oa P,
o0 Pug

%

rY Ok,
\%mv?‘

Pure and Applied Functional Analysis Yokohama Publishers

Volume 5, Number 4, 2020, 899-924 —
" © Copyright 2020

SOLUTIONS OF NONHOMOGENEOUS EQUATIONS INVOLVING
HARDY POTENTIALS WITH SINGULARITIES ON THE
BOUNDARY

HUYUAN CHEN, ALEXANDER QUAAS, AND FENG ZHOU

ABSTRACT. In this paper, we present a new distributional identity for the solu-
tions of elliptic equations involving Hardy potentials with singularities located
on the boundary of the domain. Then we use it to obtain the boundary isolated
singular solutions of nonhomogeneous problems.

1. INTRODUCTION

The classical Hardy inequality is stated as following: For any smooth bounded
domain O in RY containing the origin, there holds

(1.1) / Vul2dz > cN/ [ 2[uldz, Vu e HY(O),
O O

)2
with the best constant cy = al 42) . The qualitative properties of Hardy inequality

and its improved versions have been studied extensively, see for example [1, 4,
19, 21], motivated by great applications in the study of stability of solutions to
semilinear elliptic and parabolic equations (cf. [5, 6, 13, 30, 31]). The isolated
singular solutions of Hardy problem with absorption nonlinearity have been studied
in [11, 12, 23] and the one with source nonlinearity has been done in [3, 16]. The
related semilinear elliptic problem involving the inverse square potential has been
studied by variational methods in [15, 14, 18] and the references therein. In a very
recent work [9], we established a new distributional identity with respect to a specific
weighted measure and we then classify the classical isolated singular solutions of

—Au + #u: [ in O\{0},
subject to the homogeneous Dirichlet boundary condition with pu > —cy. These
results allow us to draw a complete picture of the existence, non-existence and the
singularities for classical solutions for the above problems (cf. [10]).

It is of interest to consider the corresponding problem involving Hardy potential
with singularity on the boundary. While the sharp constant ¢y in Hardy inequality
(1.1) could be replaced by NTQ when the origin is addressed on the boundary of the
domain, see [20, Corollary 2.4], also [7, 8, 17].
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Let © be a smooth bounded domain in RY with 0 € 99. We study boundary
isolated singular solutions of nonhomogeneous problems:

19 Lgu=f in Q,
(1.2) u=g on 0N\ {0},

where f € C} (Q\{0}) with vy € (0,1), g € C(Q\{0}) and L5 := —A+ % is the

Hardy operator which is singular at 0 (with N > 2, 8 > [y := —NT2). Recall that
for 8 > By, the problem

Lsu=0 in RY,
(1.3) B N
u=0 on JOR} \ {0}
has two special solutions with the explicit formulas as
xN|x\T*(B) if ﬁ > ,80,
—aylz[~Pnjz| if B =65

where z = (2/,zn) € RY := RV~ x (0, +00), and

15 @)= —5 VBB ad (8= + /B .

are two roots of § —7(1 + N) = 0.
As in [10, 9], we first find a certain distributional identity which shows that the
singularity of solution Ag for (1.3) is associated to a Dirac mass. Let Cj'(RY) be

(1.4)  Ag(z) = { and Ag(z) = xN|x|T+(5),

the set of functions in C“(@) vanishing on the boundary and having compact

support in @ Then we have

Theorem 1.1. Let dyg := Ag(z)dx and

(1.6) L= —A— 27]—;\(2ﬁ)x'v_ajv(9iv’ z=(2',zy) € RY.

Then there holds

(11) [y Mg = s o), v CHEY),

where

18 . {@ SN 5> fo,
SVI/N it 5= B,

and SN=1 is the unit sphere of RN and |SN71| denotes its (N — 1)-dimensional
Hausdorff measure.

From the distributional identity (1.7), Ag is called as a fundamental solution of

(1.3). We remark that when 8 =0, £ = —A — -2 HW Ag(z) = 2y and (1.7) could
be reduced to
¢ B ¢ 1.1 /N
O = [ AMLi()dus= [ No(-AQdz, V(e OHRY),
BZUN RN TN Rﬁ
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which coincides with the classical distributional identity proposed in [22]. On this
classical subject, it has been vastly expanded in the works [2, 26, 27, 28, 29].

For simplicity, here and in the sequel, we always assume that 2 is a bounded
C?— domain satisfying that

(1.9) B (0) C Q C By (0),
for some 0 < 79 < Ry < +oo where B (0) := B,(0) NRY. Let dwg(x) =

|z|™+®dw(z), where w is the Hausdorff measure of 9Q. We can state our main
result as follows

Theorem 1.2. Let L} be given by (1.6), f € Y (2\ {0}) with 6 € (0,1), g
C(o02\ {0}).

() If
(1.10) L1+ [ jaldws < +oc.

then for any k € R, problem (1.2) admits a unique solution u, € C?(Q)N
LY(Q,|z|~tdyg) such that

(1.11)
0 0
/ukﬁﬁ d’yﬁ—/ f§ — 8an£dw5+cﬁka€v(0), Ve e o (),

where v is the unit outward vector on OS).
(ii) If f,g are nonnegative and

(1.12) lim (/ fdvys +/ gdwg) = +o00,
r—0+ O\ B,(0) OO\ B (0)

then problem (1.2) has no nonnegative solution.

When g =0 on 99 and f = 0 in €2, we prove in Proposition 3.2 in Section 3 that
problem (1.2) admits an isolated singular solution Ag, which has the asymptotic
behavior at the origin as the fundamental function Ag. More precisely, we have

Q
Ap(tz)
When g = 0 on 9Q and f € C? (Q\ {0}) N LY(Q,dvs), Theorem 4.1 in Section 4

shows that problem (1.2) has a solution us verifying the isolated singularity (see
Remark 4.2)

(1.13) lim  sup (

+ _
t—0 zeSfrV 1

t
(1.14) lim inf us(t2) =0,
t=0+ zesN -t Ag(tz)

which is less precise than (1.13) due to the lack of estimates of Green kernel of
Hardy operator with singularity on the boundary. However, when f = 0 and g # 0,
it is not convenient to use (1.14) to describe the singularity of the solution w4, so
we may distinguish this by the distributional identity

* i __/ % 1.1
/ngﬁﬁ(x]v)dfyg— aﬂgayalwg, VEe Cy (),
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All in all, the solution uy of (1.2) can be decomposed into three components k:Ag,
uyp and ug.

