

MULTIPLE PERIODIC SOLUTIONS OF INFINITE-DIMENSIONAL PENDULUM-LIKE EQUATIONS

ALESSANDRO FONDA, JEAN MAWHIN, AND MICHEL WILLEM

ABSTRACT. We prove the multiplicity of periodic solutions for an equation in a separable Hilbert space H, with T-periodic dependence in time, of the type

$$\ddot{x} + \mathcal{A}x + \nabla_x V(t, x) = e(t) \,.$$

Here, \mathcal{A} is a semi-negative definite bounded selfadjoint operator, with nontrivial null-space $\mathcal{N}(\mathcal{A})$, the function V(t, x) is bounded above, periodic in x along a basis of $\mathcal{N}(\mathcal{A})$, with $\nabla_x V$ having its image in a compact set, and e(t) has mean value in $\mathcal{N}(\mathcal{A})^{\perp}$. Our results generalize several well-known theorems in the finite-dimensional setting, as well as a recent existence result in [1].

1. INTRODUCTION

Motivated by the model of a periodically forced pendulum, the existence of at least two geometrically distinct T-periodic solutions for a scalar differential equation of the form

$$\ddot{x} + \partial_x V(t, x) = e(t)$$

was first proved in [16], using the direct method of the calculus of variations and the Mountain Pass Theorem, assuming V(t, x) to be *T*-periodic with respect to *t* and τ -periodic with respect to *x*, and e(t) to be *T*-periodic with zero mean, i.e.,

(1.1)
$$\int_{0}^{T} e(t) dt = 0$$

This result extended an existence theorem first proved in [12], and later rediscovered independently in [5, 21].

Here, and in the sequel, for simplicity all functions will be assumed to be continuous. It can be seen that the multiplicity result in [16] is optimal if no further conditions are added. Different proofs have also been provided, e.g., in [8, 9, 11], by the use of some generalized versions of the Poincaré–Birkhoff theorem.

The result in [16] was later generalized in [17], through a similar approach, to the corresponding system in \mathbb{R}^N ,

(1.2)
$$\ddot{x} + \nabla_x V(t, x) = e(t),$$

²⁰¹⁰ Mathematics Subject Classification. 34C25, 34G20, 47J30.

Key words and phrases. pendulum equation, periodic solutions, BVP in Hilbert space.

when $V(t, x) = V(t, x_1, \ldots, x_N)$ is *T*-periodic in *t* and τ_k -periodic in x_k , for every $k = 1, \ldots, N$. The first aim of this paper is to extend such a result to an infinitedimensional setting. So, let *H* be a separable Hilbert space, and let $(e_k)_{k\geq 1}$ be a Hilbert basis. We assume $V : \mathbb{R} \times H \to \mathbb{R}$ to be continuous, *T*-periodic with respect to its first variable *t*, and continuously differentiable with respect to its second variable *x*. Here is our result.

Theorem 1.1. Assume that there exists a sequence of positive real numbers $(\tau_k)_{k\geq 1}$ such that

(1.3)
$$V(t, x + \tau_k e_k) = V(t, x), \text{ for every } (t, x) \in [0, T] \times H$$
and $k = 1, 2, \dots$

If $\sum_{k=1}^{\infty} \tau_k^2 < +\infty$, then equation (1.2) has at least two geometrically distinct *T*-periodic solutions, for every e(t) satisfying (1.1).

The above theorem generalizes [1, Theorem 6], where further regularity assumptions were made on V, in order to obtain the existence of *at least one* T-periodic solution. A Galerkin-type argument was used there to reduce the problem to a sequence of finite-dimensional differential systems, to which a generalized version of the Poincaré–Birkhoff theorem applies (cf. [9]), followed by a limit process.

The proof of Theorem 1.1 will follow the same ideas introduced in [16, 17], taking advantage of the compactness of the Hilbert cube $\prod_{k=1}^{\infty} [0, \tau_k]$. The first solution will be obtained by minimization of the action functional, while the second one will be of mountain pass type.

