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structure group G ⊂ GL(F ) is endowed with a bi-invariant metric and we define
the holonomy amplitude of a curve γ ∈ C1([0, 1],M) by

(1.1) ⟨⟨γ⟩⟩ = inf

{ˆ 1

0
|g′| : g ∈ C1([0, 1], G), g(0) = id, g(1) = Ptγ(1)

and g and Ptγ are homotopic relatively to {0, 1}
}
.

The amplitude depends on the connection, the structure group G and the metric
on G, and is invariant under changes of gauge. If G is simply connected (which can
in fact always be assumed by replacing the group G by its universal covering), the
amplitude corresponds to the geodesic distance between the identity id and Ptγ(b).

In the case where G is an abelian group, then the holonomy amplitude can be
computed by the integral formula

⟨⟨γ⟩⟩ =
∣∣∣∣ˆ 1

0
γ∗ω

∣∣∣∣,
where γ∗ω is the pull back of the differential form ω, defined for each t ∈ [a, b] by

γ∗ω(t)[v] ≜ ω(γ(t))[γ′(t)]. If σ ∈ C1(B2,M) and if γ : [0, 1] → M is defined for

t ∈ [0, 1] by γ(t) ≜ σ(cos 2πt, sin 2πt), we have by the Stokes–Cartan formula

(1.2) ⟨⟨γ⟩⟩ =
∣∣∣∣ˆ

B2

σ∗dω

∣∣∣∣ = ∣∣∣∣ˆ
B2

σ∗Ω

∣∣∣∣ ,
since the group G is abelian and thus Ω = dω. This implies the estimate,

(1.3) ⟨⟨γ⟩⟩ ≤
ˆ
σ(B2)

|Ω|dH2 ,

where the two-dimensional Hausdorff measure H2 is taken with respect to a Rie-
mannian metric on the manifoldM and the norm with respect to the same Riemann-
ian metric and with respect to the metric on the Lie algebra g. If M = Rm, by the
isoperimetric inequality [1] this implies that for every closed curve γ : [0, 1] → Rm

(1.4) ⟨⟨γ⟩⟩ ≤ length(γ)2

4π
sup
M

|Ω| .

When G = U(1) ≃ SO(2), the connections are related to electro-magnetic gauge
theories and the curvature Ω of the connection corresponds to the magnetic field.
Such connections appear in the definition of magnetic Sobolev spaces [5; 9, (2.1);
11, 7.19–7.22]. The analysis of magnetic Sobolev spaces should be invariant under
gauge transformation, that is, it should not depend on a particular choice of a local
trivialization. In a recent work, Nguyen Hoai-Minh and the second author Jean Van
Schaftingen have studied the problem of traces of magnetic Sobolev functions with
constructions and estimates that depend only on the curvature of the connection
[13]; a key point in this work was the estimate (1.4) for U(1)–bundles. A nonabelian
gauge-invariant extension of the theory of magnetic Sobolev spaces requires thus new
estimates on the holonomy amplitude.

We obtain the following non-abelian version of (1.2).
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Theorem 1.1. If σ ∈ C1(B2,M) and γ : [0, 1] → M is defined for t ∈ [0, 1] by

γ(t) ≜ σ(cos 2πt, sin 2πt), then

⟨⟨γ⟩⟩ ≤
ˆ
B2

|σ∗Ω| .

Here, σ∗Ω is a g–valued 2–form and |σ∗Ω| is the associated density [6, §11.4;
12, §10.3; 14, §3.4.1].

Corollary 1.2. If M = Rm, if γ ∈ C1([0, 1],M) and if γ(0) = γ(1), then

⟨⟨γ⟩⟩ ≤ length(γ)2 supM |Ω|
4π

.

Corollary 1.2 follows from Theorem 1.1 and from the observation that any closed
curve γ bounds some minimal surface of area at most 1

4π (length(γ))
2 [1].

The proofs of Theorem 1.1 and Corollary 1.2 are performed for the curvature in
the classical sense, that is when the connection form ω is continuously differentiable.
One could naturally ask whether the conclusion of Theorem 1.1 holds when Ω is
merely defined in a weak sense [18] but still continuous, or whether Corollary 1.2
holds when the weak curvature is bounded. If σ is a regular parametrization of a
surface in Theorem 1.1 we can consider the question about suitable traces of the
curvature that make the formula valid.