The method we use to prove the existence of solutions for problem (1.2) is different
from the classical method of the boundary data problem used by Gmira-Véron in [22]
due to the appearance of Hardy potential. They obtained the very weak solutions
by approximating the Dirac mass at boundary. Then they considered the limit of
the solutions to the corresponding problem where the convergence is guaranteed
by the Poisson kernel. In this paper, we prove the existence of moderate singular
solution by using the function Ag to construct suitable solutions of problem (1.2)
with the zero Dirichlet boundary condition. While for nonzero Dirichlet boundary
condition, we transform the boundary data into nonhomogeneous term. However,
for § > 0, that transformation can not totally solve (1.2) with the nonzero Dirichlet
boundary condition, and our idea is to cut off the boundary data and approximate
the solutions.

The rest of the paper is organized as follows. In Section 2, we start from a
comparison principle for £ and show the moderate singular solution of (1.2) when
g = 0. Section 3 is devoted to prove the distributional identity (1.7) for the fun-
damental solution Ag in Rf , to consider its trace, the corresponding distributional
identity in bounded smooth domain. Section 4 is to study the qualitative properties
of the solutions for problem (1.2) when g = 0 and then we give the proof of Theorem
1.2 in the case of nonzero boundary data in Section 5. In what follows, we denote
by ¢; a generic positive constant in the proofs of the results.

2. PRELIMINARY
2.1. Comparison principle. We start the analysis from a comparison principle
for Lg. Let ng : [0,400) — [0, 1] be a decreasing C*° function such that
(2.1) no=1 in [0,1] and 7ny=0 in [2,+00).

Lemma 2.1. Let Q be a bounded open set in RY, L: Q x [0,+00) — [0, +00) be a
continuous function satisfying that for any x € €,

L(x,s1) > L(z,s2) if s1 > s9,
then Lg+L with B > By verifies the comparison principle, that is, if u, v € ctH Q)N
C () wverify that
Lgu+ L(z,u) > Lgv+ L(z,v) in @ and w>v on 09,
then u > v in .
Proof. Let w = u — v and then w > 0 on 9. Denote w_ = min{w, 0}, and we
claim that w_ = 0. Indeed, if Q_ := {z € Q : w(x) < 0} is not empty, then it is

a bounded C1! domain in Q and w_ = 0 on 9. We observe that Q_ C Rf and
then from Hardy inequality [7, (1.7)] (see also [25]), it holds that

= — AW iwwx r,u)— r,U)lw X
0 = [ au+ Trugudet [ (L)~ Lo d

Vuw_|* + iw% dr > ¢ w%d$7
2
Q- |z| Q_

\Y]
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then w_ = 0 in Q_, by the continuity of w_, which is impossible with the definition
of Q_. O

Lemma 2.2. Assume that 8 > By, f1, fo are two functions in CZGOC(Q) with 0 €
(0,1), g1, g2 are two continuous functions on 9\ {0}, and
fizfe in Q and g1 >g2 on 90\ {0}.
Let u; (i =1,2) be the classical solutions of
Lgu=f; in Q,
{ u=g; on 00\ {0}.
If

2.2 li inf — Azl (z) >0
(2.2) Tg(gleaLnBr(O)[ul(m) uz(z)|Ag (z) >0,

where 04 B,(0) = 0B, (0) N Q. Then uy >uy in Q) {0}.
Proof. Let w = us — uq, then w satisfies
Law <0 in Q,
w<0 on 00\ {0},

lim  sup w(z)Az(z) <0.
r=0% 25, B,.(0) A

Thus for any € > 0, there exists r. > 0 converging to zero as ¢ — 0 such that
w<eAg on 0B, (0)NQ.
We observe that w < 0 < eAg on 082\ B, (0), which implies by Lemma 2.1 that
w<eAsg in Q\{0}.

Therefore we obtain that w < 0 in Q\ {0} which ends the proof. O
For any € > 0, denote
p
2.3 Lge=—A+ ——.
(2:3) P * |z|? + ¢

We remark that Lz is strictly elliptic operator and we have the following existence
result for related nonhomogeneous problem.

Lemma 2.3. Assume that ¢ € (0, 1), 8 > Bo, Lge is given by (2.3) and f €
Y ()N C(Q) with 6 € (0,1) and g € C(0Q). Then the problem
Lgcu= in €,
(2.4) s =1
u=g on O}

has a unique classical solution u. € C?(2) N C(Q), which verifies that

fg 73 ueg
(2.5) /ugﬁﬁ ) dys —/ — /89 95, dwg —f—ﬂs/ﬂ (2 T o) alPan dg,

for any € € C31(9).
Assume more that f > 0 in Q and g > 0 on 9. Then the mapping € — u. is
decreasing if B > 0, and is increasing if fo < 5 < 0.




904 H. CHEN, A. QUAAS, AND F. ZHOU

Proof. We first prove the existence of solution to problem (2.4). We introduce
Poisson kernel Py of —A in €2, and denote Poisson operator as

Polgl(z) = - Pa(z,y)g(y)dy.

We observe that
£3ePald] = <Pald] € C'() N C(@).
Then the solution of (2.4) denoted by u., could be reduced to u. = Pqlg| + uy,

where uy is the solution of

(2.6) Losv=1" e e

For 8 > By, a solution uy in H}(€2) of (2.6) could be derived by Ekeland’s variational
methods as the critical point of the functional

2
2 u B

- — dr— P .

/Q]Vu\ dx + 8 TP gdm /Q<f w2t e Q[Q])de

That is well-defined in H} (Q) since B € (Bo,0). From the Hardy’s inequality in [17],
we have that, for any u € CO

[ v+ 5 / e > (6 ) | 1vuaa.

for 5 = Bo, from the improved Hardy inequality in [17], it holds

cz/ud:p < /\Vu| daz\ﬁo/| 2
*dr — /d
[ 1vupds oo [ o

Finally it is trivial for the case § > 0.

By the standard regularity result (e.g. [24]), we have that uy is a classical solution
of (2.6). Then problem (2.4) admits a classical solution and the uniqueness follows
by comparison principle.

