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where Ω is a smooth bounded domain in RN , N ≥ 1, T > 0 and with ∆pu the usual
p−Laplacian operator, ∆pu = div(|∇u|p−2∇u) for 1 < p < ∞. We emphasize that
probably the interest of our results is not for the applications to the above doubly
nonlinear equations but by its method of proof. Moreover, they are new even for the
case of a linear diffusion as (P ) with p = 2. We assume in (P ) a possible nonlinear
inertia term (i.e. in the time derivative), for some

(1.1) q ∈ (1, p]

and a sub-homogeneous forcing term f(x, u) + h(t, x)uq−1, where

(1.2) h ∈ L1(0, T : L2(Ω)),

and with the non-homogeneous perturbation term f(x, u) satisfying the following
structural assumptions:

(f1) f(x, u) is a continuous function on u ∈ (0,+∞), for a.e. x ∈ Ω and x →
f(x, u) belongs to L2(Ω), for any u ∈ (0,+∞),

(f2) f(x, u) = f1(x, u) + f2(x, u) with
f1(x, u)

uq−1
non increasing and

f2(x, u)

uq−1
is

globally Lipschitz continuous in u ∈ (0,+∞), of Lipschitz constant K ≥ 0,
for a.e. x ∈ Ω,

(f3) limr↓0
f1(x, r)

rq−1
= a0(x) with a0 ∈ L2(Ω).

Additionally, in some cases, we shall need also the condition

(f4) for any z > 0 there exists vz ∈ L∞(Ω) such that

z =
f1(x, vz(x))

|vz(x)|q−1 − a0(x) a.e.x ∈ Ω.

Notice that, since we shall not pay attention to the existence of solutions but to the
continuous dependence with respect to the data, no sign condition is assumed on
h(t, x) although we are interested in positive solutions of (P ). Notice also that, as
in [88], condition (f2) can be simply formulated as

f(x, u)− f(x, û) ≥ −K
(
uq−1 − ûq−1

)
for any u > û ≥ 0 and a.e. x ∈ Ω.

Condition (f4), of technical nature, will be required only when f1(x, r) is x−dependent

and express some kind of surjectivity condition of the application u 7→ f1(x,u)
uq−1 , over

(0,+∞). We also point out that assumptions (f1) and (f4), for some q ∈ (1, p], are
compatible with other assumptions, near r = 0 and near r = +∞, which arise in
the literature and that allows to consider some singular problems. For instance, in
[86] it was proved that the necessary and sufficient condition for the existence of a
positive solution for the stationary problem associated to (P ), when h(t, x) = K = 0
is that

λ1(−∆pv − a0v
p−1) < 0

and

λ1(−∆pv − a∞vp−1) > 0, a∞(x) = lim
r↑+∞

f1(x, r)

rp−1
.

There are many variants in the literature: for instance, in [101] (see page 275) it is

assumed (for p = 2) that limr↓0
f1(x,r)
rp−1 = +∞ and that limr↑+∞

f1(x,r)
rp−1 = 0.
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On the initial condition we will assume that

(1.3) u0 ∈ L2q(Ω) ∩W 1,p
0 (Ω), u0 > 0 on Ω.

but some more general conditions are also possible (see Remark 3.3).
Very often the nonlinear diffusion equation is equivalently written, in terms of

W = u2q−1 with

m =
1

2q − 1
∈
[

1

2p− 1
, 1

)
as

(Pm,p,q)


∂tW −∆pW

m = f(x,Wm) + h(t, x)(Wm)
1−2m
2m in QT ,

Wm = 0 on Σ,

W (0, .) = u2q−1
0 on Ω.

Since (p − 1)m = p−1
2q−1 ∈ [ p−1

2q−1 , p − 1), the diffusion operator in problem (P ), i.e.

(Pm,p,q), offers three different classes of diffusions, in the terminology of [81], [108],
[67], [134], [103], [68], [136]:

i) fast diffusion (which corresponds to (p− 1)m < 1, i.e. q ∈ (max(p2 , 1), p]),
ii) slow diffusion (which corresponds to (p− 1)m > 1, i.e. p > 2 and q ∈ (1, p2)),
and
iii) the case (p− 1)m = 1 (i.e. q = p

2), which was considered, for instance, in [65] in
connection with optimal logarithmic Sobolev inequalities: see also [128].

Since the perturbation in the right hand side can be written as (Wm)
1−2m
2m = W r

with r := 1−2m
2 , if we assume, for instance, p = 2 then m ∈ [13 , 1) and, in particular

0 < r < m < 1: a case considered for h = 1 and f = 0 by several authors as, e.g.
[119], and [107]: see also [105].

In the limit case q = 1 (i.e. m = 1), the problem formally includes a Heaviside
function (a model similar to the one which appears in some climate models with
the p-Laplace operator) since, roughly speaking, we can approximate the problem
by other ones corresponding to a sequence of exponents qn ↘ 1 as n → +∞ and
thus it seems possible to extend the conclusions to the multivalued problem

(PH)


∂tW −∆pW ∈ f(x,W ) + h(t, x)H(W ) in QT ,

W = 0 on Σ,

W (0, .) = W0 on Ω,

with H(r), the Heaviside, multivalued-function, H(r) = {0} if r < 0, H(r) = {1}
if r > 0 and H(0) = [0, 1]. Problems similar to (PH) appear in many contexts,
and, in particular, in climate Energy Balance Models (see, e.g., [87], [38], and
their references). For some comparison results concerning solutions of (Pm,p,q)
corresponding to two different values of m see [33]. The continuous dependence on
m (even in a more general framework than the one here considered) was studied in
[29] and [32].

It is well known (see, e.g., the exposition made in [48], [28], [88], [68]) that
the theory of maximal monotone operators on Hilbert spaces [or, more in general,
the theory of m-accretive operators in Banach spaces: see, e.g., [18], [31] and the
surveys [93] and [37]] can be applied to the above class of problems in the absence
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of the forcing term or when it is assumed to be globally Lipschitz continuous on the
corresponding functional space. But it seems that the applicability of the abstract
theory of such type of operators is not well known in the literature when the forcing
term is merely sublinear (if p = 2) or, more generally, sub-homogeneous (q ≤ p if
p ̸= 2). For some pioneering results we send the reader to [111], [98], [109], [110],
[6], [41], [113], [112] and the book [129].

As said before, the main goal of this paper is to show how the above mentioned
monotonicity methods can be suitably applied also to this class of non-monotone
problems, leading to a general framework (specially concerning the x-dependence of
coefficients) in which it is possible to show the continuous and monotone dependence
with respect to the data (the initial datum and the potential type coefficient h(t, x))
even if there are non-monotone terms in the right hand side.