2. Preliminaries

2.1. Properties of the amplitude of holonomy along paths. We state here
some useful properties on the amplitude of holonomies along paths.

Proposition 2.1 (Amplitude of concatenated holonomies). If the metric on G
is left-invariant, then for every γ ∈ C1([0, 1],M) and η ∈ C1([0, 1],M) and if
γ(1) = η(0), then

⟨⟨γ · η⟩⟩ ≤ ⟨⟨γ⟩⟩+ ⟨⟨η⟩⟩ .

Proof. We have by definition of the concatenation

γ · η(t) =

{
γ(2t) if t ∈ [0, 12 ],

η(2t− 1) if t ∈ [12 , 1].

We next observe that Ptγ·η(t) = Ptγ(2t) if t ∈ [0, 12 ] and Ptγ·η(t) = Ptη(2t−1) ◦ Ptγ(1)
if t ∈ [12 , 1]. It follows that if g ∈ C1([0, 1], G) and h ∈ C1([0, 1], G) are homotopic

to Ptγ and Ptη relatively to {0, 1}, then the map f : C1([0, 1], G) defined by

f(t) ≜
{
g(2t) if t ∈ [0, 12 ],

h(2t− 1) g(1) if t ∈ [12 , 1],

is homotopic to Ptγ·η and the conclusion thus follows by right-invariance of the
metric on G. □
Proposition 2.2 (Amplitude of conjugate holonomy). If the metric on G is right-
invariant, then for every γ ∈ C1([0, 1],M) and every η ∈ C1([0, 1],M) such that
η(0) = γ(0) = γ(1), one has

⟨⟨η̄ · γ · η⟩⟩ = ⟨⟨γ⟩⟩ .
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Proof. Assume that g ∈ C1([0, 1], G) is homotopic to Ptγ relatively to {0, 1} and
that h ∈ C1([0, 1], G) is homotopic to Ptη relatively to {0, 1}. We construct the
map H : [0, 1]× [0, 1] → M by setting for (s, t) ∈ [0, 1]× [0, 1],

H(s, t) ≜


h(1− 3s− t)h(1− t)−1 if 0 ≤ s ≤ 1−t

3 ,

g(3s+t−1
1+2t )h(1)h(1− t)−1 if 1−t

3 ≤ s ≤ 2+t
3 ,

h(3s− 2− t) g(1)h(0)h(1− t)−1 if 2+t
3 ≤ s ≤ 1.

We conclude thus that g is homotopic to Ptη̄·γ·η and thus the conclusion follows. □

2.2. Axial gauge. Our analysis will be facilitated by working with a trivialization
that corresponds to the axial gauge, also known as Arnowitt–Fickler gauge [3; 8, 12-
1-1].

Proposition 2.3. For every pont p ∈ M and every v ∈ Rm, there exists a local
trivialization U × F such p ∈ U and v ⌟ ω = 0 everywhere in U in this local
trivialization.

Here v ⌟ ω denotes the interior multiplication (or contraction) of the form ω by

the vector v: v ⌟ ω(x) ≜ ω(x)[v] ∈ g, which is also denoted by ivω.
When M = Rm, F = C, G = U(1) and v ∈ Rm is a fixed vector, then the

connection form ω can be described by setting ω(w) = iA · w for some vector field
A : Rn → Rn and for every w ∈ Rm, and then the axial gauge prescribes that the
component A · v of the vector field A vanishes everywhere. The axial gauge does
not fix the curvature form in directions transversal to v.

Proof of Proposition 2.3. Let Φ̃ : U ×F → B be a local trivialization of the bundle
B and U is a ball. That is Φ is a diffeomorphism and Φ̃ is linear on each fiber. Let ω̃
be the connection form on U . We define now a function g : U → G by the condition
that v ⌟ (dg + ω̃g) = (dg + ω̃g)[v] = 0. This can be done by parallel transport on
every straight line parallel to the vector v. We conclude by considering the map
Φ ≜ Φ̃ ◦ g. □

3. Derivative of the holonomy

We define for r > 0, the path γr : [0, 1] → R2 for each t ∈ [0, 1] by γr(t) ≜
(r cos 2πt, r sin 2πt). We compute the holonomy on a circle of radius r > 0 by
finding a function g ∈ C1([0, 1], G) that satisfies the equation

(3.1)

{
g′r(t) + 2π rω(re2πit)[ie2πit]gr(t) = 0 for t ∈ [0, 1],

gr(0) = id,

where the plane R2 is identified with the field of complex numbers, so that e2πit =
(cos 2πt, sin 2πt) and ie2πit = (− sin 2πt, cos 2πt). The holononomy at (r, 0) is then
given by gr(1).

