r>t+2|n0|rT|Dyerdtda;
0 0
L T L T
= / (T‘T|D’_1T)‘ +/ / 2no|r" |D|7M r dt dx
0 t=0 o Jo
L L
_ / rT(T,:v)|D|_1r(T,:L‘)dx—/ ()T ()| DL (2 da
0 0
L T
+ //z\no\rT\Dy—erdtdx
0 0

L
> —/( )T (@)D () de

+ / / [Imol (ID|™* M + M|D|™")] rdt dx
> — sup > p / dx
ez e (@)

Hence (1.9) and (1.10) follow.
We are interested in the adjoint operator F7. that satisfies for all zp € H(T) =
D(F}) the equation

(1.11) <FT (’LL, T’O), ZT>H(T)

_ [ Fr(2r)(t) g Fr(zr)(z)
- /0 (u(t), < Fg(;)(t); >>R2 dt + /0 (=), < Fg(zf;)(x)i )>R2 dx

where (-, - )g2 denotes the usual scalar product in R%. Due to (1.9) we have the
inequality

(1.12) IE7] < maX{ ,x:[léPL]{\/CT \/—}}

Similar as in [3], we determine F}. in the following lemma.
Lemma 1.4. For zr = (21, 21) € D(F;) = H(T), define z = (24(-), z—(-)) as the
solution of the adjoint system (where (t, x) € (0, T') x (0, L))
z2(T, ) =0,z € (0,L),
) 2t ) + D() 2a(t, 2) = ] M(x) = D'(@)] 2(1, ),
' 24 (t, L) = (L) 21 (1),
2 (t,0) = 7(0” 2L ().

Then we have

(- 0)
(1.14) Fx < Z%O ) _| o L>|z_<',L;
)
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Proof: Let r denote the solution of (1.2). Using integration by parts we obtain
the equation

0 = / (z, 1t + Dry —no M r)ge dx dt
0

T

L L
—r zydx dt + / {T(t, z)" 2(t, x)} ‘ dx

J .

/ T Dzwdzcdt—/ / r' D zdxdt
L

i

{(t, z)" D(z) 2 (t,w dt—/ / nor' M zdx dt

/ —r" [z 4+ D2y + D' 2+ ng M z] dzdt

J
J
-/
/
J

L

0
oT :
+ [ [T D@ s ]| a0 (0, )

Due to (1.13) this implies
T L
0 = / {r(t, z)" D z(t, x) :1: / x)dx
0 0
T T
_ / do 2 (t, 2) s (t, 2) 0dt+/ d_ 2 (t, 2)r_(t, 2)|"_, dt
0 0

L
— /ro(x)Tz(O,x)dac.
0

Thus we have

T
(1.15) /0 o (0) 24 (£, 0) 1 (£, 0) + d_(0) = (£, 0) r_(t, 0) dt

=0

/T dy (L) z4(t, L) ry(t, L) +d_(L) z—_(t, L) r_(t, L) dt
0

L
—/ (z)" 2(0, z) dx.
0

Due to the definition of Fr and (1.13) this implies the equation
T
/ (Fr (u, r°)(t), zp(t))ge dt

- /T (t, L) 2L (t) + r_(t, 0) 2L (t) dt
0

!

_ /0 dy (L) o (t, L) 24 (t, L) + |d_(0)| r_(t, 0) 2 (¢, 0) dt

T
_ /0 Ay (0) 74 (£, 0) 24 (£, 0) + |d_(L)| r— (¢, L) =— (¢, L) dt
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L
+ / r(z)" 2(0, z) dx
0
T
- / w (1) A (0) 2 (1, 0) + u_(t) |d_(L)| (¢, L) dt
0

L
0(N\T
+ /Or(x) 2(0, x) dx

5) )
H(T)x(L*(0, L))?

Hence (1.11) holds.