As a matter of fact, in contrast with the previous literature, we will show that it
is possible to give a sense to the solvability of the equation even for time dependent
coefficients h(x, t) satisfying merely (1.2) (see some comments on the difficulties aris-
ing when using a more classical variational approach in [43], [12], [120]) and, what
it is more important, without prescribing any sign on h(x, t), which corresponds
to the so-called indefinite perturbed problems arising, for instance, in population
dynamics: see [117], [17], [15] and [11], among many other possible references.

As we will see, it is useful to start our program by considering the sub-homogeneous
simpler problem corresponding to f(x, u) ≡ 0, i.e. the problem

(Pq)

 ∂t(u
2q−1)−∆pu = h(t, x)uq−1 in QT ,

u = 0 on Σ,
u(0, .) = u0(.) on Ω.

The existence and uniqueness of a L1−mild positive solution when h(t, x) ≤ 0 is
a consequence of the well-known m-T-accretivity results of the associated operator
(see, e.g. [26], [88] and [136]). Nevertheless, since the right hand side is non-Lipschiz
continuous, problem (Pq) (and also problem (P )) may have more than one solution
(in particular when h(t, x) is changing sign and negative near Σ and we assume p > 2
and q ∈ (1, p2)). Nevertheless we can introduce a method to select only one L1−mild
positive solution by means of some monotonicity arguments. Indeed, we will select
the L1−mild positive solution u of (Pq) such that w( q

2q−1 t) = u(t)q coincides with

the unique L2−mild positive solution of the problem

(1.4)


dw

dt
+ ∂J0,q(w) ∋ h(t) in L2(Ω),

w(0) = w0,

where J0,q is the functional in L2(Ω) given by

J0,q(w) =


q

p

∫
Ω
|∇w

1
q |pdx if w ∈ D(J0,q),

+∞ otherwise,

with

D(J0,q) := {w ∈ L2(Ω) such that w ≥ 0 and w
1
q ∈ W 1,p

0 (Ω)}.



NEW APPLICATIONS OF MONOTONICITY METHODS 929

Developing an idea of Dı́az and Saá [86] (for p ̸= 2) we will see that J0,q is a convex,
lower semicontinuous functional and thus its subdifferential ∂J0,q(w) is well defined
and the uniqueness of a L2−mild positive solution w of (1.4) is well-known. In that
case we say that u(t) is the selected L1−mild positive solution of (Pq) (and so it
is unique). Of course that if, under some additional assumptions, it can be shown
the uniqueness of a positive weak solution of the equation then necessarily it must
coincides with the selected L1−mild positive solution (see, e.g., [119], [107], [105],
[59], [90] and [61], among others).

In Section 2 of this paper we will study the subdifferential ∂J0,q(w). We we will
prove that, given µ > 0 and h ∈ L2(Ω), the resolvent equation

(1.5) w + µ∂J0,q(w) ∋ h

is connected, through the relation w = uq, with the auxiliary variational problem

min
v∈K

Jh,q(v)

where

K :=
{
v ∈ W 1,p

0 (Ω) ∩ L2q(Ω), v ≥ 0 on Ω
}

and

Jh,q(v) :=
µ

p

∫
Ω
|∇v|pdx+

1

2q

∫
Ω
|v|2qdx− 1

q

∫
Ω
h(x)|v|qdx.

Since the problem is sub-homogeneous (q ∈ (1, p]) the different terms of Jh,q(v)
satisfy good growth conditions and the existence and uniqueness of a minimum
vh,q ∈ K can be obtained by standard direct methods of the Calculus of Variations
(see, e.g., Lemma 5 of [23] for the case p = 2 and [132] for p > 1 and q ∈ [1, p]).
Once again, the Euler-Lagrange equation

(1.6) −µ∆pv + v2q−1 = h(x)vq−1 in Ω,

may have other weak solutions v̂ ∈ W 1,p
0 (Ω) different to the minimum v of Jh,q

(specially if the sign of h(x) is not prescribed, h(x) is negative near Σ and we
assume p > 2 and q ∈ (1, p2))) but the relation w = uq allows to select only v when
we assume that w is the solution of (1.5).

As we shall show in Section 3, the definition of a unique u(t) selected L1−mild
positive solution of (P ) can be also obtained for the general case of f ̸= 0 as indicated
before by following a similar process to the indicated above. The main result of this
paper is the following:

Theorem 1.1. Let q ∈ (1, p] and h ∈ L1(0, T : L2(Ω)). Let u0, f satisfying (1.3)
and (f1)-(f3). Assume that f1(x, u) = f1(u) independent of x or f1(x, u) satisfying
also (f4). Then for any T > 0, there exists a unique selected positive L1−mild
solution u to problem (P) and uq ∈ C([0, T ] : L2(Ω)). In addition, if h ∈ L∞(0, T :
L∞(Ω)) and u0 ∈ L∞(Ω) then u ∈ L∞(0, T : L∞(Ω)). Moreover, if v0 and g
satisfy the same conditions than u0 and h, and if v is the respective selected positive
L1−mild solution of problem (P), then, for any t ∈ [0, T ] we have the monotone
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continuous dependence estimate

(1.7)

∥(uq(t)− vq(t))+∥L2(Ω) ≤ eKt∥(uq0 − vq0)
+∥L2(Ω)

+

∫ t

0
eK(t−s) ∥[h(s)− g(s)]+∥L2(Ω) ds,

where K ≥ 0 is the constant indicated in (f2).

Notice that, in particular, for the case of a slow diffusion, p > 2 and q ∈ (1, p2),
the above conclusions hold for ‘flat solutions’ (i.e. positive solutions such that u =
∂u
∂n = 0 on Σ). Notice that even for the special case h = g estimate (1.7) is new
for the doubly nonlinear problem (P): indeed, as indicated before the accretivity
results of the doubly nonlinear diffusion operator leads only to L1(Ω)−monotone
continuous dependence estimates (if p = 2 such estimates also hold on H−1(Ω) [48]),
but not in L2(Ω) (see, e.g., Bénilan [27]) as it is expressed in (1.7).

We point out that, obviously, the function u∞(x) ≡ 0 in Ω is a trivial solution
of the stationary problem associated to (P ). Here we are interested on positive
solutions of problem (P ). We will prove (see Theorem 3.9) that, in fact, if q ∈ (1, p2)

and p > 2, f(x, u) ≡ 0, h ∈ L1(0, T : L2(Ω)), h ≥ 0 and u0 ≩ 0 then there is no
extinction in finite time, so that ∥u2q−1(t)∥L2(Ω) > 0 for any t > 0. The situation

is different if q ∈ (p2 , p] since, at least for f(x, u) ≡ 0 and h ≤ 0, there is a finite
extinction time Te > 0, such that w(t) ≡ 0, in Ω, for any t ≥ Te. In that case, we
understand that the L1−mild solution u(t) of (P ) also extinguishes in Ω after Te.