Finally, we prove (2.5). Multiple %f with ¢ € CL1(Q) and integrate over 2, we
have that
A
/ 5§fd / ﬁf,cﬁ L. dz
Q Q7

_ s€ (|| )¢ B
= /Qus(—AxN)d:n+/mg8}/alcu(:v)%—/Q R us)\gﬁdaz

- L5(2)d S g — dys.
/Q“Eﬂ%) 6 F o090 M ) P T o ePax TP

Note that if f > 0in Q and g > 0 on 9f), then u. > 0 in Q. Let g1 > &9
and ug,, us, be two solutions of (2.4) respectively. If 5 > [y, we observe that
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Lge e, > Lge e, = f, 80 ug, is a super solution of (2.4) with € = €2 and by
comparison principle, it holds us, > u., in €. The proof ends. ]

Now we build the distributional identity for the classical solution of nonhomoge-
neous problem with g = 0 and moderate singularity at the origin, i.e.

: |u(z)]
2.7 lim  sup =0.
@7 r—0% gea, B, (0) Ap(T)

Proposition 2.4. Let 3> By, N > 2, f € C (Q) with 0 € (0,1), then

{ Lou=f in Q,

(2.8) u=0 on 00Q\ {0},

subjecting to (2.7), has a unique solution ug, which satisfies the distributional iden-
tity
< & f€
(29) Justs s = [ ars, veecia
Q TN QTN
Proof. The uniqueness follows by Lemma 2.2. Since Lg is a linear operator, we only
have to deal with the case that f > 0 in Q.

Part 1: § > 0. In this case, the mapping € — u, is decreasing, where u. > 0 is the
solution of (2.4) with g = 0. Then ug := lim__,¢+ u. exists, and by the standard
regularity theory, we have that ug is a classical solution of

Lgu=f in €,
(2.10) ’
u=0 on 0O
Part 2: 5 € [Bo,0). Without loss of generality, we assume that Q C B 1 (0). Denote
R Bt it 5 € (60.0),
t,s\T) 1=
tryla|~F (~Inlal)? —saklal T if B =,

where the parameters s,t¢ > 0.
Then for 3 € (8p,0), we see that V; s(x) >0 for z € Qif ¢t > s and

LsVis(x) = tcrg(—N/2)a?N]w\7%72 + 25|+ B) 4 257, (B)ad ||+ P72,
where c¢g(—N/2) > 0 and 74 (f) < 0. Since f is bounded in (2, let
_ 1 f@)

Sp = su
0 2 meg |$|T+('B)

and then we fix ty > sg such that
toc[g(—N/2)xN\x]*%*2 + 25074 (B) % x|+ B2 > 0.

So Vi, s 1s & positive supersolution of (2.8).
For 8 = By, 7—(B) = —%, we have that

t
LsVis() = ganlal ™2 (= Infa)) 72 + 2sla| "> — 2sNaRla| > >
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We take sg as above where g is replaced by fy and we fix tg > sg such that
%mNmr%-%;mnuD—%—2%N¢%ur%—2zo
So Vi,.s 1s also a positive supersolution of (2.8) in this case which implies, by
comparison principle, that we have

ue(z) < Vipso(z), Ve

. (59
Proof of (2.9). We need to estimate / <
fof (2.9) o (o7 + &)aPax

go > 0 fixed. we first consider the case § > 0. We observe that
u:EA3()

€ 2 2

O\B_z(0) (|z* + &)|z[*z N

dryg for 0 < e < gq for some

< el 6/olme) [ [z~ 972
S Ef|Ug Lo (0 PllL(Q T . ax
0 () ) B, (0) z2 + ¢
N-24r,.(8) e

< el €/ Pl @2 / [ P4 gy

B (0\Bi(0)

e (B)de N-247,.(8)

< calluey | o ll€/ pllpoo(ay (2T Ne 4 e

— 0 as e—0"

and

520 (2P + &)[aPzy

< Nuelm@l/pliee [ 1o O 2o
B z(0)
N-24ry (8)

< C4Hu€0||L°°(Q)H§/PHL00(Q)E 2

- 0 as e—0",

where p(z) = dist(z, Q) and N_2+T+(B) > 0. Therefore, passing to the limit of
(2.5), we obtain (2.9).
For B € (fo, 0), from the increasing monotonicity and the upper bound Vg +,, we
have that ¢
EILI(I)IJr Q uEE/B(wN)
and

Euchp(2) |~ HVER

5 5 —dr <cse | ————du.
o (Jz* +&)lz[*zn o |zPte

By directly compute, we have that

—N++v/B—Bo B—58
E/ |x|—dm < CceE 2 0/ ‘y|*N*2+\//B*/BO dy
Q\B_/(0) B_1_(0\B1(0)

2| +e B ;
NG
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B—B

< cile+e 2 )=0 as e—0"

and
—N+v/B—PBo
6/ MQ—drx < / || TNHVE=Po g
B (0) |z[? + & B /z(0)

B—=5Bg +
< cggm 2 =0 as e—0",

As a conclusion, passing to the limit in (2.5) as e — 07, we have that ug satisfies
that

S S

(211) [ustsyan = [ La, veeco.
Q IN QTN

Finally, we prove (2.9) with 8 = fy, We claim that the mapping  — ug with

B € (Bo,0) is decreasing. In fact, if By < B1 < B2 < 0, we know that

b1
f=2Lpug = —Aug + EEk
B2
< _Auﬁl + ’$|2u51 = £ﬂ2u617
by Lemma 2.2, which implies that ug, > ug,.

We know that V¢, is a super solution of (2.8) with g € (5p,0). So it fol-
lows by Lemma 2.2 that {ug}s is uniformly bounded by the upper bound V4, €

LY(9, %d’yg).
For ¢ € C}1(Q), we have that
* f § § —1
\ﬁﬁ(a)’ < C9(HEHCM(Q) + HEHCl(Q)xN ),

where cg > 0 is independent of .
From the dominate monotonicity convergence theorem and the uniqueness of the
solution, we have that

ug — ug, a.e. inQas B— B andin LY(Q, x]_vldfyﬁ)
and ug, is a classical solution of (2.8) with 5 = /3. Passing to the limit of (2.11) as
8 — BS’ to obtain that

e (& _/ff
/Quﬁoﬁﬁo(xN)d’yﬂo_ Qde'yﬂo'

The proof ends. O

Remark 2.5. We note that when 8 > 0 and f is bounded, the moderate singular
solution of problem (2.8) is no longer singular, that means, it is a classical solution
of

(2.12)

Lgu=f in €,
u=0 on 0.