1.4. Necessary optimality conditions for the dynamic problem. In order
to determine the structure of the optimal control u(>T) that solves the dynamic
optimal control problem (1.7) we look at the necessary optimality conditions. Due
to the definition of the convex admissible set K7 and the assumed Slater condition
u®T) can only solve (1.7) if there exists a multiplier p(>™) > 0 such that the
complementarity condition

(1.16) pO Gru®T) =0

holds and with the Fréchet derivatives J/. and G/ we have
(1.17) Jp(u® Ty = —pOD Gl (w1,
For all w € H(T) and r that satisfy (1.2), we have

T
(1.18) Jr(u) = /0 fu(t), Fr(u, 7)) dt.

Let @ = u + 61 with a control variation 6() € H(T). Let Fr be as in Lemma

- 7. .
1.3. Then Lemma 1.4 implies F7 < 2}8 ) — < ’dd-q(-éo)i ?_E’LO; ) . Since Jr is

convex, we have

T
Jr(a) = Jr(u) +/0 Fulw, Pr(u, ) 6W + fr(u, Fr(u, r°) Fp(sM) dt

T
:hw+/[n@mmm%+@h@m@m%pmﬁ
0
This implies
Jp(u) = fulu, Fr(u, %)) + Ff fr(u, Fr(u, r°)).
Hence (1.17) yields the optimality conditions that are stated in the following lemma.

Due to the convexity of the problem, they are necessary and sufficient (see also the
Lagrange multiplier rule as e.g. in [14]).

Lemma 1.5. The control u®T) is a solution of the dynamic optimal control problem
(1.7) if and only if there exist a multiplier

(1.19) pO") = B (fr®™), Fr ("), 1)) € H(T)
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and a multiplier u(57 T) > 0 such that the optimality system

(1.20) Fu@® T Pr (@D 10)) +pO@T) = =T Gl (u 1))

holds, that is for (t, :c) € (0,T) x (0, L) almost everywhere we have
(

RG:T)(0, x) —7"0

R
R(E % 0) = uf® » <t>,
(1.21) o T)( ) - 0
(Z ,T) + Dp( T) _ [_nOM _ D,] p(5,T)’
PO L) = i fr, (D), RO (1)),
4,
PO, 0) = gy fao (D (1), ROD())
and

4,
(1.22) { Fur D (1), ROT(1)) + .. (0) p! (%)t 0) = =T G (ul® ).,
Fu (@O (1), ROD(0)) +[d—(1)|p (8, L) =~ ) Glp(ul® )
1.5. A static optimal control problem. In the static optimal control problem

the initial boundary value problem (1.2) is replaced by the boundary value problem
with an ordinary differential equation

DR (z) = 1y M R (),
(1.23) R (0) = ul?,

(o)
with € (0, L) and u(®) = ( u?;) > € R2. The static optimization problem that
ul
corresponds to the dynamic optimal control problem (1.7) from Section 1.2 is
(1.24) min, o) ezzng, £, RY(L), R(0))
subject to (1.23).

Due to assumption (1.6) for all 7' > 0 problem (1.24) is equivalent to

(1.25) min, o) cgznie, f (0, RE (L), R (0))
subject to (1.23).

1.6. An adjoint operator for the static problem. We define the static operator
F )(u( ) that maps the boundary control u(?) = (ugf) (0)) € R? to the point

(ry @) (L), r )(0)), where (%) solves the linear boundary value problem (for z €
(0, 1))

r,(f) =ny D! M (@),
(1.26) r0) = !,
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Thus we have

NG N
(1.27) Fio ( "t ) = ( :(0)((0; ) .

In Lemma 1.6 an explicit representation of the adjoint operator F7 is given that

satisfies for all z € R? the equation (F(,) (u'?)), 2)ge = (ul?), F(*;)(z)mz.

