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when V (t, x) = V (t, x1, . . . , xN ) is T -periodic in t and τk-periodic in xk, for every
k = 1, . . . , N . The first aim of this paper is to extend such a result to an infinite-
dimensional setting. So, let H be a separable Hilbert space, and let (ek)k≥1 be
a Hilbert basis. We assume V : R × H → R to be continuous, T -periodic with
respect to its first variable t, and continuously differentiable with respect to its
second variable x. Here is our result.

Theorem 1.1. Assume that there exists a sequence of positive real numbers (τk)k≥1

such that

V (t, x+ τkek) = V (t, x) , for every (t, x) ∈ [0, T ]×H(1.3)
and k = 1, 2, . . .

If
∑∞

k=1 τ
2
k < +∞, then equation (1.2) has at least two geometrically distinct T -

periodic solutions, for every e(t) satisfying (1.1).

The above theorem generalizes [1, Theorem 6], where further regularity assump-
tions were made on V , in order to obtain the existence of at least one T -periodic
solution. A Galerkin-type argument was used there to reduce the problem to a se-
quence of finite-dimensional differential systems, to which a generalized version of
the Poincaré–Birkhoff theorem applies (cf. [9]), followed by a limit process.

The proof of Theorem 1.1 will follow the same ideas introduced in [16, 17], taking
advantage of the compactness of the Hilbert cube

∏∞
k=1[0, τk]. The first solution will

be obtained by minimization of the action functional, while the second one will be
of mountain pass type.

Using the Lusternik–Schnirelmann theory, it was proved in [15] that, under the
same assumptions, system (1.2) in RN has indeed at least N+1 geometrically distinct
T -periodic solutions, thus generalizing the result in [17]. (Notice that, when N ≥ 2,
the multiplicity result is not optimal, as shown by the four equilibria of a double
pendulum.) Even more, a system of the type

ẍ+Ax+∇xV (t, x) = e(t)(1.4)

was considered there, involving a symmetric matrix A. Other results in this di-
rection, including the case of Hamiltonian systems leading to a strongly indefinite
action functional, were studied, e.g., in [3, 4, 6, 7, 9, 10, 13, 14, 20].

The second aim of this paper is to obtain multiplicity results for an infinite-
dimensional system of the type (1.4), when A : H → H is a semi-negative definite
bounded selfadjoint operator, whose spectrum contains 0 as an isolated eigenvalue,
V (t, x) is bounded above and T -periodic in t, and the image of ∇xV is contained
in a compact set of H. Denoting by N (A) the null space of A, we distinguish two
cases.

If N (A) has finite dimension N and V (t, x) satisfies a periodicity condition of the
type (1.3), with the ek replaced by the elements of an orthonormal basis of N (A),
the existence of at least N + 1 geometrically distinct T -periodic solutions is proved,
when the mean value of e(t) belongs to N (A)⊥. The precise statement will be given
in Section 2. The proof, provided in Section 3, will be carried out by the use of an
abstract theorem, given in [18] and inspired by [19], providing the multiplicity of
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critical points of some functionals in a Banach space X which are bounded below,
invariant under the action of some discrete subgroups of X, and satisfy a suitable
Palais–Smale condition.

If N (A) has infinite dimension, assuming in addition that
∑∞

k=1 τ
2
k < +∞, after

finding the first solution by minimization of the action functional, a second one is
provided by the Mountain Pass Theorem. We thus get, in this case, the existence
of at least two geometrically distinct T -periodic solutions.

The paper ends with some examples and an open problem.

2. The main result

Let H be a separable Hilbert space, with scalar product (·, ·) and corresponding
norm | · |. In this space, we consider the equation

(2.1) ẍ+Ax+∇xV (t, x) = e(t) ,

where A ∈ L(H) is a bounded selfadjoint operator, and e : R → H is continuous and
T -periodic. Concerning the function V : R × H → R, it is continuous, T -periodic
in its first variable t, and differentiable with respect to its second variable x, with
corresponding continuous gradient ∇xV : R×H → H.