In the Section 3 we will study of the auxiliary simplified problem (Pq) through the
study of the subdifferential operator ∂J0,q(v) in L2(Ω). This will allow to get the
proof of Theorem 1.1 by application of some abstract results on monotone operators
on Hilbert spaces. Many other variants, commented in form of a series of Remarks,
opening the application of this view point to many other different formulations, will
be presented. This is the case, for instance when the p-Laplacian is replaced by
an homogeneous diffusion operator of the form div(a(x,∇u)) with the homogeneity
condition

A(x, tξ) = |t|pA(x, ξ) for all t ∈ R and all (x, ξ) ∈Ω× RN ,

where a(x, ξ) = 1
p∂ξA(x, ξ).

2. On the subdifferential of J0,q

The proof of the main results will be obtained through the study of the Cauchy
problem 

dw

dt
+ ∂J0,q(w) ∋ h(t) in L2(Ω)

w(0) = w0,

with J0,q the functional presented in the Introduction. The convexity of J0,q will
play a crucial role in the rest of the paper.

Lemma 2.1. Given q ∈ (1, p], the functional J0,q is convex, lower semicontinuous
and proper on L2(Ω).
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Proof. The proof for the case q = p was given in Lemma 1 of [86], and the proof
for the case q ∈ (1, p) was obtained in [132] (see Lemma 4 and Example 5.2). A
different proof of this last case can be obtained from Proposition 2.6 of [46]. To
prove that J0,q is lower semicontinuous in L2(Ω) it suffices to prove that if we have

a sequence ρn → ρ in L2(Ω) such that J0,q(ρn) ≤ λ then J0,q(ρ) ≤ λ. But since ρ
1/q
n

is bounded in W 1,p
0 (Ω) there exists a subsequence, still labeled as ρ

1/q
n , such that

ρ
1/q
n converges weakly in W 1,p

0 (Ω), so that ∇ρ
1/q
n converges weakly in Lp(Ω)N and

since the norm is lower semicontinuous we obtain that lim infn J0,q(ρn) ≥ J0,q(ρ),
and hence J0,q(ρ) ≤ λ. □

Remark 2.2. As indicated in [86], the main results of [86] were presented in Sep-
tember 1985 in [85]. Its Lemma 1 extends and develops to the case p ̸= 2 Remark
2 of Brezis and Oswald [55] which was inspired in the paper Benguria, Brezis and
Lieb [23] where some previous results of Rafael Benguria’s Ph.D. thesis [22] were
presented together with some newer results. So, in contrast to what is indicated in
[46], the consideration of the case p ̸= 2 was not carried for the first time in [21] but
in [85], [86] seventeen years before. The extension to the case of RN was carried
out in [60] (for an extension to weaker solutions see [64]).

Remark 2.3. It seems, that the connection between Lemma 1 of [86] (called by
some authors Dı́az-Saá inequality when q = p, [60], [133]) and the generalization
of the 1910 Picone inequality [121] (concerning originally with ordinary differential
equations and much more later extended to partial differential equations in [2]; see,
also the survey [91]) was pointed out for the first time in Chaib [60]. As a matter of
fact, it was proved in Section 3.2 of [46] that the convexity of J0,q (for any q ∈ (1, p])
is equivalent to the generalized Picone inequality

1

p
|∇u|p−2 ⟨∇u,∇

(
zq

uq−1

)
⟩ ≤ q

p
|∇z|p + p− q

p
|∇u|p a.e. on Ω

if u, z ∈ W 1,p
loc (Ω), u > 0, z ≥ 0 on Ω.

We recall that given a convex, l.s.c. function ϕ : H → (−∞,+∞], ϕ proper,
over a Hilbert space H, a pair (w, z) ∈ H × H is such that z ∈ ∂ϕ(w) if ∀ξ ∈ H,
ϕ(ξ) ≥ ϕ(w) + (z, ξ−w). We say that w ∈ D(ϕ) :=

{
v ∈ H such that ϕ(v) < +∞

}
is such that w ∈ D(∂ϕ) if the set of z ∈ ∂ϕ(w) is not empty. We have

D(∂J0,q) ⊂ D(J0,q) ⊂ D(J0,q)
L2

= D(∂J0,q)
L2

(see Proposition 2.11 of Brezis [49]). The following result proves that the operator
∂J0,q satisfies an additional property to the mere monotonicity: it is a T−monotone
operator in L2(Ω) in the sense of Brezis-Stampacchia ([56]). This will explain later
the comparison of solutions of problem (P ) with respect to different data h(t, x) for
solutions.

Lemma 2.4. Let τ(s) = s+. Then for any w, ŵ ∈ L2(Ω)

(2.1) J0,q (w − τ(w − ŵ)) + J0,q (ŵ + τ(w − ŵ)) ≤ J0,q(w) + J0,q(ŵ).
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In particular ∂J0,q is a T−monotone operator in L2(Ω), i.e. for any w, ŵ ∈ D(∂J0,q)
and z ∈ ∂J0,q(w), ẑ ∈ ∂J0,q(ŵ),

(2.2)

∫
Ω
(z − ẑ)[w − ŵ]+dx ≥ 0,

and given h, ĥ ∈ L2(Ω), if for µ > 0, w, ŵ ∈ L2(Ω) are such that

(2.3) w + µ∂J0,q(w) ∋ h and ŵ + µ∂J0,q(ŵ) ∋ ĥ,

then

(2.4) ∥[w − ŵ]+∥L2(Ω) ≤
∥∥∥[h− ĥ]+

∥∥∥
L2(Ω)

.

Proof. Property (2.1) is equivalent to the inequality

(2.5) J0,q(min(w, ŵ)) + J0,q(max(w, ŵ)) ≤ J0,q(w) + J0,q(ŵ).

Obviously we can assume w, ŵ,min(w, (ŵ−k)),max((w−k), ŵ) ∈ D(J0,q) := {v ≥ 0

and v
1
q ∈ W 1,p

0 (Ω)∩L
2
q (Ω)} and then, by Stampacchia’s truncation results, we can

write ∫
Ω
|∇min(w, ŵ)

1
q |pdx =

∫
{w≤ŵ}

|∇w
1
q |pdx+

∫
{w>ŵ}

|∇ŵ
1
q |pdx

and ∫
Ω
|∇max(w, ŵ)

1
q |pdx =

∫
{w>ŵ}

|∇w
1
q |pdx+

∫
{w≤ŵ}

|∇ŵ
1
q |pdx.