Lemma 1.6. For z = (z,, 2. )T € R?, define (zsra)(-), 27()) € (€0, L))? as
the solution of the adjoint system

(1.28) A(L) = 7 24
) (0) = |d,1(0)\ z_

Then we have

[ a0 290
(1.29) Foy < 2 > - < |d_(+L)|zT’)(L) )

Proof: Due to (1.26) we have the equation

o= [ (@) [Dre) — o 21 o

_ /0 (@) D s /0 (@) D de

+ [(2(‘7) (:B))T D7) (SL‘):| LO - /OL (r("))T no M 2\ da

— _/OL (M"))T (ng(f)—l— [D’—|—770M] z(")> dz + [(z(a)(@)'l' DT’(U)(J;)]

Due to (1.28) this implies

L

x=0

= 2 (z ! ) (& '
0 [( @) b ()] B
= dy(2) 27 (@) @)k + do(2) 27 (@) r' 7 (@) |,

Thus we have
d;.(0) 27 (0) {7 (0) + d_(0) 27 (0) 7 (0)
= dy (D)) L) +d_(L) 27 (L) (L),
This implies the equation
(Floy(u), 2)pz = (L) 20 +7(0) 2
do (L)L) 29 (L) + [d—(0) 7 (0) 27 (0)

= d(0)r{7(0) 2(0) + d_ (L) 77 (1) 2(L)

= d(0)2(0) +u' |a_ (L) 27 (1)
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= (W, Fy(2)ge
with F (*U) as defined in (1.29). Hence the adjoint operator F(’;) is indeed given by
(1.29).

1.7. Necessary optimality conditions for the static problem. Let u(?) de-
note the optimal control that solves (1.24) and R the state generated by u(?)
as a solution of (1.23). Due to the definition of the convex admissible set K7 and
the assumed Slater condition u(®) can only solve (1.25) if there exists a multiplier
1%T) >0 such that the complementarity condition

(1.30) 1D Gr(u)) =0
holds and we have
(1.31) Fuwl®, Fioy (@) + i fr(u'), Fioy(u'))) = =) Glp(ul).

This is equivalent to the optimality system
DRY) = po MR,
o0~
R(L) = u,

(1.32) D P = (D 4y M] PO,
POL) = gty “’% Flo) (u()),
P90) = — (OlfR (u®), Figy (u®)))
and
(1.33) { Fus (W), Frgy (u()) + i (0) P(0) = —u@T) Glp(ul@)),
Fu_ (W, Fioy (u)) + |d_(L)| P(L ) M" ) Gl ().

2. A TURNPIKE RESULT

In this section we show that the optimal controls that solve the dynamic optimal
control problem (1.7) and the corresponding static optimal control problem (1.24)
satisfy a turnpike inequality in the sense that there exists a constant (5 > 0 such
that for all T > 0 we have the inequality

1 1 2 C

The norm on the left—hand side is divided by T in order to normalize it, in the sense

that for a constant function ¢ we have % fOT c2dt = 2 for all T > 0. Note that the
turnpike inequality (2.1) implies that

1 (T
(2.2) lim / u®N (1) dr = u'?).
0

T—o00

This means that asymptotically for T' — oo the average value of the dynamic
optimal control converges to the optimal static control. In fact the convergence is
of the order \/T Now we state our main turnpike result.
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Theorem 2.1. Assume that the gradients fr are Lipschitz continuous in the sense
that there exists a Lipschitz constant L; such that for all T > 0 for all ui, us € K,
Ry, Ry € H(T) we have

(23)  |lfr(ur, Ra) = frlun Ro)llfyery < I (lus = ualiry + 1 Rs = Ralifis))

Then there exists a constant (o > 0 that is independent of T' such that for oll T > 0
the turnpike inequality (2.1) holds.

Remark 2.2. To be more precise we give an explicit representation of (y. Define

2.4 - Su
25 — 1 1 F “(0)
( ) C1 = S[ui) ]{ FZT )7 /7| 1 ( )l} || (0) )”(L2(O,L))27

(26) e = max{ds(0), [d_(L)[} [ Fy) Fa(u®, Foy @)2iago, 1y
Then

Vi = i (\/(02 +2 Li(co + c1))? + 4k Li(co + 1) = 2 Li (co + c1) — 02> '

This can be seen in the proof of Theorem 2.1. Note that if HT‘OH(LQ(Q 1))2 tends to-

wards infinity, also ¢y becomes arbitrarily large which implies that also 1/(y becomes
arbitrarily large.