Using the Lusternik–Schnirelmann theory, it was proved in [15] that, under the same assumptions, system (1.2) in \mathbb{R}^N has indeed at least N+1 geometrically distinct T-periodic solutions, thus generalizing the result in [17]. (Notice that, when $N \geq 2$, the multiplicity result is not optimal, as shown by the four equilibria of a double pendulum.) Even more, a system of the type

(1.4)
$$\ddot{x} + \mathcal{A}x + \nabla_x V(t, x) = e(t)$$

was considered there, involving a symmetric matrix \mathcal{A} . Other results in this direction, including the case of Hamiltonian systems leading to a strongly indefinite action functional, were studied, e.g., in [3, 4, 6, 7, 9, 10, 13, 14, 20].

The second aim of this paper is to obtain multiplicity results for an infinitedimensional system of the type (1.4), when $\mathcal{A} : H \to H$ is a semi-negative definite bounded selfadjoint operator, whose spectrum contains 0 as an isolated eigenvalue, V(t,x) is bounded above and *T*-periodic in *t*, and the image of $\nabla_x V$ is contained in a compact set of *H*. Denoting by $\mathcal{N}(\mathcal{A})$ the null space of \mathcal{A} , we distinguish two cases.

If $\mathcal{N}(\mathcal{A})$ has finite dimension N and V(t, x) satisfies a periodicity condition of the type (1.3), with the e_k replaced by the elements of an orthonormal basis of $\mathcal{N}(\mathcal{A})$, the existence of at least N + 1 geometrically distinct T-periodic solutions is proved, when the mean value of e(t) belongs to $\mathcal{N}(\mathcal{A})^{\perp}$. The precise statement will be given in Section 2. The proof, provided in Section 3, will be carried out by the use of an abstract theorem, given in [18] and inspired by [19], providing the multiplicity of

critical points of some functionals in a Banach space X which are bounded below, invariant under the action of some discrete subgroups of X, and satisfy a suitable Palais–Smale condition.

If $\mathcal{N}(\mathcal{A})$ has infinite dimension, assuming in addition that $\sum_{k=1}^{\infty} \tau_k^2 < +\infty$, after finding the first solution by minimization of the action functional, a second one is provided by the Mountain Pass Theorem. We thus get, in this case, the existence of *at least two* geometrically distinct *T*-periodic solutions.

The paper ends with some examples and an open problem.

2. The main result

Let *H* be a separable Hilbert space, with scalar product (\cdot, \cdot) and corresponding norm $|\cdot|$. In this space, we consider the equation

(2.1)
$$\ddot{x} + \mathcal{A}x + \nabla_x V(t, x) = e(t),$$

where $\mathcal{A} \in \mathcal{L}(H)$ is a bounded selfadjoint operator, and $e : \mathbb{R} \to H$ is continuous and T-periodic. Concerning the function $V : \mathbb{R} \times H \to \mathbb{R}$, it is continuous, T-periodic in its first variable t, and differentiable with respect to its second variable x, with corresponding continuous gradient $\nabla_x V : \mathbb{R} \times H \to H$.

Let us introduce our assumptions. We denote by $\mathcal{N}(\mathcal{A})$ the null-space of \mathcal{A} , and by $\sigma(\mathcal{A})$ its spectrum. We take a Hilbert basis $(a_k)_k$ of $\mathcal{N}(\mathcal{A})$, considered as a subspace of H. If $\mathcal{N}(\mathcal{A})$ has a finite dimension, its basis will be given by (a_1, \ldots, a_N) ; if it is infinite-dimensional, we will have a sequence of vectors (a_1, a_2, \ldots) .

A1. The selfadjoint operator \mathcal{A} is semi-negative definite, with $\mathcal{N}(\mathcal{A}) \neq \{0\}$, and

$$\sup\left(\sigma(\mathcal{A})\setminus\{0\}\right)<0.$$

So, 0 is an isolated point of $\sigma(\mathcal{A})$.

A2. The mean value of e(t) is orthogonal to $\mathcal{N}(\mathcal{A})$, i.e.,

$$\int_0^T e(t) \, dt \in \mathcal{N}(\mathcal{A})^\perp \, .$$

Then, we have that

$$\int_0^T (e(t), a_k) \, dt = 0 \,, \text{ for every } k = 1, 2, \dots$$

A3. There exists a sequence of positive real numbers $(\tau_k)_{k\geq 1}$ such that

 $V(t, x + \tau_k a_k) = V(t, x)$, for every $(t, x) \in [0, T] \times H$ and $k = 1, 2, \dots$

A4. There is a nonnegative constant C such that

$$V(t, x) \leq C$$
, for every $(t, x) \in [0, T] \times H$.