Let us introduce our assumptions. We denote by N (A) the null-space of A, and by
σ(A) its spectrum. We take a Hilbert basis (ak)k of N (A), considered as a subspace
of H. If N (A) has a finite dimension, its basis will be given by (a1, . . . , aN ); if it is
infinite-dimensional, we will have a sequence of vectors (a1, a2, . . . ).

A1. The selfadjoint operator A is semi-negative definite, with N (A) ̸= {0}, and

sup
(
σ(A) \ {0}

)
< 0 .

So, 0 is an isolated point of σ(A).

A2. The mean value of e(t) is orthogonal to N (A), i.e.,∫ T

0
e(t) dt ∈ N (A)⊥ .

Then, we have that∫ T

0
(e(t), ak) dt = 0 , for every k = 1, 2, . . .

A3. There exists a sequence of positive real numbers (τk)k≥1 such that

V (t, x+ τkak) = V (t, x) , for every (t, x) ∈ [0, T ]×H and k = 1, 2, . . .

A4. There is a nonnegative constant C such that

V (t, x) ≤ C , for every (t, x) ∈ [0, T ]×H .

A5. The set ∇xV ([0, T ]×H) is precompact in H.
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In the above setting, we can now state the main result of this paper.

Theorem 2.1. Assume that conditions A1 to A5 hold. If N (A) is finite-dimensional,
then equation (2.1) has at least dimN (A) + 1 geometrically distinct T -periodic so-
lutions. On the other hand, if N (A) is infinite-dimensional and

∑∞
k=1 τ

2
k < +∞,

then there are at least two of them.

Notice that, once a T -periodic solution x(t) has been found, any function obtained
by adding to it some integer multiples of τkak is still a T -periodic solution. We say
that two T -periodic solutions are geometrically distinct if they cannot be obtained
one from the other in this way.

Concerning assumption A5, we remark that it will surely be satisfied if the fol-
lowing holds.

A5′. There exists a Hilbert basis (ek)k≥1 of H and a nonnegative sequence (Mk)k,
with

∑∞
k=1M

2
k < +∞, such that∣∣∣∣ ∂V∂ek (t, x)

∣∣∣∣ ≤ Mk , for every (t, x) ∈ [0, T ]×H and k = 1, 2, . . .

Indeed, A5′ implies that ∇xV ([0, T ]×H) is contained in a Hilbert cube, which is a
compact set in H. In the above formula, we have used the notation

∂V

∂ek
(t, x) = lim

τ→0

V (t, x+ τek)− V (t, x)

τ
.

Notice that Theorem 1.1 is a direct consequence of Theorem 2.1, taking A = 0
and (ak)k = (ek)k, a Hilbert basis of H. Indeed, the periodicity assumption in
Theorem 1.1 and the compactness of the set [0, T ]×

∏∞
k=1[0, τk] show that A4 and

A5 are surely satisfied.

In the proof of Theorem 2.1, we will need a result from [18], which we now recall,
for the reader’s convenience.

Let G be a discrete subgroup of a Banach space X and π : X → X/G be the
canonical surjection. A subset S of X is G-invariant if π−1(π(S)) = S, and a
function f defined on X is G-invariant if f(u + g) = f(u), for every u ∈ X and
every g ∈ G. If φ ∈ C1(X,R) is G-invariant, then φ′ is also G-invariant, and if u is
a critical point of φ, the same is true for u+ g for all g ∈ G. The corresponding set
{u+ g : g ∈ G} is called a critical orbit of φ.

A G-invariant differentiable function φ : X → R satisfies the (PS)G condition
if, for every sequence (un)n in X such that φ(un) is bounded and φ′(un) → 0, the
sequence (π(un))n contains a convergent subsequence.

The following multiplicity result for the critical points of G-invariant functionals
is stated as Theorem 4.12 in [18].