Example 2.3. The assumptions of Theorem 2.1 are valid for the linear quadratic
case where f(u’ R) = (u+a u—, R+, R*) A (u+7 U—, R+7 R*)T + ol (U+, U—, R+7 R*)T
with a positive definite matrix A and a vector v € R%.

For the proof of Theorem 2.1 we need an auxiliary result that we present in the
next section.

3. ON THE DIFFERENCE OF THE DYNAMIC AND THE STATIC ADJOINT OPERATOR

In this section we show that the application of the difference of the dynamic and
the static adjoint operator to a static input yields an output that decays exponen-
tially backwards in time from T to O.

Lemma 3.1. For h € R? define the number

(3.1) Co(h) = max{d-(0), |d—(L)[} [ Fshll2(0. 12
Then for all T > 0 we have the inequality

T - 2
(3.2) /O H ((FT - F(U)) h) (7‘)HR2 dr < Cy(h).

Proof: For ¢t € [0, T, let z be defined as the solution of

2T, x) = —Fj,)h, © € (0,L),

zi(t, ) + D z5(t, x) = [-D'(x) — no M (x)] z(t, x),
Z+(t, L) = O,

z_(t,0) =0.

(3.3)
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We have
|((B5 — 72 ) @[, = 1640 24.,0), (D) =5, L)) o

Similar as in the proof of Lemma 1.3 we have
dy (L) 24 (t, L) d+(0) z+.(t, 0)
(&t o>> S [Exiny
= /T dy (L)% 24 (t, L)? + d_(O)2 z(t, 0)% —di(0)2 24 (t, 0)* —d_(L)* z_(t, L)*dt
0T L,
= /0 /0 (z \D|Dz)z dz dt

T /L
= / / 22" |D|D 2z, +22" |D| D' zdxdt.
o Jo
Due to (3.3) this yields

(G 10D

T rL
= / / ~22"D|z+22"|D| [|no| M — D'] 2+22" |D| D’ zda dt
0 0

L T T L
_ / —<2T|D]z>‘ dyc—i—2/ / 2T ol |D| M = dz dt
0 =0 0o Jo
L L
= / 2"|D| z) (0, z) dx / (2T|D| z) (T, z)dz
0 0

T L
+ / / 2|no| 2" | D| Mz da dt
0 0

= /OL <zT\D] z) (0, ) dx — /OL (ZT\D’ Z) (T, ) dx

T L
+ / \770| (|ID| M + M |DJ)] z dx dt
0 0

L
—/0 (zT|D]z) (T, z)dz

where the last inequality follows with (1.1). Since z4(¢, L) = 0 = z_(t, 0), this
implies

/OT (55— ) 1) ) a7 < masta 1oy /OL |22, @))% da.
Thus (3.2) follows.

2

H(T)

2

H(T)

Y

4. PROOF OF THE MAIN RESULT

Our auxiliary results allow us to prove Theorem 2.1.
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Proof of Theorem 2.1. Due to the optimality conditions (1.20) for the dynamic
problem (1.7) we have
(4.1)

Fu® ), Fp 0T, 1)) 1 B fa(u® D), Fr(®), 19)) =~ G (D)

Due to the optimality conditions (1.31) for the static problem (1.24) we have
(4.2) Fuu?), Fioy () + Fio fr(ul?), Foy (u(9)) = =l G (u').

Due to (1.16), (1.30), the convexity of G and since p®7) > 0 and p(®T) > 0 we
have

(4.3) PTG (W), (@) — D) gy <0,
(4.4) p TG (u ), u®T) — ul) oy < 0.
The difference of (4.1) and (4.2) yields the equation
(4.5) Fu@® D Pr @D 10)) — f,(ul?, Fipy (ul?))

Fi o', Floy (ul?)) = B fr@®™), Pp(u®™), 10))
+ul2 D) G (u)) — pOD Gl (ul® D).