A5. The set $\nabla_x V([0,T] \times H)$ is precompact in H.

In the above setting, we can now state the main result of this paper.

Theorem 2.1. Assume that conditions A1 to A5 hold. If $\mathcal{N}(\mathcal{A})$ is finite-dimensional, then equation (2.1) has at least dim $\mathcal{N}(\mathcal{A}) + 1$ geometrically distinct *T*-periodic solutions. On the other hand, if $\mathcal{N}(\mathcal{A})$ is infinite-dimensional and $\sum_{k=1}^{\infty} \tau_k^2 < +\infty$, then there are at least two of them.

Notice that, once a *T*-periodic solution x(t) has been found, any function obtained by adding to it some integer multiples of $\tau_k a_k$ is still a *T*-periodic solution. We say that two *T*-periodic solutions are *geometrically distinct* if they cannot be obtained one from the other in this way.

Concerning assumption A5, we remark that it will surely be satisfied if the following holds.

A5'. There exists a Hilbert basis $(e_k)_{k\geq 1}$ of H and a nonnegative sequence $(M_k)_k$, with $\sum_{k=1}^{\infty} M_k^2 < +\infty$, such that

$$\left|\frac{\partial V}{\partial e_k}(t,x)\right| \le M_k$$
, for every $(t,x) \in [0,T] \times H$ and $k = 1, 2, ...$

Indeed, A5' implies that $\nabla_x V([0,T] \times H)$ is contained in a Hilbert cube, which is a compact set in H. In the above formula, we have used the notation

$$\frac{\partial V}{\partial e_k}(t,x) = \lim_{\tau \to 0} \frac{V(t,x+\tau e_k) - V(t,x)}{\tau}$$

Notice that Theorem 1.1 is a direct consequence of Theorem 2.1, taking $\mathcal{A} = 0$ and $(a_k)_k = (e_k)_k$, a Hilbert basis of H. Indeed, the periodicity assumption in Theorem 1.1 and the compactness of the set $[0,T] \times \prod_{k=1}^{\infty} [0,\tau_k]$ show that A4 and A5 are surely satisfied.

In the proof of Theorem 2.1, we will need a result from [18], which we now recall, for the reader's convenience.

Let G be a discrete subgroup of a Banach space X and $\pi : X \to X/G$ be the canonical surjection. A subset S of X is G-invariant if $\pi^{-1}(\pi(S)) = S$, and a function f defined on X is G-invariant if f(u+g) = f(u), for every $u \in X$ and every $g \in G$. If $\varphi \in C^1(X, \mathbb{R})$ is G-invariant, then φ' is also G-invariant, and if u is a critical point of φ , the same is true for u + g for all $g \in G$. The corresponding set $\{u+g: g \in G\}$ is called a critical orbit of φ .

A G-invariant differentiable function $\varphi : X \to \mathbb{R}$ satisfies the $(PS)_G$ condition if, for every sequence $(u_n)_n$ in X such that $\varphi(u_n)$ is bounded and $\varphi'(u_n) \to 0$, the sequence $(\pi(u_n))_n$ contains a convergent subsequence.

The following multiplicity result for the critical points of G-invariant functionals is stated as Theorem 4.12 in [18].

Theorem 2.2. Let $\varphi \in C^1(X, \mathbb{R})$ be a *G*-invariant functional satisfying the $(PS)_G$ condition. If φ is bounded from below and if the dimension N of the space generated by G is finite, then φ has at least N + 1 critical orbits.

3. Proof of Theorem 2.1

Let $L^2([0,T], H)$ be the space of measurable functions $x : [0,T] \to H$ such that |x| is square integrable. It is a Hilbert space equipped with the scalar product

$$\langle x, y \rangle_2 = \int_0^T (x(t), y(t)) dt$$

and corresponding norm

$$||x||_2 = \left(\int_0^T |x(t)|^2 dt\right)^{\frac{1}{2}}.$$

We consider the space $H^1([0,T], H)$, made of those functions x belonging to $L^2([0,T], H)$ with weak derivative \dot{x} also in $L^2([0,T], H)$. It is a Hilbert space, as well, with the scalar product

$$\langle x, y \rangle = \langle x, y \rangle_2 + \langle \dot{x}, \dot{y} \rangle_2 = \int_0^T \left[(x(t), y(t)) + (\dot{x}(t), \dot{y}(t)) \right] dt \,,$$

and corresponding norm

$$||x|| = \left(||x||_{2}^{2} + ||\dot{x}||_{2}^{2}\right)^{\frac{1}{2}} = \left(\int_{0}^{T} \left[|x(t)|^{2} + |\dot{x}(t)|^{2}\right] dt\right)^{\frac{1}{2}}.$$

Moreover, $H^1([0,T], H)$ is continuously embedded in C([0,T], H), the space of continuous functions, with the usual norm

$$||x||_{\infty} = \max\{|x(t)| : t \in [0,T]\}.$$

(For further information on the space $H^1([0,T], H)$ we refer, e.g., to [2].)