Theorem 2.2. Let φ ∈ C1(X,R) be a G-invariant functional satisfying the (PS)G
condition. If φ is bounded from below and if the dimension N of the space generated
by G is finite, then φ has at least N + 1 critical orbits.
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3. Proof of Theorem 2.1

Let L2([0, T ],H) be the space of measurable functions x : [0, T ] → H such that
|x| is square integrable. It is a Hilbert space equipped with the scalar product

⟨x, y⟩2 =
∫ T

0
(x(t), y(t)) dt ,

and corresponding norm

∥x∥2 =
(∫ T

0
|x(t)|2 dt

) 1
2

.

We consider the space H1([0, T ],H), made of those functions x belonging to
L2([0, T ],H) with weak derivative ẋ also in L2([0, T ],H). It is a Hilbert space,
as well, with the scalar product

⟨x, y⟩ = ⟨x, y⟩2 + ⟨ẋ, ẏ⟩2 =
∫ T

0
[(x(t), y(t)) + (ẋ(t), ẏ(t))] dt ,

and corresponding norm

∥x∥ =
(
∥x∥22 + ∥ẋ∥22

) 1
2 =

(∫ T

0

[
|x(t)|2 + |ẋ(t)|2

]
dt

) 1
2

.

Moreover, H1([0, T ],H) is continuously embedded in C([0, T ],H), the space of con-
tinuous functions, with the usual norm

∥x∥∞ = max{|x(t)| : t ∈ [0, T ]} .

(For further information on the space H1([0, T ],H) we refer, e.g., to [2].)

Let
H1

T = {x ∈ H1([0, T ],H) : x(0) = x(T )} ,
and define the functional φ : H1

T → R as

φ(x) =

∫ T

0

[
1
2 |ẋ(t)|

2 − 1
2(Ax(t), x(t))− V (t, x(t)) + (e(t), x(t))

]
dt .

It is continuously differentiable, and its critical points correspond to the T -periodic
solutions of (2.1). Moreover, by A2 and A3,

(3.1) φ(x+ τkak) = φ(x) , for every x ∈ H1
T and k ≥ 1 .

As usual, we identify the constant functions with their constant value. So, having
identified H with the space of constant functions, it will be a subspace of H1

T . Hence,
we can write

H1
T = H ⊕W = N (A)⊕N (A)⊥ ⊕W = N (A)⊕ W̃ .

Here, W is the orthogonal space to H in H1
T , N (A)⊥ is the orthogonal to N (A)

in H, and W̃ = N (A)⊥ ⊕ W . Correspondingly, we will write each x ∈ H1
T as
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x(t) = x̄+ x̃(t), with x̄ ∈ N (A) and x̃ ∈ W̃ . Moreover, we will write x̃(t) = x̂+ x̌(t),
with x̂ ∈ N (A)⊥ and x̌ ∈ W . Notice that, for any x ∈ H1

T ,

(3.2) [x] :=
1

T

∫ T

0
x(t) dt = x̄+ x̂ ,

1

T

∫ T

0
x̌(t) dt = 0 .

Proposition 3.1. For every x ∈ H1
T , one has

(3.3) ∥x̌∥∞ ≤
√
T ∥ẋ∥2 .

Proof. Let (ek)k≥1 be a Hilbert basis of H. Then, for any function x ∈ H1
T , we may

write

x̌(t) =
∞∑
k=1

(x̌(t), ek) ek =
∞∑
k=1

x̌k(t) ek .