Now we prove the following
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Lemma 2.6. (i) The problem
u
LH(—)=1 in Q,
(2.13) L .
u=0 on 00

has a unique positive solution w1 € C%(Q) N CYL(Q).
(ii) The problem

wo w1 .
u=0 on 0f)

has a unique positive solution we € C*(2) N CL(Q\ {0}) N CYL().

Proof. We first claim that problem (2.8) has a unique classical positive solution wg
under the constraint (2.7) when f(z) = A\g(z) or f(z) = |z|™~+).

In fact, let fn(x) = Ag(z)no(n|z|), where ng : [0,4+00) — [0, 1] is a decreasing
C> function satisfying (2.1). Then f, € C%(Q) with 0 € (0,1), fu < f, and by
Proposition 2.4, let w,, be the solution of problem

Lgu= f, in €,
u=0 on 00\ {0},

subject to (2.7). We know that the mapping: n — w,, is increasing by the increasing
monotone of {f,}. So we only construct a suitable upper bound for w,, in the cases
that f(z) = A\g(z) and f(z) = |2|™+?) respectively.

When f(z) = A\g(z), let Vi, 5(2) = tAg(z) — szn|z|*B+2 for s,¢ > 0. Tt is know
that

(2.15)

LsVis = —sc,, (g+278(x), T € RY,
for some ¢, ()12 < 0. So fix s = —1/c,, (8)12 and then fix £ > 0 such that
Vis(x) >0, Voel
The limit of {wy, },, denoting by wg 1, is a solution of (2.7) satisfying w1 < Vi s(x).
When f(z) = |z|™®) let
Wi (@) = ths(@) — s(@y o™ D2 4 1z |a]+(+2),
where s,t,1 > 0. We observe that
LWy s1(2) = s|—c,, (g12hs(@) + 2|+ P + 207, (B)ak 2| +P)], z € RY,

with the same constant c; (g)12 < 0 as above. Then we choose [ > 0 such that

—2¢;, ()42l (B)rNy > 0 for v € Q, s = % and we take ¢ > 0 such that W;,; > 0
in Q and
LWy s1(z) > ]w\”(ﬂ).

Thus, the limit of {wy,},, denoting by wpg 2, is a solution of (2.7) such that
wg2(x) < Wi si(x).

As a conclusion, for ¢ =1, 2,

(2.16) wg; <tAg in Q.
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Denote w; = wg;xn /Mg, we observe that
1= )\Elﬁﬁw@l = Aglﬁg(Agwl/xN) = Li(w1/zN)
and
1/ZL‘N = )\glﬁgwg’g = )\Elﬁlg()\ﬂwg/x]\f) = LE(U}Q/:L‘N).

Moreover, by (2.16), it follow that w; < txy. Then we have that w; € C?(2) N
C3(Q) for i = 1,2. Away from the origin, Hardy’s operator is uniform elliptic,
thus u € C}H(Q\ {0}) and then u € C?(Q) N CZ(Q\ {0}) N CHL(Q). O

Although C%(Q)NCE(Q\ {0}) NCYL(Q) is not suitable as test function space for
problem (1.2), wy, wy are still valid as test functions for formula (1.11) with £k =0
in the distributional sense.

For given f € C*(Q), a direct consequence of Lemma 2.6 can be stated as follows

Corollary 2.7. Assume that f € C1(Q\ {0}) satisfying for some c19 > 0

€10
< —.
)] < 28
Then there exists a unique solution of wy € C*(2) N CY1(Q) of
u
Li(—) = in Q,
(2.17) play) =/
u=0 on O0N.

3. FUNDAMENTAL SOLUTION

3.1. In half space. In this subsection, we give the proof of Theorem 1.1.
Proof of Theorem 1.1. For any & € C}-H(RY), we know there exists a unique
¢ € CH{( RY) such that £(x) = xn((z) for = € @ Moreover, we have that
a=-(0) = ¢(0).

Take ¢ € CLH(RY), multiplying As¢ in (1.3) and integrating over RY \ B,(0),
then we have that

0 = / Ls(Ap)As¢dz = / ApL5(C) dvp
RY\B,(0) RY\B;(0)

x

€T
+ —VAg- —XAg+VAg- —A dw
/6+B,~(O) < B |z B B 7] B)C

X
+/ Aprg (Ve -2 do,
0,8 (0) B< !33|)

where 04 B,(0) = 0B,(0) NRY. For B > By, we see that for r = |z| > 0 small,

~VAs(e) o As(@) + VAa(e) - T Aa(e)

B {2W —Boadr N7l i B> B,

xr—N-1 it B=00
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and
[¢(z) = C(0)] < enr,
then
[ VB Bk YO dula)
84 B, (0)
VB =P widw(z) ((0) if B> o,
— 0+ B1(0)
w3edw () ¢(0) if §=75o
84 B1(0)
= ¢5¢(0)
and
x x
—VAg- —Xg+ Vg —Ag | dw—c5((0
| (70 o+ 90 da) s
< clg(\/ﬁ—ﬁo—i—l)r/ rrdw(z)
4 B1(0)
— 0 as r—0",
that is,
T T
lim / —VA‘)\de—F/ Vg —Ag(dw) = cgC(0).
r—0 ( 9, B, (0) O ] om0 0 el ) 56(0)
Moreover, we see that
‘/ Agz\g(VC-£> dw‘ < HCHCM‘/ Xdw —0 as r— 0",
2., B (0) 2] . B1(0
Therefore, we have that
lier Aﬁﬁ%({)d’yg = ¢3¢(0),
r—0 RN\ B, (0)
which implies (1.7). The proof ends. O

3.2. Trace of Ag. The following theorem shows the trace of Ag.

Theorem 3.1. Let dwg(z') = |2/|+Bda’ forx’ € RN=L then for any ¢ € C.(RN71),

(3.1) lim Ag(2!,t)¢(2")dwp(z") = bn((0),

t—0t JrN-1
where

by = / (1+ |y’|2)_%dy' > 0.
RN-1

This is to say that the trace of Ag is oo in the dryg-distributional sense.
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Proof. For any ¢ € C.(RN~1), there exists R > 0 such that supp ¢ C B'5(0), here
and in the sequel, denoting by B (0) the ball in RV~1. By direct computations, we
have that