Adding both expressions we get inequality (2.5). To show that (2.5) implies that
∂J0,q is a T−monotone operator in L2(Ω), i.e. (2.2) we shall develop a suggestion
made by H. Brezis in Remark 1.10 of [47]. Since z ∈ ∂J0,q(w) and ẑ ∈ ∂J0,q(ŵ) we
know that

J0,q(v)− J0,q(w) ≥
∫
Ω
z[v − w]dx ≥ 0 for any v ∈ L2(Ω),

J0,q(v)− J0,q(ŵ) ≥
∫
Ω
ẑ[v − ŵ]dx ≥ 0 for any v ∈ L2(Ω).

By taking v = min(w, ŵ) = w − [w − ŵ]+ in the first of the two inequalities, and
v = max(w, ŵ) = ŵ + [w − ŵ]+ in the second one, using that

min(w, ŵ)− w = −[w − ŵ]+ and max(w, ŵ)− ŵ = [w − ŵ]+,

by adding the results we get

J0,q(min(w, ŵ)) + J0,q(max(w, ŵ))− J0,q(w)− J0,q(ŵ) ≤ −
∫
Ω
(z − ẑ)[w − ŵ]+dx,

and thus inequality (2.5) implies property (2.2). By well-known results (see Section
IV.4 of Brezis [49]) we get conclusion (2.4). □
Remark 2.5. For some convex functionals J a stronger property than (2.1) holds:

(2.6) J(min(w, (ŵ − k))) + J(max((w − k), ŵ)) ≤ J(w) + J(ŵ)

for any k > 0. This property is equivalent ([35]) to inequality (2.1) for any τ : R → R
Lipschitz continuous with 0 ≤ τ ′ ≤ 1 and τ(0) = 0 and for any k > 0. This
property (2.1) implies several important properties for the realization of the operator
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w → ∂J(w) over the Banach spaces Ls(Ω), 1 ≤ s ≤ +∞ (see Lemma 3 of [57] and
its generalization in a series of papers (Théorème 1.2 and Remark 1.4 of [35], [24],
[25]) and ([35]). Property (2.1) holds for the class of the, so called, normal convex
functionals (see the above mentioned references) but to check it for the special
case of the functional J0,q remains as an open problem (some partial results can be
obtained in this direction: see Remark 3.11 ).

An uneasy task is to identify the operator ∂J0,q involved in the resolvent equation
(2.3) in terms of the Euler-Lagrange equation associated to the functional J0,q.
When trying to do that directly, using merely the functional J0,q, we see that, if

we assume that w > 0 on Ω, given a direction test function ζ ∈ W 1,p
0 (Ω) ∩ L2(Ω)

the Gâteaux derivative of J0,q in w in the direction ζ is given formally by

(2.7) J ′
0,q(w; ζ) = −

∫
Ω

∆p(w
1
q )

w
q−1
q

ζdx.

Thus, at least formally, the convexity of J0,q implies the monotonicity in L2(Ω) of
its subdifferential and so

(2.8)

∫
Ω

(
−∆p(w

1
q )

w
q−1
q

+
∆p(ŵ

1
q )

ŵ
q−1
q

)
(w − ŵ)dx ≥ 0.

In [86] it was shown that expression (2.7) is well justified if we assume w ∈ D(J0,q)

and w,∆p(w
1
q ) ∈ L∞(Ω). A different justification was made in Remark 3.3 of Takač

[131], this time under the additional condition that w > 0 on any compact subset
M ⊂ Ω,

∆p(w
1
q )

w
q−1
q

∈ D′(Ω),

and w ∈ C0(Ω). Nevertheless, it is possible to get some more general justifications
when instead of analyzing separately J ′

0,q(w; ζ) we consider the resolvent equation

(2.3). The following result is inspired by Lemma 6 of [23] concerning a related
problem in which p = q = 2 and N = 3.

Lemma 2.6. Given q ∈ (1, p], h ∈ L2(Ω) and µ > 0, assume that w ∈ D(∂J0,q),

w ≥ 0, satisfies the resolvent equation (1.5). Then function v := w
1
q satisfies that

v ∈ W 1,p
0 (Ω) ∩ L2q(Ω), ∆pv, h(x)v

q−1 ∈ L1(Ω), v is positive in the sense that

(2.9)
∣∣{x ∈ Ω : v(x) = 0

}∣∣ = 0,

and v satisfies the sub-homogeneous equation (1.6) in the sense of distributions.
Moreover,

i) if 1 < q < p and 0 < h−(x) = max(−h(x), 0) ≤ Ch−near ∂Ω

(2.10) v(x) ≥ Cd(x, ∂Ω)
p

p−q a.e. x ∈ Ω, for some C > 0 dependent of Ch− ,

ii) if h−(x) ≡ 0 near ∂Ω and p > 2 with q ∈ (1, p2) then

(2.11) v(x) ≥ Cd(x, ∂Ω)
p

p−2q a.e. x ∈ Ω, for some C > 0 independent on h,
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iii) if h−(x) ≡ 0 near ∂Ω and q ∈ [p2 , p) if p > 2, or q ∈ (max(1, p2), p) if p ≤ 2,
then

(2.12) v(x) ≥ Cd(x, ∂Ω) a.e. x ∈ Ω, for some C > 0 independent on h,

iv) if q = p then

(2.13) v(x) ≥ Cd(x, ∂Ω) a.e. x ∈ Ω, for some C > 0 independent on h.

Proof. Since D(∂J0,q) ⊂ D(J0,q) we know that v = w
1
q ∈ W 1,p

0 (Ω) ∩ L2q(Ω). More-
over h(x)vq−1 ∈ L1(Ω) since v ∈ L2q−2(Ω) and h ∈ L2(Ω). Therefore the equation

(1.6) has a meaning in the sense of distributions. Let η ∈ D̃ := W 1,p
0 (Ω) ∩ L2q(Ω)

(i.e. without the sign condition η ≥ 0). Define the functional

Jh,q(η) =
µ

p

∫
Ω
|∇η|pdx+

1

2q

∫
Ω
|η|2qdx− 1

q

∫
Ω
h(x)|η|qdx.

Therefore, for every η ∈ D̃
Jh,q(v) ≤ Jh,q(η)

so, v is a minimum of Jh,q on D̃. Now, for ζ ∈ C∞
0 (Ω), using that d(Jh,q(v+ ϵζ))/dϵ

= 0 we conclude easily that

µ

∫
Ω
|∇v|p−2∇v∇ηdx+

∫
Ω
v2q−1ηdx =

∫
Ω
h(x)vqηdx,

which proves v satisfies (1.6) and ∆pv ∈ L2(Ω). On the other hand,

−∆p(w
1
q )

w
q−1
q

= h(x)− w ∈ L2(Ω),

so, necessarily, w is positive (in the sense of (2.9)). Moreover, using the decompo-
sition h(x) = h+(x)− h−(x), with

h+(x) = max(h(x), 0), h−(x) = max(−h(x), 0),

we can write (1.6) as

−µ∆pv + v2q−1 + h−(x)v
q−1 = h+(x)v

q−1 in Ω.