Being x̌k continuous, T -periodic with zero mean, there is a tk ∈ [0, T ] for which
x̌k(tk) = 0, hence

|x̌k(t)| =
∣∣∣∣x̌k(tk) + ∫ t

tk

ẋk(s) ds

∣∣∣∣ ≤ ∫ T

0
|ẋk(s)| ds ≤

√
T

(∫ T

0
|ẋk(s)|2 ds

) 1
2

,

for every t ∈ [0, T ]. As a consequence,

|x̌(t)|2 =
∞∑
k=1

|x̌k(t)|2 ≤ T

∫ T

0

∞∑
k=1

|ẋk(s)|2 ds = T

∫ T

0
|ẋ(s)|2 ds ,

for every t ∈ [0, T ], whence the conclusion. □
By A1, A2, A4, (3.2) and (3.3), setting δ := − sup(σ(A) \ {0}),

φ(x) =

∫ T

0

[
1
2 |ẋ(t)|

2 − 1
2(Ax̃(t), x̃(t))− V (t, x(t)) + (e(t), x̃(t))

]
dt

≥
∫ T

0

[
1
2 |ẋ(t)|

2 − 1
2(Ax̂, x̂)− 1

2(Ax̌(t), x̌(t))
]
dt− CT − T∥e∥∞∥x̃∥∞

≥
∫ T

0

1
2 |ẋ(t)|

2dt− 1
2T (Ax̂, x̂)− CT − T∥e∥∞(|x̂|+ ∥x̌∥∞)

≥ 1
2∥ẋ∥

2
2 +

1
2Tδ|x̂|

2 − CT − T
3
2 ∥e∥∞∥ẋ∥2 − T∥e∥∞|x̂| .

Hence, since δ > 0, there are two positive constants c > 0 and c′ > 0 for which

(3.4) φ(x) ≥ c
(
∥ẋ∥22 + |x̂|2

)
− c′ ,

and the functional φ is bounded below.

For u ∈ C([0, T ],H), we denote by Pu the indefinite integral defined on [0, T ] by

Pu(t) =

∫ t

0
u(s) ds .

Lemma 3.2. Let E ⊆ C([0, T ],H) be such that A := {u([0, T ]) : u ∈ E} is precom-
pact in H. Then:

(a) the set B := {
∫ T
0 u(t) dt : u ∈ E} is precompact in H;

(b) the set S := {Pu : u ∈ E} is precompact in C([0, T ],H).
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Proof. (a) Let ε > 0. There exists a finite sequence (v1, . . . , vn) in H such that,
denoting by B(u, ρ) any open ball of center u and radius ρ,

A ⊆
n∪

k=1

B(vk, ε) .

We denote by Q0 the orthogonal projection from H to the space V generated by
(v1, . . . , vn). The set

C =

{∫ T

0
Q0u(t) dt : u ∈ E

}
is bounded in V , hence precompact in V . This implies the existence of a finite
sequence (w1, . . . , wm) in V such that

C ⊆
m∪
k=1

B(wk, ε) .

For every u ∈ E, we have∣∣∣∣∫ T

0
u(t) dt−

∫ T

0
Q0u(t) dt

∣∣∣∣ ≤ ∫ T

0
|u(t)−Q0u(t)| dt ≤ εT .

It follows that

B ⊆
m∪
k=1

B(wk, (1 + T )ε) .

Since ε is arbitrary, B is precompact in H.

(b) Let us define
R := {P (Q0u) : u ∈ E} .

The set {P (Q0u)(t) : t ∈ [0, T ] , u ∈ E} is bounded in V , hence precompact in V .
For 0 ≤ t1 ≤ t2 ≤ T , we have

|P (Q0u)(t2)− P (Q0u)(t1)| =
∣∣∣∣∫ t2

t1

Q0(u)(s) ds

∣∣∣∣ ≤ c(t2 − t1) ,

for some c > 0. By the Ascoli–Arzelá theorem, the set R is precompact in C([0, T ], V ).
This implies, for any ε > 0, the existence of a finite sequence (f1, . . . , fN ) in
C([0, T ], V ) such that

R ⊆
N∪
k=1

B(fk, ε) .