Define the numbers

T T

Lo = [ (4P6) ) (RO, Fr @D, 19) ~ L, Ry () a.
T T

L= [ (B @D, ) oy )
0

(3D, Br (@, 1) ~ o), By () dr.
The strong convexity assumption (1.3) implies the inequality
T 2
(4.6) Lo+ L >k / (u(‘s’ D7) - u(a)) dr.
0

Equation (4.5), (4.3) and (4.4) imply

tos [ (1606 - )|

( )[R, oy (u)) = Ff frw® ™), Pr(u®™), TO))) dr.

Hence we have

Ly < /0 ' (u@vT)(T)_u(a))T
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(Fr®, Fioy () = fr(® ), Pr(u®D, 1)) dr
T T .
o B GRCER) (Fg:,)—F;) TR, Fig) (ul)) dr.

With the definition of L; this implies
T
< [ (Br (w0 0) = i) = Br (T, 1) + By (u)
0
(fR(u(U)v Foy (ul)) = fru®T), Fp(u®T), TO))) dr
T T -
+ / (6,T) u ) (Fr = Fr) fr(®), Flyy (ul?))) dr
; (u ) ) (Fo - ) («)
With the definition of the linear operator Fr = Fr(-,0) this yields
T T
LQ + L1 < / <F(U) (u(")) - FT(U,(U), 0) - FT(O, 7"0))
0
(fr(el?), Figy (w™)) = f(®T), Pr(u®D), 1)) dr

T T N
[ (O =) (R = Fi) fal®, Fo (u) dr
= Ry+ Ri+ Ry

-
Lo+ Ly

T
Ro:/o = (Pr(0,") " (fr(u), Fgy (u)) = fr(u “’T),FT(W’T),TO))) dr,
Ri= /0 ([ = Br] ) (Fau®, By () = @™, Fr(a®™), %)) ar,

T/ s T _
R22/0 (u( D (7) — u(g)) {FE’;) - Ffi} Fr(u'), Flo) (u'?))) dr.
Hence (4.6) yields the inequality
T 2
(4.7) K / (u(‘i (r) - u(")) dr < Lo+ Ly < Ry + R + Ry.
0
The assumed Lipschitz condition (2.3) implies that
| £r(), Figy @) = fr(®D), Pr(u®T), 1)

2

H(T)

< L (HU((S’T) —u |y + 1 Fr(u®T)), %) — Fp (u(a))HfH(T)> :

Hence we have

| £r(), Fgy (@) = fr(@® D), Er(u®D), 1))

< Li (1D = u @y + |1 Br (@D = )

H(T)

+Fp(0, r°) + [FT - F((,)} U(J)HH(T))
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< Li (1418l T = u@l ey

+ L (172, 1)y + 1| [Fr = Fiop | 4 )

Due to (1.10), for

— 1 1 0
w:= s Vaw v I lesony

we have ||[Fp(0, °)|| gy < co. Define

(0))

l(z2(0, L))2-

= 1 L F
“ mg[l(lJPL}{\/dNﬂf)’ \/Id—(r)\} | Fioyu
We have
|Fr = Figy| ) = Pr(0, —Fpu®).

<
H(T) — “

Since ||Fr|| < 1 this yields the inequality
| £, Figy @) = fr(®D), Pr(u®D), 1)

Hence (1.10) implies H [FT — F(a)} u(®)

H(T)
< L; (2 @) — U(U)”H(T) +co+ cl)

Now we derive an upper bound for Ry. We have

RO < LZ' Co <2 Hu(é’T) — U(U)

+co + Cl> .
H(T)
Similarly, for R; we obtain the upper bound

Ri<Lie (z [ 6T~

+co + Cl) .
H(T)
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Now we derive an upper bound for Ry. Define co = C,(fr(ul"), Flo (ul@)))).