Let

$$H_T^1 = \left\{ x \in H^1([0,T],H) : x(0) = x(T) \right\},\$$

and define the functional $\varphi: H^1_T \to \mathbb{R}$ as

$$\varphi(x) = \int_0^T \left[\frac{1}{2} |\dot{x}(t)|^2 - \frac{1}{2} (\mathcal{A}x(t), x(t)) - V(t, x(t)) + (e(t), x(t)) \right] dt \,.$$

It is continuously differentiable, and its critical points correspond to the T-periodic solutions of (2.1). Moreover, by A2 and A3,

(3.1)
$$\varphi(x + \tau_k a_k) = \varphi(x)$$
, for every $x \in H^1_T$ and $k \ge 1$.

As usual, we identify the constant functions with their constant value. So, having identified H with the space of constant functions, it will be a subspace of H_T^1 . Hence, we can write

$$H^1_T = H \oplus W = \mathcal{N}(\mathcal{A}) \oplus \mathcal{N}(\mathcal{A})^{\perp} \oplus W = \mathcal{N}(\mathcal{A}) \oplus W.$$

Here, W is the orthogonal space to H in H_T^1 , $\mathcal{N}(\mathcal{A})^{\perp}$ is the orthogonal to $\mathcal{N}(\mathcal{A})$ in H, and $\widetilde{W} = \mathcal{N}(\mathcal{A})^{\perp} \oplus W$. Correspondingly, we will write each $x \in H_T^1$ as $x(t) = \bar{x} + \tilde{x}(t)$, with $\bar{x} \in \mathcal{N}(\mathcal{A})$ and $\tilde{x} \in \widetilde{W}$. Moreover, we will write $\tilde{x}(t) = \hat{x} + \check{x}(t)$, with $\hat{x} \in \mathcal{N}(\mathcal{A})^{\perp}$ and $\check{x} \in W$. Notice that, for any $x \in H_T^1$,

(3.2)
$$[x] := \frac{1}{T} \int_0^T x(t) \, dt = \bar{x} + \hat{x} \,, \quad \frac{1}{T} \int_0^T \check{x}(t) \, dt = 0 \,.$$

Proposition 3.1. For every $x \in H_T^1$, one has

$$\|\check{x}\|_{\infty} \le \sqrt{T} \, \|\dot{x}\|_2$$

Proof. Let $(e_k)_{k\geq 1}$ be a Hilbert basis of H. Then, for any function $x \in H^1_T$, we may write

$$\check{x}(t) = \sum_{k=1}^{\infty} (\check{x}(t), e_k) e_k = \sum_{k=1}^{\infty} \check{x}_k(t) e_k.$$

Being \check{x}_k continuous, T-periodic with zero mean, there is a $t_k \in [0,T]$ for which $\check{x}_k(t_k) = 0$, hence

$$|\check{x}_k(t)| = \left|\check{x}_k(t_k) + \int_{t_k}^t \dot{x}_k(s) \, ds\right| \le \int_0^T |\dot{x}_k(s)| \, ds \le \sqrt{T} \left(\int_0^T |\dot{x}_k(s)|^2 \, ds\right)^{\frac{1}{2}},$$

for every $t \in [0, T]$. As a consequence,

$$|\check{x}(t)|^2 = \sum_{k=1}^{\infty} |\check{x}_k(t)|^2 \le T \int_0^T \sum_{k=1}^{\infty} |\dot{x}_k(s)|^2 \, ds = T \int_0^T |\dot{x}(s)|^2 \, ds$$

for every $t \in [0, T]$, whence the conclusion.