Since, for every u ∈ E and t ∈ [0, T ], we have

|Pu(t)− P (Q0u)(t)| ≤
∫ t

0
|u(s)−Q0u(s)| ds ≤ Tε ,

we conclude that

S ⊆
N∪
k=1

B(fk, (1 + T )ε) .

Since ε > 0 is arbitrary, S is precompact in C([0, T ],H). □
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We now prove the following.

Proposition 3.3. If (xn)n is a sequence in H1
T such that (φ(xn))n is bounded and

∇φ(xn) → 0, then (x̃n)n has a convergent subsequence.

Proof. Since (φ(xn))n is bounded, by (3.3) and (3.4) we have that (x̃n)n is bounded in
H1

T . On the other hand, we can modify x̄n into some z̄n such that the scalar product
(z̄n, ak) belongs to [0, τk], for every k, and (z̄n, ak) ≡ (x̄n, ak) mod τk. Defining zn =
z̄n + x̃n, we have a new sequence for which φ(zn) = φ(xn) and ∇φ(zn) = ∇φ(xn),
by (3.1). Moreover, (zn)n is bounded, hence there is a subsequence, still denoted
by (zn)n, which weakly converges to some z∗ ∈ H1

T . We want to show that (zn)n
strongly converges to z∗ in H1

T .

Since ∇φ(zn) → 0 and (zn)n weakly converges to z∗, we have that

⟨∇φ(zn)−∇φ(z∗), zn − z∗⟩ → 0 ,

i.e.,

lim
n

∫ T

0

[
|żn(t)− ż∗(t)|2 − (A(zn(t)− z∗(t)), zn(t)− z∗(t))−

−(∇xV (t, zn(t))−∇xV (t, z∗(t)), zn(t)− z∗(t))] dt = 0 .(3.5)

Since (zn)n weakly converges to z∗ in L2([0, T ],H),

lim
n

∫ T

0
(∇xV (t, z∗(t)), zn(t)− z∗(t)) dt = 0 .(3.6)

Claim. Up to a subsequence,

lim
n

∫ T

0
(∇xV (t, zn(t)), zn(t)− z∗(t)) dt = 0 .(3.7)

Proof of the Claim. Define on [0, T ] the continuous functions

wn(t) = ∇xV (t, zn(t)) , yn(t) = zn(t)− z∗(t) ,

having values in H. Using the notation in (3.2), we have∫ T

0
(wn(t), yn(t)) dt =

∫ T

0

(
[wn] + w̌n(t), [yn] + y̌n(t)

)
dt

= T ([wn], [yn]) +

∫ T

0
(w̌n(t), y̌n(t)) dt .

Since (yn)n weakly converges to 0 in L2([0, T ],H), we see that ([yn])n weakly con-
verges to 0 in H. Indeed, for every η ∈ H, considering it as a constant function in
L2([0, T ],H), we have that

([yn], η) =
( 1

T

∫ T

0
yn(t) dt , η

)
=

1

T

∫ T

0
(yn(t) , η) dt → 0 .

Moreover, by A5, the set {wn(t) : t ∈ [0, T ], n ∈ N} is precompact in H. Hence, by
Lemma 3.2(a), the sequence ([wn])n is contained in a compact subset of H. Then,
up to a subsequence,

lim
n

([wn], [yn]) = 0 .
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On the other hand, defining

ξn(t) =

∫ t

0
w̌n(s) ds = (Pw̌n)(t) ,

we have that ξn(T ) = ξn(0), and recalling that y̌n(t) and yn(t) differ by a constant,
integrating by parts we have∫ T

0
(w̌n(t), y̌n(t)) dt = −

∫ T

0
(ξn(t), ẏn(t)) dt .