/ Ag(x/,t)g(x') dwg(x/) = / Ag(x/,t)C(x/) dwﬁ(x/)
RN-1 /

=(0)
= [ WP Oy
Bg%/t(()
For any € > 0, there exists R. > 1 such that
(8
/ (WP +1) 7= /[ P¢ty)dy’
Bl ,(0)\Bs_ (0)
< el [ |V ay
RN=1\B%_(0)

< €l poo gv-1)|SN e,

where R, < % Let
A= [ WP W Oy [ ey Oy,
Re

we have that

4] < / (/1 + 1) 72 |y |+ >»<<ty’>—<<0>\dz/+s|c(o>|rsN—2|
Bl,_(0)

IN

clorenn [ (1 + DT Oy + eicsY

By,

= Ret|Cllor@n-1) +€l¢(0)]|S¥ ]
< (ICllor @y + 1COIIS¥2) e
if we take t = 2. Passing to the limit as e — 0, we derive (3.1). O

3.3. Fundamental solution in bounded domain. In this subsection, we do an
approximation of the isolated singular solution.

Proposition 3.2. Let Q be a C? domain verifying (1.9). Then the problem

Lsu=0 1in
u=0 on 00\ {0},
o2 o
i ey 1@ = A5l
r—0t x€B+(0) A,B (-T)

admits a unique solution Aﬁ satisfying the following distributional identity:

%3

(33) [ A8 s = es(0), Ve e (@)
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Proof. Let ny, (t) = no( %t), which satisfies that
(3.4) Mo =1 in [0,79/2] and n,, =0 in [rg,+00).
For i = 1,2 the problem

Law; = =V, - VAg — AgAn,, in Q,

(3.5) w; =0 on 9N\ {0},
lim  wi(te)A; (te) =2 — i,
eESi’,t—)O7L ( ) B ( )

admits a unique solutions w; and wy respectively. Obviously,
w1 = Aﬁn’r‘o

and —Vn,, - VAg — AgAn,, has compact set in Q N (B,,(0) \ B%o (0)) and then
—Vny, - VAg—AgAn,, is smooth and bounded, it follows by the proof of Proposition
2.4 that there exist s, tg > 0 such that |wa| < Vi 4.

For i = 1, following the proof of Theorem 1.1, we get then for any & € C§-1(€2),
« & / £ 23
3.6 L5(—)dvg = — Ve, - VAg — AgAn,, | —d ——(0).
(3.6) /le g(xN) V8 Q( Vi, - VAg — Ag %)xN ’Vﬁ+658mN()
For i = 2, it follows by Proposition 2.4 that for any ¢ € C§-1(€),
< & / £
3.7 L5(—)dys = — Ve, - VAg — AgAn,, | —— dvs.
(3.7) /Q’wQ 5($N> V8 Q( Vi, - VAg — Ag %)xN ol

Let A2 = Agn,, — wo, it follows by (3.6) and (3.7) that

o
/QA%%( : )dyg = cp :

1.1
E 8.’1)]\[ (0)7 Vf € CO (Q)

Finally, it’s clear that if u; and ug are two solutions of (3.2), then w := u; — ug
satisfies
lim sup [w(@)]
r—0t z€B;(0) Alg(ﬁ)
Combining with the fact that
Lew=0in & and w=0 on 9N\ {0},

=0.

and Lemma 2.2, we have that w = 0. Thus the uniqueness is proved. O

4. EXISTENCE

4.1. Zero Dirichlet boundary. Our purpose in this section is to clarify the iso-
lated singularities of the nonhomogeneous problem

Lgu=f in Q,
u=0 on 90\ {0},

where f € C? (Q\ {0}) with § € (0,1). Recall that L} is given by (1.6) and

loc

dyg(z) = Ag(z)dxz. We prove the following

(4.1)
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Theorem 4.1. (i) Assume that f € L'(Q, dvg) and u € LY(Q, 2:dvys) is a classical

7 ]

solution of problem (4.1), then there exists some k € R such that there holds

0
4y [us = [ Lo X0, veeap

(ii) Inversely, assume that f € LY(, dvg), then for any k € R, problem (4.1)
has a unique solution uy € L*(£ id’yﬁ) verifying (4.2) with such k.

el

Proof. (i) Let Q be the interior set of QU { (2, —zy) : (2/,zN) € 2} and extend u
(resp. f) by the zn-odd extension to @ (resp. f) in €, then Lzt = f. Our aim is
to see the distributional property at the origin. Denote by L the operator related

to Lgu — f in the distribution sense, i.e.
@) 0O = [ (550 - F)larllal Dz, ¢ e CE@).

For any ¢ € CLCOO(Q \ {0}), we have that L({) = 0. In fact, there exists € > 0 such
that supp(¢) € 2\ B:(0) and then

0 — 2 /Q (Lo — f)dys — /Q C(Loii— ) dis

O N ou
= —/ de’yg+/ uﬁ%‘dvg%—/ a—(dwg
Q Q\B:(0) A(Q\B:(0))N(RN=1x{0}) TN
ou

—|—/ —u)L5Cdy +/ —(dw
(—Q)\BE(O)( JE5c s B(—0\B. (0)n(RN-1x{0}) I(—TN) o

- / (@LsC — Fo) dis
Q\B:(0)

| @3¢ = o),
where dyz = |5\5(x)|dx, A is the odd extension of Ag and

U gy = — o1

_ N .
/z)(Q\BE(o))m(Rle{o}) Oz N /<9(—Q\BE(O))O(RN1><{O}) d—an) P

By Theorem XXXV in [33] (see also Theorem 6.25 in [32]), it implies that
p
(4.4) L= kgD,
la|]=0

where p € N, a = (a1,--- ,ay) is a multiple index with a; € N, |a| = Zf\il a; and
in particular, D%y = &y. Then we have that

@5) 1O = [ (€3¢ f¢) 45 = 3 DO, ¥C e CX(@)

|a|=0
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For any multiple index a = (a1, - ,an), let {, be a C*° function such that
L N
(4.6) supp((,) C B2(0) and (u(x) = kq H:):;” for = € B1(0).
i=1