The proof of iii) and v) is consequence of the strong maximum principle ([135],
[124]) once that v ≥ 0 on Ω, −µ∆pv + v2q−1 + h−(x)v

q−1 ≥ 0 and since the zero
order terms in the above inequality are super-homogeneous (2q − 1 ≥ p − 1 and
h−(x) = 0 near ∂Ω if q ∈ [p2 , p)).
To prove i) and ii) notice that in both cases there is a strong absorption with respect
to the diffusion once we write

−µ∆pv + v2q−1 + h−(x)v
q−1 = h+(x)v

q−1.

In the case ii), if h−(x) = 0 on a neighborhood Dδ of ∂Ω, with Dδ = {x ∈ Ω :
d(x, ∂Ω) ≤ δ}, for some δ > 0, then −µ∆pv + v2q−1 ≥ 0 in Dδ. Given M > 0 and
ϵ > 0, small enough, the set

Ωϵ,M =
{
x ∈ Ω : ϵ ≤ v(x) ≤ M

}
is a neighborhood of ∂Ω contained in Dδ (i.e. Ωϵ,M ⊂ D). Then, for any
x0 ∈ ∂Ωϵ,M , we can use a local barrier function V (x) based on the expression
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c |x− x0|
p

p−2q over the set Ωϵ,M ∩Bδ(x0), for some c > 0. As in the proof of Theo-
rem 2.3 of [5], it is possible to chose c > 0 (independent of h) such that V (x) is a
local subsolution, in the sense that{

−µ∆pV + V 2q−1 ≤ 0 in Ωϵ,M ∩Bδ(x0),

V ≤ v on ∂(Ωϵ,M ∩Bδ(x0)).

Thus, by the weak comparison principle v(x) ≥ V (x) on Ωϵ,M ∩ Bδ(x0), which
implies (2.11) since Ω is bounded (see an alternative direct proof, for N = 1, in
Proposition 1.5 of [70]).
The proof of i) follows also those type of arguments. Since q < p and h−(x) ≤ h−
on a neighborhood Dδ of ∂Ω we can built a local subsolution V ∗(x) on the set Ωϵ,M

(a neighborhood Dδ of ∂Ω) such that

−µ∆pV
∗ + h−V

∗q−1 ≤ 0 in Ωϵ,M ∩Bδ(x0),

and the same above arguments apply (leading to the estimate (2.11) since Ω is

bounded) but now building the subsolution by modifying the function c |x− x0|
p

p−q

with c depending on h−. □

It is useful to study some additional properties satisfied by the subdifferential
∂J0,q.

Lemma 2.7. i) ∂J0,q generates a compact semigroup over L2(Ω). ii) the resolvent
operator (I+µ∂J0,q)

−1 leaves invariant the subspace L∞(Ω); i.e. if h ∈ L∞(Ω) and
if w ∈ D(∂J0,q), w ≥ 0, satisfies (1.5) then w ∈ L∞(Ω), for any µ > 0.

Proof. i) Let {hn}n∈N be a bounded sequence in L2(Ω),

∥hn∥L2(Ω) ≤ M.

In particular, hn ⇀ h in L2(Ω) to some h ∈ L2(Ω). Let wn ∈ D(∂J0,q), wn ≥ 0 be

the associated solution of (1.5) for any given µ > 0. Then, by Lemma 2.6 vn := w
1
q
n

satisfies that vn ∈ W 1,p
0 (Ω) ∩ L2q(Ω), ∆pvn, hn(x)v

q−1
n ∈ L1(Ω), vn is positive and

satisfies the sub-homogeneous equation

(2.14) −µ∆pvn + v2q−1
n = hn(x)v

q−1
n in Ω,

in the sense of distributions. By multiplying the equation wn +µ∂J0,q(wn) ∋ hn by
wn, from the monotonicity of ∂J0,q we get

∥wn∥L2(Ω) ≤ M

and so

∥vn∥L2q(Ω) ≤ M.

Thus ∥∥−µ∆pvn + v2q−1
n

∥∥
L1(Ω)

≤ M ′

for some M ′ > 0 (independent on n) and thus there exists a subsequence such that
vn → v strongly in L1(Ω) and weakly in W 1,s(Ω) for any 1 ≤ s ≤ N(p − 1)/(N −
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1) (see, e.g., [67] Chapter 4 and its references). By the dominated convergence
Lebesgue theorem vqn → vq strongly in L1(Ω). Moreover, integrating by parts

µ

∫
Ω
|∇v|pdx+

∫
Ω
v2qdx ≤ M ′′

for some M ′′ > 0 and then v ∈ W 1,p
0 (Ω) ∩ L2q(Ω), ∆pv, h(x)v

q−1 ∈ L1(Ω) (see, e.g.
[43]) and so wn → w in L2(Ω). Applying the results of [50] (see also Theorem 2.2.2
of [141]) we get the conclusion.
The proof of ii) follows by the Stampacchia iteration method and it is an obvious
modification of Theorem 5.5 of ([43]) (notice that their arguments, for the case
1 < q < p, apply also for this special purpose to the limit case q = p). □
Remark 2.8. Notice that the functional Jh,q may have other stationary points

different to w1/q, with w solution of the resolvent equation (1.5). What the above

lemma shows is that the relation v = w1/q gives a uniqueness criterion for positive
solutions of (1.6). The positivity of v is fundamental since it is known that if
|{x ∈ Ω : v(x) = 0}| > 0 (which arise, in particular, when h(x) ≤ −h− < 0 in a
neighborhood of ∂Ω and q < p ([130])) there is multiplicity of nonnegative solutions
of (1.6) (see also [17]). Nevertheless, if q < p, the uniqueness result applies to ‘flat
solutions’ (i.e. positive solutions such that u = ∂u

∂n = 0 on Σ) (see [77]).When the
set {x ∈ Ω: h(x) < 0} is big enough (or if {x ∈ Ω: h(x) = 0} is big enough and
q ∈ (1, p)) there are some nonnegative solutions v of (1.6) which may vanish on
some positively measured subset of Ω (and so their support is strictly included in

Ω). This property (which does not holds when v = w1/q with w solution of (1.5))
can be obtained by comparison methods: through a refined version of [39] (see [67],
[69]), by local energy type methods ([10]), etc.

Remark 2.9. It is clear that it is possible to consider equations like (1.6) with
some different balances between the nonlinear absorption (v2q−1) and forcing (vq−1)
terms. Our special case is motivated by the application of the semigroup theory to
the operator ∂J0,q(w) in L2(Ω).

Remark 2.10. Lemma 2.6 admits many generalizations dealing with h /∈ L2(Ω)

but still with solutions v ∈ W 1,p
0 (Ω) ∩ L2q(Ω). It seems possible to complement

inequality (2.4) by other inequalities involving different exponents on the norms of
the data and the solutions (see, e.g., [43] and [120] in the parabolic framework and
Remark 3.11).