We know that (ẏn)n weakly converges to 0 in L2([0, T ],H). Moreover, since {wn(t) :
t ∈ [0, T ], n ∈ N} is precompact in H, by Lemma 3.2(b), the sequence (ξn)n is
contained in a compact subset of C([0, T ],H) and hence, up to a subsequence,

lim
n

∫ T

0
(ξn(t), ẏn(t)) dt = 0 ,

thus proving (3.7). The Claim is thus proved. □

Going back to (3.5), by (3.6) and (3.7), we get

lim
n

∫ T

0

[
|żn(t)− ż∗(t)|2 − (A(zn(t)− z∗(t)), zn(t)− z∗(t))

]
dt = 0 .

By A1, being A semi-negative definite, we deduce that

lim
n

∫ T

0
|żn(t)− ż∗(t)|2 dt = 0 ,

and

lim
n

∫ T

0
(A(zn(t)− z∗(t)), zn(t)− z∗(t)) dt = 0 ,

i.e.,

lim
n

∫ T

0
[(A(ẑn − ẑ∗), ẑn − ẑ∗) + (A(žn(t)− ž∗(t)), žn(t)− ž∗(t))] dt = 0 ,

Hence, żn → ż∗ in L2([0, T ],H), and, by A1, also ẑn → ẑ∗. By Proposition 3.1,
žn → ž∗ so that, being z̃n = ẑn + žn, we have proved that (z̃n)n converges in H1

T .
This fact leads to the conclusion of the proof. □

We now distinguish the two cases. If N (A) has finite dimension N , then Theo-
rem 2.2 applies, because Proposition 3.3 provides the (PS)G condition for

G =

{
N∑
k=1

mkτkak : mk ∈ Z

}
,

which is a subgroup of H1
T , and φ is G-invariant. We thus get N + 1 critical orbits

of φ.
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Assume now that N (A) is infinite-dimensional. We first prove that φ has a
minimum. To this aim, let (xn)n be a sequence in H1

T such that φ(xn) → ι :=
inf φ(H1

T ). By the Ekeland Principle, there is a sequence (yn)n such that

∥xn − yn∥ → 0 , φ(yn) → ι , ∇φ(yn) → 0 .

Moreover, by (3.1), we can argue as in beginning of the proof of Proposition 3.3 and
assume without loss of generality that

ȳn ∈ K :=

{
y =

∞∑
k=1

ykak : yk ∈ [0, τk] for k = 1, 2 . . .

}
,

for every n. The set K is compact, being isometric to the Hilbert cube
∏∞

k=1[0, τk]
in ℓ2, since

∑∞
k=1 τ

2
k < +∞. Using this and Proposition 3.3, there is a subsequence

of (yn)n converging to some y∗ ∈ H1
T . Then, φ(y∗) = ι, and ∇φ(y∗) = 0. We have

thus found a minimum point for the functional φ.

If y∗ is not an isolated minimum point, then there are infinitely many minimum
points near y∗. In this case, then, there are infinitely many geometrically distinct
critical points of φ.

Otherwise, if y∗ is an isolated minimum point, there is a constant r > 0 such that

φ(u) > minφ , for every u ∈ B(y∗, r) \ {y∗} .
(We denote by B(y∗, r) the open ball centered at y∗, with radius r > 0, and by
B(y∗, r) its closure.) Let us prove that

inf
∂B(y∗,r)

φ > minφ .

By contradiction, assume that there is a sequence (ξn)n in ∂B(y∗, r) such that
φ(ξn) → minφ. Using the Ekeland Principle, it is possible to find a sequence (ηn)n
in H1

T such that φ(ηn) → minφ, ∥ηn − ξn∥ → 0 and ∇φ(ηn) → 0. By (3.1),
we can assume without loss of generality that η̄n ∈ K, for every n. Then, by
Proposition 3.3, there is a subsequence of (ηn)n which converges to some y in H1

T .
Being ∂B(x, r) a closed set, we have that y ∈ ∂B(y∗, r), and by continuity φ(y) =
minφ, a contradiction.

Choosing, e.g., y∗∗ = y∗+τ1a1, if r > 0 small enough we have that y∗∗ /∈ B(y∗, r),
and

φ(y∗∗) = φ(y∗) < inf
∂B(y∗,r)

φ .