Now we use the test function (. o(x) := (u(e~12) for z € Q in (4.5), we have that

ZkDagea \a|Haz’

lal<q

where a;! =a; - (a; —1)---1>0and a;! =1 if a; = 0.
Let r > 0, we obtain that

‘ﬁaz;ggd%‘ - ‘/ M;gsd%‘
Q B2a
< 3L, e

2|74 (B ’ / ~ z -1 ~
+——" () —5 - V(e x)dy
o B Tl ) )

1 / N - 1 la(x)| .
3 | = u(x)|dyg + — / dy
13 [62 Bae(0) | ( )| B e JBy.0) |:C| B

cu [ i)
€ B25(0) |1‘|

IN

d&ﬁ?
then, by the fact that u € L1((Q, ﬁd’yg), it follows that

=0.

e—0t e—0t

(4.7) lim / la@)] dy3 =0 and lim 8‘ / uLy( dy
B2s(0) ‘$| Q
For |a| > 1, we have that
kg < cl5g\a|—1’ /~ LG d:ylg) -0 as —0,
Q
then we have k, = 0 by arbitrary of € > 0 in (4.5) with |a| > 1, thus,
(4.8) 1O = [ [ae30 = Fe] ava = hoc(0). vee (@),

For any ¢ € C’Cl'l(Q), by taking a sequence (, € C’go(f)) converging to ¢, we obtain
that (4.8) holds for any ¢ € C}1(Q).

Now we fix £ € C31(Q) with compact support in QU {(2/,0) e R¥N"I xR : |2/| <
ro}, then {/xy € Cl 1(Q) and we may do xy-even extension of £/x in €, denoting
by &, then £ € cl 1(Q), by the xy-even extension, we have that

£(0) = 5 —=(0).

oz N
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So it follows from (4.8) that

wo [ (w7

TN

8 ~
0 (4.2) holds.

(#7) By the linearity of L3, we may assume that f > 0. Let f, = fn,, where
Mn(r) =1 —no(nr) for r > 0, where g satisfies (2.1) and let v, be solution of (2.8)
where f is replaced by f,. We see that f,, is bounded and for any & € C31(9Q),

< € / £
4.10 L3(——)dys = — dny;.
(4.10) /Qvn p( ) dvs anxN Vs
Then taking & = ws in Lemma 2.6, we have that v, is uniformly bounded in
LY(Q, dyg) and in LY(Q, 23 dvp), that is,
[ <5 @ Ml @) < 1=zl
1ol 1, o5 dyg) < | . oo @)l frll L @uays) < p—. reo@ L2y @.dvs)-

Moreover, {v,} is increasing, and then there exists vy such that

v, = vy ae in Q@ andin LYQ, x5 dygs).
Then we have that

/ 0pL3(€) dus = / Jedvs, VEe Q).
Q Q

Since f € C7(Q2\ {0}), then it follows by the standard regularity theory that vy €
C%(Q).

We claim that vy is a classical solution of (4.1). From Corollary 2.8 in [31] with
L* = L}, which is strictly elliptic in \ B;(0), we have that for ¢ < %,

lvnAsllwray) < csllfAsllLi\s,0) + csllvnrsll @\ 5. (0)

(4.11) < carlfllzva, dvs)s
where Qo = {z € Q\ B2,(0) : p(x) > 2r}. We see that
g

—Avy = ——5v, + f.
||
For any compact set K in €, it is standard to improve the regularity v,

||Un||6’2v>\(K) < ClSH|f||L1(Q,d»m) + ”fHCA(K)]

where c¢1g > 0 is independent of n. Then vy is a classical solution of (4.1) verifying
the identity

« € /€

(412) [oresEas = [ ay, veecio)
Q TN QTN

Together with the fact that ug r = kA%2 + vy, we conclude that the function wuy s is

a solution of (4.1), verifying the identity (4.2) by (4.12).
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Finally, we prove the uniqueness. In fact, let wy, s be a solution of (4.1) verifying
the identity (4.2).

< &
— L5(——)dvs = 0.
/Q(Uk:,f W, 1) g(xN) or;

For any Borel subset O of €, Corollary 2.7 implies that problem

U
Li(—)=¢(, in Q,

(4.13) oy =6 i
u=20 on 0f2,

has a solution 7, € C?(Q)NCYH(Q), where ,, : Q +— [0,1] is a C1(Q) function such
that ¢, — xo in L>®(2) as n — oo. Therefore by passing to the limit as n — oo,
we have that

/ (ug,f — wg,p)dyg =0,
O

which implies that ug = wy 5 a.e. in € and then the uniqueness holds true. O

Remark 4.2. Let uy be the solution of (4.1) verifying the identity (4.2) with
k =0, then uy satisfies the isolated singular behavior (1.14). In fact, letting f >
0, then uy > 0 in Q. So if (1.14) fails, it implies by the positivity of uy, that

liminf; g+ lnszSN 1 Af(( )) =1lp>0and Uy :=uy — loAg is a solution of (4.1). By

Lemma 2.2, we have that @y > 0 in €2, By the approximating procedure, i verifies
the identity (4.2) with & = 0, which is impossible with the fact that uy —a; = loAg,
which satisfies

5
/Q(uf - af)zyjjv) dp = locgafN (0), VEe Ty

4.2. Nonzero Dirichlet boundary. Recall that P is Poisson’s Kernel of —A in
2 and Pqlg](z) = / Po(z,y)g(y)dw(y). It is known that if g is continuous, Pq[g]
o0

is a solution of

—Au =0 in
(4.14)

u=g on Of.

Multiply % where ¢ € C31(Q) and integrate over €2, then we have that
A
0 = [ (-apalg)® s
EA £A
— [ PalgvY). udw+/w @ 5>)d
oN

- /mggfd“ﬁ*/gz“)“” “‘5/ w* ”

that is, for any £ € C’l'l(Q) there holds

(4.15) /QJP’Q[] ﬂ/ IxP a:N —/ ggdwﬁ
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Lemma 4.3. Let B € [By, +o0) \ {0}, divg = (1 + |z|™+F))dw(z) and g > 0. We
have that

(i) If g € C(00\ {0}) N LY(0Q, dig), then #Pg[g] € LY, dvp).