By A1, A2, A4, (3.2) and (3.3), setting $\delta := -\sup(\sigma(A) \setminus \{0\}),$ $\varphi(x) = \int_0^T \left[\frac{1}{2} |\dot{x}(t)|^2 - \frac{1}{2} (\mathcal{A}\tilde{x}(t), \tilde{x}(t)) - V(t, x(t)) + (e(t), \tilde{x}(t)) \right] dt$

$$\geq \int_{0} \left[\frac{1}{2} |\dot{x}(t)|^{2} - \frac{1}{2} (\mathcal{A}\hat{x}, \hat{x}) - \frac{1}{2} (\mathcal{A}\check{x}(t), \check{x}(t)) \right] dt - CT - T \|e\|_{\infty} \|\tilde{x}\|_{\infty}$$

$$\geq \int_{0}^{T} \frac{1}{2} |\dot{x}(t)|^{2} dt - \frac{1}{2} T (\mathcal{A}\hat{x}, \hat{x}) - CT - T \|e\|_{\infty} (|\hat{x}| + \|\check{x}\|_{\infty})$$

$$\geq \frac{1}{2} \|\dot{x}\|_{2}^{2} + \frac{1}{2} T \delta |\hat{x}|^{2} - CT - T^{\frac{3}{2}} \|e\|_{\infty} \|\dot{x}\|_{2} - T \|e\|_{\infty} |\hat{x}| .$$

Hence, since $\delta > 0$, there are two positive constants c > 0 and c' > 0 for which $\varphi(x) \ge c \left(\|\dot{x}\|_2^2 + |\hat{x}|^2 \right) - c',$ (3.4)

and the functional φ is bounded below.

For $u \in C([0,T], H)$, we denote by Pu the indefinite integral defined on [0,T] by

$$Pu(t) = \int_0^t u(s) \, ds \, .$$

Lemma 3.2. Let $E \subseteq C([0,T],H)$ be such that $A := \{u([0,T]) : u \in E\}$ is precompact in H. Then:

- (a) the set $B := \{\int_0^T u(t) dt : u \in E\}$ is precompact in H; (b) the set $S := \{Pu : u \in E\}$ is precompact in C([0,T], H).

956

Proof. (a) Let $\varepsilon > 0$. There exists a finite sequence (v_1, \ldots, v_n) in H such that, denoting by $B(u, \rho)$ any open ball of center u and radius ρ ,

$$A \subseteq \bigcup_{k=1}^n B(v_k, \varepsilon)$$

We denote by Q_0 the orthogonal projection from H to the space V generated by (v_1, \ldots, v_n) . The set

$$C = \left\{ \int_0^T Q_0 u(t) \, dt : u \in E \right\}$$

is bounded in V, hence precompact in V. This implies the existence of a finite sequence (w_1, \ldots, w_m) in V such that

$$C \subseteq \bigcup_{k=1}^m B(w_k, \varepsilon) \,.$$

For every $u \in E$, we have

$$\left|\int_0^T u(t) \, dt - \int_0^T Q_0 u(t) \, dt\right| \le \int_0^T |u(t) - Q_0 u(t)| \, dt \le \varepsilon T \, .$$

It follows that

$$B \subseteq \bigcup_{k=1}^{m} B(w_k, (1+T)\varepsilon)$$

Since ε is arbitrary, B is precompact in H.

(b) Let us define

$$R := \{ P(Q_0 u) : u \in E \} \,.$$

The set $\{P(Q_0u)(t) : t \in [0,T], u \in E\}$ is bounded in V, hence precompact in V. For $0 \le t_1 \le t_2 \le T$, we have

$$|P(Q_0u)(t_2) - P(Q_0u)(t_1)| = \left| \int_{t_1}^{t_2} Q_0(u)(s) \, ds \right| \le c(t_2 - t_1) \,,$$

for some c > 0. By the Ascoli–Arzelá theorem, the set R is precompact in C([0, T], V). This implies, for any $\varepsilon > 0$, the existence of a finite sequence (f_1, \ldots, f_N) in C([0, T], V) such that

$$R \subseteq \bigcup_{k=1}^N B(f_k, \varepsilon) \,.$$

Since, for every $u \in E$ and $t \in [0, T]$, we have

$$|Pu(t) - P(Q_0 u)(t)| \le \int_0^t |u(s) - Q_0 u(s)| \, ds \le T\varepsilon \,,$$

we conclude that

$$S \subseteq \bigcup_{k=1}^{N} B(f_k, (1+T)\varepsilon).$$

Since $\varepsilon > 0$ is arbitrary, S is precompact in C([0, T], H).