Remark 2.11. It is possible to extend the above approach by replacing the p-
Laplace operator by more general quasilinear homogeneous operators of the form
div(a(x,∇u)) with

A(x, tξ) = |t|pA(x, ξ) for all t ∈ R, ξ ∈ RNand a.e. x ∈ Ω,

where

a(x, ξ) =
1

p
∂ξA(x, ξ)

(see [131] and [104]). We point out that the application of the abstract results of
the accretive operators theory allows also the consideration of this type of diffusion
operators (see, e.g., [26]).
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Remark 2.12. A crucial property of the functional J0,q(w) is its strict ray-convexity :
it means that J0,q(w) is strictly convex except for any couple of colinear points w, ŵ
with ŵ = αw for some α ∈ (0,+∞). That was used in [7], [132] and [131] to get the

uniqueness of nonnegative solutions when f1(x,u)
uq−1 in (f2) is not strictly decreasing

(as it is the case of the first eigenfunction of the p-Laplacian).

Remark 2.13. The limit case p = ∞ (defined in a suitable way) can be also
considered since, curiously enough, it is an homogeneous operator of exponent 3
(see, e.g., [66]). It is well-known that the other limit case p = 1 can be also treated
as a subdifferential of a convex function (see e.g., [8]) but the unique choice to apply
the reasoning of this paper seems to be q = p = 1 and then the results reduce to
the well-known case of monotone perturbations. It would be interesting to know if
it is possible to get the uniqueness of nonnegative solutions of equations involving
some different kind of non-monotone sub-homogeneity nonlinear term.

3. Selected Ls−mild solutions, proof of the main theorem and
further remarks

It is useful to unify the application of abstract results on the associated Cauchy
Problem to the case of the Banach spaces Ls(Ω), for any s ∈ [1,+∞]. For instance,
we can define the realizations of the operator ∂J0,q over the spaces Ls(Ω), for any

s ∈ [1,+∞] as As = ∂J0,q
Ls

in the sense of graphs over Ls(Ω) × Ls(Ω): i.e.,
As : D(As) → P(Ls(Ω)) and z ∈ As(w) if and only if there exists zn ∈ ∂J0,q(wn)

such that wn → w and zn → z in Ls(Ω), so that D(As) =

{
w ∈ Ls(Ω) : ∃wn ∈

L2(Ω), with w
1
q
n ∈ W 1,p

0 (Ω) ∩ L2q(Ω) such that wn → w in Ls(Ω)

}
.

Then, we consider the Cauchy problem

(3.1)


dw

dt
+Asw ∋ F (t) in Ls(Ω)

w(0) = w0,

where w0 ∈ D(As) and F ∈ L1(0, T : Ls(Ω)). In our case, two relevant examples
are A2 = ∂J0,q and the L1(Ω) operator{

AW = −∆pW
m, for W ∈ D(A), with

D(A) =
{
W ∈ L1(Ω), Wm ∈ W 1,1

0 (Ω),∆pW
m ∈ L1(Ω)

}
,

given m > 0 and p > 1.
We start by recalling the definition of mild solution of (3.1) by particularizing

the abstract framework to the case of the Banach space X = Ls(Ω). The good
class of operators to solve (3.1) is the class of accretive operators (resp. T-accretive
operators) over a Banach space X : i.e. A : D(A) → P(X) such that

∥x− x̂∥ ≤ ∥x− x̂+ µ(y − ŷ)∥
(resp.

∥∥[x− x̂]+
∥∥ ≤

∥∥[x− x̂+ µ(y − ŷ)]+
∥∥ )

whenever µ > 0 and (x, y), (x̂, ŷ) ∈ A.
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The operator is called m-accretive if in addition R(I + A) = X. For many results
and definitions about mild solutions of the Cauchy Problem for accretive operators
in Banach spaces see, e.g., [18], [19], [31], [67], [138], [93] and [37]. We recall that
over any Hilbert space (as L2(Ω)) the class of m-T-accetive operators coincides
with the class of maximal T-monotone operators and thus it is possible to apply
the abstract theory presented in Brezis [49]) to problem (1.4). The notion of mild
solution below is well defined in both cases: Hilbert and Banach spaces.

Definition 3.1. A function w ∈ C([0, T ] : Ls(Ω)) is a Ls−mild solution of (3.1) if
for any ϵ > 0, there exists a partition {0 = t0 < t1 < ... tn} of [0, tn] and there exist
two finite sequences {wi}ni=0, {Fi}ni=0 in Ls(Ω) such that

(i)
wi+1 − wi

ti+1 − ti
+Aswi+1 ∋ Fi+1, i = 0, 1, ..., n− 1

(ii) ti+1 − ti < ϵ

(iii) 0 ≤ T − tn < ϵ

(iv)
n−1∑
i=1

∫ ti+1

ti

∥Fi − F (t)∥Ls(Ω) dt < ϵ,

and

∥wϵ(t)− w(t)∥Ls(Ω) ≤ ϵ on [0, tn],

where

wϵ(t) = wi for ti ≤ t < ti+1, i = 0, 1, ..., n− 1.

Definition 3.2. The piecewise constant function wϵ(t) defined before is called an
ϵ-Ls-approximate solution of (3.1).

Proof of Theorem 1.1. Let us start by considering the simpler problem f(x, v) ≡ 0.

Since w0 = uq0 ∈ D(J0,q) ⊂ D(J0,q)
L2

= D(∂J0,q)
L2

, the existence and uniqueness

of a mild solution w ∈ C([0, T̃ ] : L2(Ω)), for any arbitrary T > 0, is a direct
consequence of the application of the abstract theory (Brezis [49]) on maximal T-
monotone operators in L2(Ω). Moreover, we know that w is a weak solution (in
the sense of Definition 3.1 of [49]): i.e. if we assume w0,n ∈ D(∂J0,q) and hn ∈
W 1,1(0, T̃ : L2(Ω)) such that w0,n → w0 in L2(Ω) and hn → h in L1(0, T̃ : L2(Ω))

then the respective solutions wn satisfy that wn → w in C([0, T̃ ] : L2(Ω)) (see,
Theorem 3.4 of [49]). By applying Theorem 3.7 of [49] we know that, in fact, wn

is a strong solution in the sense that wn(t) is Lipschitz continuous on [δ, T̃ ] for any

δ ∈ (0, T̃ ) and thus differentiable. Then the associate problem (1.4) can be written
as

dwn

dτ
(τ)− ∆p(wn(τ)

1
q )

wn(τ)
q−1
q

= hn(τ),

i.e.,

wn(τ)
q−1
q

dwn

dτ
(τ)−∆p(wn(τ)

1
q ) = hn(τ)wn(τ)

q−1
q .
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If we define wn(τ) = un(t)
q then

wn(τ)
q−1
q

dwn

dτ
(τ) =

q

2q − 1

d(w
(2q−1)/q
n )

dτ
(τ) =

d(u2q−1
n )

dt
(t)

if
τ =

q

2q − 1
t.