(13) If g € C(O02\ {0}) and
(4.16) lim gdwg = +00,

r—=0% JaQ\ B,.(0)
then
1

lim —=Pqlg](x)dys = +00.
r—=0% JO\B,.(0) |22 lgl(@)ds

Proof. From Proposition 2.1 in [2] that
(417) 019p(x)‘x - y‘iN < Pﬂ(l',y) < CQOP(Z)“’I‘. - y‘iNv T e Qv y e BQ,

where p(z) = dist(x,09). Since g is continuous in 02 \ {0} and € is flat near
the origin, we can only consider the integrability of #PQ [g] near the origin. Fix

r=r70/2,let B(0) = {o/ € RV : [a/| <r} and e(y o) = (%, 0) for y' # 0, then

1
Pqlgldy
/B+(o) || lglds

> 021/ / lz— (y,0)] " glw!“(ﬁ dy'dx
B+ (0)JBLO \{0} 2|
2
z
— gl / 2 ey 2% |21 D dzay
B(0)\{0} B0 2]
and
/ L polgld
) Jo AP
2
< 623/ / Y|z — (v, 0)]” 2|x|T+ ) dy dz
B (0) /B! {0} | |

2
zZ
= 024/ g(y’)\y’l”(ﬁ)/ 2 — e o)) N 2L |2 Pdzdy .
B1(0)\{0} T SR A L TR

r/1y’|
Now we do estimates for
z2
/ I(z)dz ::/ |z — e o))~ NN+ B) gz,
B*, ,(0) B, (0) [ER
/1y r/1y’|

we have

0< / I(z)dz < QN/ 2|+ B dz,
B} (0) B (0)
2

2

o< |
B

I(z)dz < 2|T+(5)+2/B ( ]z—e(y/’o)er]Qde

+
1 e(yCO))

o=+

(e(y/,O))
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< 2r+(ﬁ>|+2/ 22Nz,
B7(0)
2

and
I(z)dz
/Bj/y'(0)\<B§(0)UB§(6(¢,0>)>
< 025/+ N ]z\—N+T+(B)dZ
626/ |z’*N+T+(5) dz if 6<O;
< RN\ B (0)
c26|y/‘_7+<25) if 8>0
< eor(14 |y |7+
and
I(z)dz > cog |Z|*N+T+(f3) dz
Bj/ly/‘(0)\<Bg(0)u3g(e(y/7o))) Bj/‘y,‘(o)\BJ%r(o)

> coo(1+ [y |7 D).
Thus, we have that

) 1 3
(4.18) c30 / 9(y)da(y') < / —Palgldys < e / 9(y)da(y'),
BL(0)\{0} Bf () |2l BL(0)\{0}

which, together with the fact that Pg[g] is nonnegative and bounded in Q\ B;(0),
proves Lemma 4.3. O

We remark that Lemma 4.3 provides estimates for transforming the boundary
data into the nonhomogeneous term. Now we are ready to prove Theorem 1.2 part
(1) where we distinguish two cases 8 € [fp, 0] and 3 > 0.

Proof of Theorem 1.2. Part (i). The existence for g € LY(0Q, dog). Let f =

f- %Pg[g]. Then it follows from Lemma 4.3 part (i) that f € L'(f, dvyz) and

applying Theorem 4.1 part (i), problem (4.1) verifying (4.2) for £ € R and replaced

f by f admits a unique solution of uy. Denote us 4 := uy + Pq[g], then
Lgufg=[f and ups=g on 002\ {0}.

Together with (4.2) and (4.15), we have that uy , verifies (1.11) and it is the unique

solution of problem (4.1) verifying (4.2) for that k.

Case of B € [Bo, 0]. Then dwg is equivalent to dwg, so L1(9Q, dig) = L1 (09, dwg)
and we are done.

Case of 8> 0. We note that
LY(09, dag) S L'(09, dwg).
So for g € L1(09, dwg)\ L' (982, dig), we may assume g > 0 by linearity of £z. Let
(4.19) Mn(s) =1—mno(ns) and gn(x) = g(@)mm(|z|),
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where 7 is defined in (2.1). Then {g,}n, C L*(99, d@p) is an increasing sequence
of functions. For simplicity, we assume that f = 0. Then the problem
EZU =0 in 9,
u=g, on 0N\ {0}

has a unique solution of u,, verifying the identify

o)
(4.21) /Qunﬁ};(f]v)d'yg = — /89 gna—idwg, Ve e O Q).

(4.20)

Since 0 < g, < g and g € L'(09Q, dwg), we may expand the text function space
including wy, wa, which are the solutions of (2.13) and (2.14) respectively. Taking
& = w1 and then wy , we derive that
unllzi) < esollgnll a0, duws) < c33llgllLr o0, dws)
] f;
and
||Un||L1(Q,x;]1d»yB) < C34”9”L1(8Q,dw5)'

We notice that u, > 0 and the mapping n — wu, is increasing, then by the
monotone converge theorem, we have that there exists u such that wu, converging
to u in L'(Q, %dvﬁ). Since ¢ € C31(€2), we have that 1L5(&/zN)| < cry'. Pass to
the limit of (4.21), we have that u verifies that

23
(4.22) [ uestermmang == | gZidus veecH (@,
Q o0 v
From standard interior regularity, we have that u is a classical solution
Egu =0 in Q,
u=g on 00\ {0},
which ends the proof. O

5. NONEXISTENCE

In this subsection, we establish the approximation of the fundamental solution
G-

Lemma 5.1. (i) Let {6,}n be a sequence of nonnegative L>°-functions defined in
Q such that supp 6, C By, (0) N2, where r, — 0 as n — +00 and

/ Snldr — 9¢(0) as n— +oo, VEe€CHQ).
Q Oxn

For any n, let w, be the unique solution of the problem in the dvyg-distributional
sense

Lau = (5n//\,8 in Q\ {0},
u=0 on 0f2,

lim  sup [u(@)]
r=0" pea, B, (0) Mp(T)

(5.1)
=0.
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Then

1
li = —AY Q
n—1>r—|r—loo wn(x) cs B(x)v Va e \ {0}
and for any compact set K C '\ {0},

1
(5.2) wy, — —Ag as n— +oo in C?*(K).
s
(i) Let {on}n be a sequence of nonnegative L™ functions defined on 92 such
that supp o, C QN By, (0), where r, — 0 as n — +oo and

/ onldw(z) — C(0) as n— +oo, V(e CHaN).
o0

For any n, let v, be the unique solution of the problem

Lgu =0 in Q\ {0},
5.3 On
(5:3) u:’.‘u(ﬂ) on 90\ {0}
subject to
0
onL5(E/xN) dys = / ona—fdw, Ve e i (Q).
Q o0 v
Then

lim o (z) = ;Ag(x), Vo e 0\ {0}

n—-+o00

and for any compact set K C Q\ {0}, (5.2) holds true.