We now prove the following.

Proposition 3.3. If $(x^n)_n$ is a sequence in H^1_T such that $(\varphi(x^n))_n$ is bounded and $\nabla \varphi(x^n) \to 0$, then $(\tilde{x}^n)_n$ has a convergent subsequence.

Proof. Since $(\varphi(x^n))_n$ is bounded, by (3.3) and (3.4) we have that $(\tilde{x}^n)_n$ is bounded in H_T^1 . On the other hand, we can modify \bar{x}^n into some \bar{z}^n such that the scalar product (\bar{z}^n, a_k) belongs to $[0, \tau_k]$, for every k, and $(\bar{z}^n, a_k) \equiv (\bar{x}^n, a_k) \mod \tau_k$. Defining $z^n = \bar{z}^n + \tilde{x}^n$, we have a new sequence for which $\varphi(z^n) = \varphi(x^n)$ and $\nabla \varphi(z^n) = \nabla \varphi(x^n)$, by (3.1). Moreover, $(z^n)_n$ is bounded, hence there is a subsequence, still denoted by $(z^n)_n$, which weakly converges to some $z^* \in H_T^1$. We want to show that $(z^n)_n$ strongly converges to z^* in H_T^1 .

Since $\nabla \varphi(z^n) \to 0$ and $(z^n)_n$ weakly converges to z^* , we have that

$$\langle \nabla \varphi(z^n) - \nabla \varphi(z^*), z^n - z^* \rangle \to 0,$$

i.e.,

(3.5)
$$\lim_{n} \int_{0}^{T} \left[|\dot{z}^{n}(t) - \dot{z}^{*}(t)|^{2} - (\mathcal{A}(z^{n}(t) - z^{*}(t)), z^{n}(t) - z^{*}(t)) - (\nabla_{x}V(t, z^{n}(t)) - \nabla_{x}V(t, z^{*}(t)), z^{n}(t) - z^{*}(t)) \right] dt = 0$$

Since $(z^n)_n$ weakly converges to z^* in $L^2([0,T],H)$,

(3.6)
$$\lim_{n} \int_{0}^{1} \left(\nabla_{x} V(t, z^{*}(t)), z^{n}(t) - z^{*}(t) \right) dt = 0.$$

Claim. Up to a subsequence,

(3.7)
$$\lim_{n} \int_{0}^{T} (\nabla_{x} V(t, z^{n}(t)), z^{n}(t) - z^{*}(t)) dt = 0.$$

Proof of the Claim. Define on [0, T] the continuous functions

$$w^{n}(t) = \nabla_{x} V(t, z^{n}(t)), \quad y^{n}(t) = z^{n}(t) - z^{*}(t),$$

having values in H. Using the notation in (3.2), we have

$$\int_0^T (w^n(t), y^n(t)) dt = \int_0^T \left([w^n] + \check{w}^n(t), [y^n] + \check{y}^n(t) \right) dt$$
$$= T([w^n], [y^n]) + \int_0^T (\check{w}^n(t), \check{y}^n(t)) dt.$$

Since $(y^n)_n$ weakly converges to 0 in $L^2([0,T], H)$, we see that $([y^n])_n$ weakly converges to 0 in H. Indeed, for every $\eta \in H$, considering it as a constant function in $L^2([0,T], H)$, we have that

$$([y^n],\eta) = \left(\frac{1}{T}\int_0^T y^n(t) \, dt \, , \eta\right) = \frac{1}{T}\int_0^T (y^n(t) \, , \eta) \, dt \to 0 \, .$$

Moreover, by A5, the set $\{w^n(t) : t \in [0,T], n \in \mathbb{N}\}$ is precompact in H. Hence, by Lemma 3.2(a), the sequence $([w^n])_n$ is contained in a compact subset of H. Then, up to a subsequence,

$$\lim_{n} \left([w^n], [y^n] \right) = 0 \,.$$

On the other hand, defining

$$\xi^{n}(t) = \int_{0}^{t} \check{w}^{n}(s) \, ds = (P\check{w}^{n})(t) \,,$$

we have that $\xi^n(T) = \xi^n(0)$, and recalling that $\check{y}^n(t)$ and $y^n(t)$ differ by a constant, integrating by parts we have

$$\int_0^T (\check{w}^n(t), \check{y}^n(t)) \, dt = -\int_0^T (\xi^n(t), \dot{y}^n(t)) \, dt \, .$$