Obviously we take now T̃ = q
2q−1T. Notice that wn ∈ C([0, T̃ ] : L2(Ω)) implies that

uqn ∈ C([0, T ] : L2(Ω)) and thus u2q−1
n ∈ C([0, T ] : L2(Ω)) since (2q − 1)/q > 1

(remember that q > 1). In addition, for those regular data

d(u2q−1
n )

dt
∈ [δ̂, T ] for any δ̂ ∈ (0, T ].

Thus, we conclude that un(t) := wn(
q

2q−1 t)
1/q is a L1−mild positive solution of (Pq)

on [0, T ], associated to u0,n := w0,n
1/q and hn (which the corresponding unique

selected L1−mild positive solution of (Pq). Finally, as wn → w in C([0, T̃ ] : L2(Ω))

we get that u(t) := w( q
2q−1 t)

1/q is a L1−mild positive solution of (Pq) on [0, T ],

associated to u0 := w0
1/q and h since the notion of mild solution is stable by

approximations of the data (see, e.g. Theorem 11.1 of [31]). The rest of conclusions
of Theorem 1.1, when f(x, v) ≡ 0 are a consequence of Lemma 2.7 and the T-
monotocity of operator ∂J0,q (Lemmas 2.4 and 2.6).
We consider now the parabolic problem (P ) in the general case, i.e., with a non-
homogeneous term f(x, u) satisfying the structural assumptions (f1)-(f3). We con-
sider now the operator on L2(Ω)

(3.2) Cw = ∂J0,q(w)−
f1(x,w)

wq−1

with D(C) = D(∂J0,q). Since (f1)-(f3) hold and f1(x,w) = f1(w), independent of
x, or f1(x,w) satisfies also (f4), then the function E : Ω× [0,+∞) → R, given by

E(x,w) = −f1(x,w)

wp−1
− a0(x)

generates a m–T-accretive operator L2(Ω) with E(x, 0) = 0. Then, the operator C
is m-T-accretive on L2(Ω). Moreover, the Lipschitz function

G(x,w) = −f2(x,w)

wq−1
+ a0(x)

(of constant KG > 0) generates a Lipschitz operator on L2(Ω) (of constant K for
some K > 0). Then the operator C + KI is a m-T-accretive in L2(Ω) (see, e.g.,
Chapter 2, Example 2.2 of [31]), i.e., C is a K-m-T-accretive in L2(Ω). So, by

the Crandall-Ligget theorem (see, e.g., [18], and [31]), for any w0 ∈ D(∂J0,q) and
h ∈ L1(0, T : L2(Ω)) there exists a unique positive L2−mild solution w ∈ C([0, T ] :
L2(Ω)) of the Cauchy Problem

(3.3)


dw

dt
+ ∂J0,q(w)−

f1(x,w)

wq−1
− f2(x,w)

wq−1
∋ h(t) in L2(Ω)

w(0) = w0,
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and if ŵ ∈ C([0, T ] : L2(Ω)) is the L2−mild solution corresponding to the data

ŵ0 ∈ D(∂J0,q) and ĥ ∈ L1(0, T : L2(Ω)) then for any t ∈ [0, T ]

∥[w(t)− ŵ(t)]+∥L2(Ω) ≤ eKt∥(w0 − ŵ0)+∥L2(Ω)

+

∫ t

0
eK(t−s)

∥∥∥[h(s)− ĥ(s)]+

∥∥∥
L2(Ω)

ds,

(see, e.g., [19] Proposition 4.1 or Theorem 13.1 of [31]). Arguing as before u(t) :=

w( q
2q−1 t)

1/q is a L1−mild positive solution of (P ). The proof that u ∈ L∞(0, T :

L∞(Ω)) once we assume h ∈ L∞(0, T : L∞(Ω)) and u0 ∈ L∞(Ω) is a consequence
of Lemma 2.7 (which implies the compactness of the semigroup generated by op-

erator ∂J0,q(w)−
f1(x,w)

wq−1
− f2(x,w)

wq−1
) and the abstract invariant results presented

in Theorem 2.4.1 of Vrabie [141] (see also [89]), which ends the proof of Theorem
1.1. □
Remark 3.3. In fact, the existence and uniqueness of a L2−mild positive solution
of problem (1.4) can be assured in the more general case of w0 ∈ D(∂J0,q). Notice

that if w0 ∈ D(∂J0,q) the selected L1−mild positive solution u of (Pq) such that
w( q

2q−1 t) = u(t)q, with w(t) the corresponding L2−mild positive solution of problem

(1.4) satisfies (in some sense) the decay estimates given in Lemma 2.6 since they are
obtained through the implicit Euler scheme given in the definition of mild solution.
As a matter of fact, if w(t0) ∈ D(∂J0,q) for some t0 ∈ [0, T ], i.e. ∂J0,q(w(t0)) ∋ h(t0)
for some h(t0) ∈ L2(Ω) then −∆pv(t0)+h(t0)−(x)v(t0)

q−1 = h(t0)+(x)v(t0)
q−1 and

necessarily we get the estimates iii) and iv) of 2.6 for v(t0). We also point out that
some uniqueness results for suitable sublinear parabolic problems, when u0(x) ≥
Cd(x, ∂Ω), can be found in [59], [102], [63], [78], [73] (see also their references to
previous works in this direction). Curiously enough such type of assumptions also
lead to the uniqueness of solutions in the case of equations with multivalued right
hand side terms as problem (PH) (see [94], [87]) which until now required completely
different ideas.

Remark 3.4. We point out that selected L1−mild positive solution u satisfies some
extra regularity properties due to the subdifferential of J0,q involved in the equation.
See also some variational type techniques applied to the case p = 2 in [120] and the
general approach (also for p = 2) presented to some related problems in [51], [52].

Remark 3.5. It seems possible to make a sharper study of the regularity of the
solution of the equation −µ∆pv+ v2q−1 = h(x)vq−1, but we shall not enter into the
maximum of its generality here. For instance, when p = 2 such equation becomes
a Schrödinger equation with a potential h(x) (and a nonlinear perturbation term
v3) and so it is possible to consider potentials h(x) with a singular behavior near
∂Ω (and in other subregions of Ω) which goes beyond L1(Ω) (see, e.g., [36], [123],
[74],[118], [76] and its many references). For the special case of q = p ̸= 2 singular
potentials were considered in [115], [122], [79] and in many other papers.