Due to (3.2) in Lemma 3.1 we have

| (Fioy = F2) ot Fy )], <

H
Then
Ry < o Hu(‘s’ ) _ o) )
H(T)
Now (4.7) yields the inequality
2
(4.8) K Hu(‘s’T) —ul?)
H(T)

< L; (co+ 1) <2 Hu(‘S’T) — @)

+co+ C1> + co Hu((S’T) — U(U)

H(T)
Define the polynomial

P(z) = kax®— (ca+2L; (co+c1)) z—L; (co +C1)2-

H(T)
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Then the set M = {z € [0, 00) : P(z) < 0} is bounded and there exists a number
Co > 0 such that M = [0, \/(p]. Since (4.8) implies Hu(‘;’T) — u(U)HH(T) € M, this
implies the inequality

Huw, T) _ ()

<
H(T) — CO

and inequality (2.1) follows. Thus we have proved Theorem 2.1.

5. APPLICATION: (GAS PIPELINE FLOW

In [10] we have stated a quasilinear model for isothermal gas pipeline flow and
derived the diagonal form with the corresponding Riemann invariants. The eigen-
values of the system matrix are ¢ + v and —c + v, where ¢ > 0 is the sound speed
in the gas which is constant for ideal gas and v is the speed of the gas flow. Note
that in gas pipeline operations, |v| is much smaller than ¢ in order to a avoid strong
fluid structure interactions. Hence as a simplified approximation to our model we
can consider the system in diagonal form with the constant eigenvalues d; = ¢ and
d_ = —c. Then in terms of the Riemann invariants the simplified system has the
semilinear form R; 4+ D R, = F(R) with a nonlinear function F. If we linearize the
system, that is the source term F around a stationary state R with D R, = F(R),
for r = R — R we obtain the system r; + Dr, = F/(R)r. For the model from [10]
we obtain

F'(R) = —20|R,(z) — R_(z)| ( _1 _i )

where 6 > 0 is a constant. With the choice ng = —26 and the matrix
_ _ 1 -1
M) = Re) - R@ (] )

we have F'(R) = no M and M is positive semidefinite. Since |D| = ¢, assumption
(1.1) holds.

The pressure in the gas is given by exp (% (7’+ +7r_+ Ry + R_)) and the gas
velocity is proportional to 7, —r_ + R, — R_. A possible strictly convex objective
function for the entry at = 0 that describes desired values for the pressure (with

a transformed value pges;) and gas velocity (given by vges;) is is

2 2
fO(rJrvr*) = (% (?"+ + T*) - pdesi) + (% (T+ - T*) - Udesi) .
A possible strictly convex objective function for the exit at = L that describes a
desired state is

= 2 = 2
frlre,ro) = (r4 = Re(L))" + (r— — R—(1))".
For the optimal control problem, we combine the two functions fy and f;, and obtain
with A € (0, 1)
f(u,’r) = AfO(u+77ﬂ*) + (1 - )‘) fL(TJm u*)'
The convex inequality constraint allows to take into account upper bounds for the
gas pressure. For example, with a given value ¢ > 1, consider the convex constraint

T L
;/0 2/0 [exp (5 (r+(t, @) +7-(t, 2) + Re(2) + R (2)))]* dz dt < p*
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with a given upper bound p € R. If p is sufficiently large, a Slater point ug exists.
Then Theorem 2.1 is applicable. This allows to approximate the dynamic optimal
controls with static optimal controls. The solution of static optimal control problems
in gas pipeline networks has been studied for example in [16]. The transient system
can be controlled by the stabilization of the state to the static optimal state, see

[6].

6. CONCLUSION

We have shown a turnpike theorem for a problem of optimal boundary control
for a system that is governed by a linear 2 x 2 hyperbolic system with negative
and positive eigenvalues. The optimal control problem can also include a convex
inequality constraint. The turnpike result shows that regardless of the initial state,
the dynamic optimal control approaches the corresponding static optimal control
with increasing time horizon. This result can be generalized in several directions.
The first generalization concerns the dimension of the system. Instead of a 2 x 2
system, we can also consider a system with n positive and m negative eigenvalues.
For the applications, also a generalization for to the case of coupled networked
systems that are defined on a graph is important. Moreover, also the consideration
of nonlinear models is interesting, however, this is out of the scope of the current
work.
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