Proof. From Lemma 2.3, problems (5.1) and (5.3) have unique solutions wy,, v, > 0
respectively and satisfying that

« & ,
(5.4) [ws i = [ hiede. veecy' @)
and
. € 29 :

By taking & = &, the solution of (2.13), we obtain that

lwnllL1(@, dvyg) < €0l Lo (@) 16nll L1 (@) = €0l zoc (@)

For any r > 0, take & with the support in Q \ B,(0), then £ € CX1(Q\ B,(0)),

/ wn L, (§) dyg = 0.
Q\B:(0)

Take ¢ the solution of (2.17) with f(z) = ﬁ, we have that

(5.6) / wnlz| ™ dys = / 5.6 d < [0l e (e
Q 9]
and
» o
(5.7) valel s =~ [ 0w ey < |[Veoll
Q o0 v

So W, vy, are uniform bounded in LY(Q, |z| 1dyp).
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From Corollary 2.8 in [31] with L* = L

5» which is strictly elliptic in Q\ B,(0),

we have that for ¢ < %,
lwnAsllwia(s,) < casllonllLi@\s.0) + cssllwnllzr@\B,(0), ays) < ca7

and
[vnAgllwian,) < essllonllzi@as. ) + csollvnll L@\, (0), dvys) < c10,

where Qo = {x € Q\ B2,.(0) : p(x) > 2r}. By the compact embedding W4(€y,.) —
L' (9s,), up to some subsequence, there exists weo, Voo € VVllo’cq(Q) NLY(S, dvg) such
that

Wy, — Weo as n—+oo ae. in Q andin L'(Q, dyp)
and it follows by (5.4) and (5.5) that for £ € C}1(Q),

%9
Weo L5(6) d —/vooﬁ* dvg = ——(0).
st ns = [ v © s = 750
Furthermore,
L
[ = 2G5 s =o
Q g
From the Kato’s inequality, we deduce that
1
Woo = Voo = —Ag a.e. €.
s
Proof of (5.2). For any zg € Q\ {0}, let ro = 1{|zo|, p(x0)} and p, = wyn, where

|z—x0|

n(z) = no(—, ). There exists ng > 0 such that for n > no, supppn N By, (0) = 0.
Then
—Apn(z) = —Awy(z)n(r) —2Vw, - Vi —w,An
= —2Vuw, - Vn—w,An,
where V7 and An are smooth.

We observe that w, € W14(By,, (7)) and —2Vw,, - Vi) — w, An € L4(Bay,(70)),
then we have that

H:unHWQ’q(BTO(xO)) < CHwnHLl(Q,d'yB),

where ¢ > 0 is independent of n. Thus, —2Vw,, - Vi — w,An € WL4(B, (z0)),
repeat above process Ny steps, for Ny large enough, we deduce that

lwnllc2a(B vy (20)) < cllwnllLiQ, dys)s
2No

where v € (0,1) and ¢ > 0 is independent of n. As a conclusion, (5.2) follows by
Arzela-Ascola theorem and Heine-Borel theorem. The above process also holds for
vy,. This ends the proof. O

Proof of Theorem 1.2. Part (ii). From (1.12), one of the following two cases holds
true,

case 1: lim fdysg =+o0, orcase2: lim g dwg = +00.
r—=0% JO\B,.(0) r—=0% JoQ\ B, (0)
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Case 1. We argue by contradiction. Assume that problem (1.2) has a nonnegative
solution of ug. Let {r,}, be a sequence of strictly decreasing positive numbers
converging to 0. From the fact f € C}/ (Q\ {0}), for any r, fixed, we have that

lim f(x)dys = +o0,
=07 (Br,, (0)\B(0)N2
then there exists R,, € (0,r,) such that
/ fdyg =n.
(Br, (0)\Bry, (0))NQ2
Let 9, = %AﬂfXBTn (0)\Brg,, (0)> then the problem
Lyu-Ag =0, in Q\ {0},
u=20 on 01,
lim u(az)@;l(az) =0

z—0

has a unique positive solution w,, satisfying (in the usual sense)
/ wy L, (\g€)dr = / Spédr, V&€ CHH(RQ).
Q Q

For any & € C§1(€2), we have that

. _ o8
/anﬁu(f)dvg—/géngdm% 03}]\7(0) as n — +oo.

Therefore, by Lemma 5.1 for any compact set £ C 2\ {0}
||wn — Ag”cl(]c) —0 as n— +oo.
We fix a point zg € Q and let ro = 3 min{|z¢|, p(z0)} and K = By, (zo), then there
exists ng > 0 such that for n > ng,
1
(5.8) wp > SGy i K.
Let u,, be the solution (in the usual sense) of
Lyu-Ag=nd, in Q\ {0},
u=0 on 01,

lim  sup [u(@)]
r—=0% zeo, B, (0) Ag(z)

then we have that u,, > nw, in 2. Together with (5.8), we derive that

=0,

Uy > gAi} in K.
Then by comparison principle, we have that us(z) > un(x9) = +00 as n — 400,
which contradicts to the fact that uy is classical solution of (4.1).

Case 2. Similarly for any n € N, we can take r, > R, > 0 such that r, — 0 as
n — +oo and

/ gdwg = n.
(Bry, (0\Bry, (0))NOQ
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Let 0, = %QXBM(O)\BR”(O), wy, be the solution of
Lyu=0 in Q\ {0},
u=o0,/|-7"®  on 09,

subject to

* 5 / 85 1.1
nLs(——)dyg = — n—dw, Y&eCy ().
Jwtscds == [ afa veeci@

Repeat the procedure in Case 1, we get a contradiction which completes the proof.
O
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