Remark 3.6. The main result of this paper may be also proved when we replace
the open bounded set Ω by the whole space RN . The Diaz-Saá inequality (and the
generalized Picone inequality) was obtained in [60] (respectively in [64]). We do
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no want to enter into details here but the arguments of truncating the domain,
generate the associate problems on an expansive sequence of domains Ωn and then
to get the solution as limit of the solutions of the corresponding problems on Ωn

can be applied as in Brezis and Kamin [54] (see also [83]). The assumptions made
on functions fi allow to get some similar estimates to (1.7) to solutions of several
quasilinear formulations (see, [119], and [107]) and, in particular, to solutions of the
associated to the KPP equation as in the papers [54], [82], [13] and [14]).

Remark 3.7. As mentioned before, the assumptions on f1(x, u) allow the con-
sideration of some singular terms: see, e.g., [16], [45], [99], [73] and the surveys

[106] and [100]. The assumption of the type f2(x,u)
uq−1 globally Lipschitz continuous in

u ∈ (0,+∞) was used for other purposes in previous works in the literature (see,
e.g., [62]).

Remark 3.8. It seems possible to get similar results to positive solutions of Neu-
mann type boundary conditions once that the homogeneity of the boundary condi-
tion is compatible with the one of the doubly nonlinear problem (P ) (see, e.g., [26],
[4], [17] and [9] among many other possible references).

We point out that, obviously, the function u∞(x) ≡ 0 in Ω is a trivial solution of
the stationary problem. Here we are interested on nonnegative solutions of problem
(P ) (and its implicit time discretization). The following result shows that the
asymptotic behavior, as t → +∞, is very different according q ∈ (1, p2) and p > 2
than in the case q ∈ (p2 , p].

We will prove that, in fact, if q ∈ (1, p2) and p > 2, f(x, u) ≡ 0, h ∈ L1(0, T :

L2(Ω)), h ≥ 0 and u0 ≩ 0 then there is no extinction in finite time, so that
∥u2q−1(t)∥L2(Ω) > 0 for any t > 0. The situation is different if q ∈ (p2 , p] since,
at least for f(x, u) ≡ 0 and h ≤ 0, there is a finite extinction time Te > 0, such
that w(t) ≡ 0, in Ω, for any t ≥ Te. In that case, we understand that the selected
solution v(t) of (P ) also extinguishes in Ω after Te.

Theorem 3.9. a) Assume q ∈ (1, p2) and p > 2, f(x, u) ≡ 0, h ∈ L1
loc(0,+∞ :

L2(Ω)), h ≥ 0 and u0 ≩ 0 satisfying (1.3). Then the selected L1−mild positive
solution u of (P ) satisfies that

∥uq(t)∥L2(Ω) ≥
1

(c1t+ c2)(q−1)/(p+q−2)

for any t > 0, for some positive constants c1 and c2.
b) Assume q ∈ (p2 , p], f(x, v) ≡ 0 and h ∈ L1

loc(0,+∞ : L2(Ω)) such that h ≤
0.Then there is a finite extinction time Te > 0, such that the selected solution u(t)
of (P ) extinguishes in Ω after Te, i.e., u(t) = u∞(x) ≡ 0, in Ω, for any t ≥ Te.

Proof. Since h ≥ 0, from the comparison estimate (1.7) we deduce that u ≥ U with
U the unique solution of the problem

(P0)


∂t(U

2q−1)−∆pU = 0 in QT ,

U = 0 on Σ,

U q(0, .) = uq0(.) on Ω.
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Moreover, as indicated in Theorem 1.1, we know that if U(t) := W ( q
2q−1 t)

1/q then

W satisfies of the problem

(3.4)


dW

dt
+ ∂J0,q(W ) ∋ 0 in L2(Ω)

W (0) = u0.

In addition, the operator ∂J0,q(W ) is formally given by
∆p(w

1
q )

w
q−1
q

and thus it is ho-

mogeneous of exponent θ = (p− q)/q, in the sense that

∂J0,q(rW ) = rθ∂J0,q(rW ) for any r ≥ 0 and W ∈ D(∂J0,q).

Then, since q ∈ (1, p2) and p > 2 implies that θ > 1, applying Theorem 1.1 of [1] we
get that

∥U q(t)∥L2(Ω) ≥
1

(c1t+ c2)(q−1)/(p+q−2)
for any t > 0,

for some positive constants c1 and c2, and then the conclusion holds since U ≥ U.
b) We consider, again the solution U of (P0). Now 0 ≤ u ≤ U and since, in this
case, the homogeneity exponent of ∂J0,q(W ) is θ < 1 the conclusion results of the
application of Corollary 1 of [20]. □
Remark 3.10. Systems involving sub-homogeneous terms have been extensively
considered in the literature: see, e.g., [96], [97], [60] and its references. It would
be interesting to apply the assumptions of the general framework in this paper to
the case of systems. In the case of higher order equations with sub-homogeneous
terms the T-accretivity in Lp fails but I conjecture that the L2−contraction contin-
uous dependence still holds for certain homogeneous higher order operators (as for
instance those considered in [42] and [3]).

Remark 3.11. As mentioned before (see Remark 2.5) a stronger property on the
convex funcional J may lead to the accretivity in L1 and in L∞ of the realization
over these spaces of the subdifferential operator ∂J . Although we are not able to
check the stronger property (2.6) in the special case of functional J0,q it is possible
to get some continuity dependence inequalities for solutions of the equation w +
µ∂J0,q(w) ∋ h, for any µ > 0, which keep some resemblances with the inequalities
expressing the L1 and L∞ T-accretivity for the realization of the operator ∂J0,q(w)
over those spaces (some related techniques can be found in Brezis and Kamin [54]
and [61]).
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[5] L. Álvarez and J. I. Dı́az, On the retention of the interfaces in some elliptic and parabolic
nonlinear problems, Discrete and Continuum Dynamical Systems 25 (2009), 1–17.

[6] H. Amann, Existence and multiplicity theorems far semi-linear elliptic boundary value prob-
lems, Math. Z. 150 (1976), 281–295.

[7] A. Anane, Simplicité et isolation de la premiere valeur propre du p−Laplacien avec poids,
Comptes Rendus Acad. Sc. Paris Série I 305 (1987), 725–728.

[8] F. Andreu, V. Caselles, J. I. Dı́az and J. M. Mazón, Some Qualitative properties for the Total
Variation Flow, Journal of Functional Analysis 188 (2002), 516–547.

[9] D. Andreucci and A. F. Tedeev, A Fujita Type Result for Degenerate Neumann Problem in
Domains with Noncompact Boundary, J. Math. Anal. Appl. 231 (1999), 543–567.

[10] S. Antontsev, J. I. Dı́az and S. Shmarev, Energy Methods for Free Boundary Problems,
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