The core of the proof of Theorem 1.1 lies in the following derivative formula.
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Lemma 3.1. If BR ⊂ R2 and if BR×F is a vector bundle, then for each r ∈ (0, R)
one has

d

dr
gr(1)− ω(r)[1] gr(1) + gr(1)ω(r)[1]

= 2π r

ˆ 1

0
gr(1) gr(t)

−1Ω(re2πit)[e2πit, ie2πit] gr(t) dt .

Proof. We define hr(s) ≜ ∂
∂rgr(s). In view of the holonomy equation (3.1), the

function hr satisfies the system
h′r(t)

2π
+ rω(re2πit)[ie2πit]hr(t) = −(ω(re2πit) + r∂rω(re

2πit))[ie2πit] gr(t)

for t ∈ [0, 1],

hr(0) = 0 .

By variation of parameters for solutions of differential equations (see for example
[7, Corollary 2.1]), we have for each r ∈ (0, R),

hr(1) = −2π

ˆ 1

0
gr(1) gr(t)

−1

(
ω(re2πit) + r

d

dr
ω(re2πit)

)
[ie2πit] gr(t) dt .

We note that

2π

ˆ 1

0
gr(1) gr(t)

−1 ω(re2πit)[ie2πit] gr(t) dt

=

ˆ 1

0
gr(1) gr(t)

−1 ω(re2πit)

[
d

dt

(
e2πit

)]
gr(t) dt.

Integrating by parts the term on the right-hand side we have,

2π

ˆ 1

0
gr(1) gr(t)

−1 ω(re2πit)[ie2πit] gr(t) dt

=ω(r)[1] gr(1)− gr(1)ω(r)[1]

− 2π

ˆ 1

0
gr(1) gr(t)

−1 ω(re2πit)[rie2πit]ω(re2πit)[e2πit] gr(t) dt

− 2π

ˆ 1

0
gr(1) gr(t)

−1

(
d

dt
ω(re2πit)

)
[e2πit]ω(re2πit)[e2πit] gr(t) dt

+ 2π

ˆ 1

0
gr(1) gr(t)

−1 ω(re2πit)[e2πit]ω(re2πit)[rie2πit] gr(t) dt.

We conclude that

hr(1)

= −2π r

ˆ 1

0
gr(1) gr(t)

−1
(
dω(re2πit) + ω(re2πit) ∧ ω(re2πit)

)
[e2πit, ie2πit] gr(t) dt

= −2π r

ˆ 1

0
gr(1) gr(t)

−1Ω(re2πit)[e2πit, ie2πit] gr(t) dt .

□
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By placing ourselves, in view of Proposition 2.3, in an axial gauge with respect
to the vector v = (0, 1) ∈ R2, we obtain the formula

d

dr
gr(1) = 2π r

ˆ 1

0
gr(1) gr(t)

−1Ω(re2πit)[e2πit, ie2πit]gr(t) dt .

and we deduce since the metric is bi-invariant,

Proposition 3.2. If BR ⊂ R2 and if BR × F is a vector bundle, then for every
r ∈ (0, R),

lim sup
s→r

|⟨⟨γr⟩⟩ − ⟨⟨γs⟩⟩|
|r − s|

≤ r

ˆ
S1
|Ω(reiθ)|.

We then obtain as a consequence.

Proposition 3.3. If BR ⊂ R2 and if BR × F is a vector bundle, then

⟨⟨γR⟩⟩ ≤
ˆ
BR

|Ω|.

Theorem 1.1 follows then by applying a pull-back to the curvature.
In the framework of weak connections, a natural generalization of Proposition 3.3

would be the case where ω ∈ W 1,4(BR) so that Ω ∈ L1(BR) [18, Lemma 1.1].
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Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du
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