So, the Mountain Pass Theorem applies: setting

Γ = {γ ∈ C([0, 1],H1
T ) : γ(0) = y∗ , γ(1) = y∗∗} ,

and
c = inf

γ∈Γ
max
t∈[0,1]

φ(γ(t)) ,

there is a sequence (un)n in H1
T such that

lim
n

φ(un) = c , lim
n

∇φ(un) = 0 .

Moreover, φ(y∗) < c. Proceeding as in the first part of the proof, we can assume
without loss of generality that ūn ∈ K, and we can find a subsequence of (un)n which
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converges to some u∗ ∈ H1
T , so that φ(u∗) = c and ∇φ(u∗) = 0. Since φ(y∗) <

φ(u∗), we have thus found two critical points, y∗ and u∗, which are geometrically
distinct. □

4. Some examples and an open problem

Let (ek)k be an orthonormal basis in H, and assume that the periodicity condi-
tion (1.3) holds. Assume moreover (1.1), i.e., that e(t) has a zero mean. Defining,
for every N ≥ 1, the projection

PN : H → H , x =
∞∑
k=1

xkek 7→
∞∑

k=N+1

xkek ,

we have that
N (PN ) = span{e1, . . . , eN} .

Then, taking A = −PN , Theorem 2.1 applies to the system

ẍ− PNx+∇xV (t, x) = e(t) ,

and provides us with at least N + 1 geometrically distinct T -periodic solutions.

Notice that the number of T -periodic solutions increases indefinitely together
with N . However, passing to the limit on N , the system becomes

ẍ+∇xV (t, x) = e(t) ,

to which Theorem 2.1 still applies, but guarantees only two T -periodic solutions.
It is an open problem to know if, in this last case, the existence of more than two
T -periodic solutions can be proved.

As a first example of application, we consider the space H = ℓ2 and the function

V (t, x) = −
+∞∑
k=1

ck
ωk

cos(ωkxk) cos(ωk+1xk+1),

with ck > 0 and ωk > 0, for every k ≥ 1. We have the cyclically coupled system

x′′k +

[
ck−1ωk

ωk−1
cos(ωk−1xk−1)+ck cos(ωk+1xk+1)

]
sin(ωkxk) = ek(t), k = 1, 2, . . .

where we have formally set c0 = 0 and ω0 = 1. Assuming that the sequences

(ck)k,

(
1

ωk

)
k

,

(
ck−1ωk

ωk−1

)
k

all belong to ℓ2 (e.g., we could take ck = 1/k and ωk = k), we can apply Theorem 2.1,
so that at least two T -periodic solutions exist.

Another example can be obtained if we now identify ℓ2 with the space of sequences
(ξk)k where k ranges from −∞ to +∞, i.e., with ℓ2(Z). Defining

V(t, x) = −
+∞∑

k=−∞

1

ωk
cos(ωkxk)

(
c′k cos(ωk−1xk−1) + c′′k cos(ωk+1xk+1)

)
,
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with c′k, c
′′
k > 0 and ωk > 0 for every integer k, we have the system

x′′k + [αk cos(ωk−1xk−1) + βk cos(ωk+1xk+1)] sin(ωkxk) = ek(t), k ∈ Z,

where

αk =
c′kωk−1 + c′′k−1ωk

ωk−1
, βk =

c′′kωk+1 + c′k+1ωk

ωk+1
.

If we assume that all the sequences (ck)k, (ω−1
k )k, (αk)k, (βk)k belong to ℓ2(Z) (e.g.,

taking c′k = c′′k = (|k|+1)−1 and ωk = |k|+1), by Theorem 2.1 we conclude that at
least two T -periodic solutions must exist.

Acknowledgement. The authors wish to thank Alberto Boscaggin and Maurizio
Garrione for suggesting the two final examples, and the referee for valuable sugges-
tions.
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