We know that $(\dot{y}^n)_n$ weakly converges to 0 in $L^2([0,T], H)$. Moreover, since $\{w^n(t) : t \in [0,T], n \in \mathbb{N}\}$ is precompact in H, by Lemma 3.2(b), the sequence $(\xi^n)_n$ is contained in a compact subset of C([0,T], H) and hence, up to a subsequence,

$$\lim_{n} \int_{0}^{T} (\xi^{n}(t), \dot{y}^{n}(t)) dt = 0,$$

thus proving (3.7). The Claim is thus proved.

Going back to (3.5), by (3.6) and (3.7), we get

$$\lim_{n} \int_{0}^{T} \left[|\dot{z}^{n}(t) - \dot{z}^{*}(t)|^{2} - (\mathcal{A}(z^{n}(t) - z^{*}(t)), z^{n}(t) - z^{*}(t)) \right] dt = 0.$$

By A1, being \mathcal{A} semi-negative definite, we deduce that

$$\lim_{n} \int_{0}^{T} |\dot{z}^{n}(t) - \dot{z}^{*}(t)|^{2} dt = 0,$$

and

$$\lim_{n} \int_{0}^{T} (\mathcal{A}(z^{n}(t) - z^{*}(t)), z^{n}(t) - z^{*}(t)) dt = 0,$$

i.e.,

$$\lim_{n} \int_{0}^{T} \left[(\mathcal{A}(\hat{z}^{n} - \hat{z}^{*}), \hat{z}^{n} - \hat{z}^{*}) + (\mathcal{A}(\check{z}^{n}(t) - \check{z}^{*}(t)), \check{z}^{n}(t) - \check{z}^{*}(t)) \right] dt = 0,$$

Hence, $\dot{z}^n \to \dot{z}^*$ in $L^2([0,T], H)$, and, by A1, also $\hat{z}^n \to \hat{z}^*$. By Proposition 3.1, $\dot{z}^n \to \dot{z}^*$ so that, being $\tilde{z}^n = \hat{z}^n + \dot{z}^n$, we have proved that $(\tilde{z}^n)_n$ converges in H^1_T . This fact leads to the conclusion of the proof.

We now distinguish the two cases. If $\mathcal{N}(\mathcal{A})$ has finite dimension N, then Theorem 2.2 applies, because Proposition 3.3 provides the $(PS)_G$ condition for

$$G = \left\{ \sum_{k=1}^{N} m_k \tau_k a_k : m_k \in \mathbb{Z} \right\} \,,$$

which is a subgroup of H_T^1 , and φ is *G*-invariant. We thus get N + 1 critical orbits of φ .

959

Assume now that $\mathcal{N}(\mathcal{A})$ is infinite-dimensional. We first prove that φ has a minimum. To this aim, let $(x^n)_n$ be a sequence in H^1_T such that $\varphi(x^n) \to \iota := \inf \varphi(H^1_T)$. By the Ekeland Principle, there is a sequence $(y^n)_n$ such that

$$||x^n - y^n|| \to 0, \quad \varphi(y^n) \to \iota, \quad \nabla \varphi(y^n) \to 0.$$

Moreover, by (3.1), we can argue as in beginning of the proof of Proposition 3.3 and assume without loss of generality that

$$\bar{y}^n \in K := \left\{ y = \sum_{k=1}^{\infty} y_k a_k : y_k \in [0, \tau_k] \text{ for } k = 1, 2 \dots \right\} ,$$

for every *n*. The set *K* is compact, being isometric to the Hilbert cube $\prod_{k=1}^{\infty} [0, \tau_k]$ in ℓ^2 , since $\sum_{k=1}^{\infty} \tau_k^2 < +\infty$. Using this and Proposition 3.3, there is a subsequence of $(y^n)_n$ converging to some $y^* \in H_T^1$. Then, $\varphi(y^*) = \iota$, and $\nabla \varphi(y^*) = 0$. We have thus found a minimum point for the functional φ .

If y^* is not an isolated minimum point, then there are infinitely many minimum points near y^* . In this case, then, there are infinitely many geometrically distinct critical points of φ .

Otherwise, if y^* is an isolated minimum point, there is a constant r > 0 such that $\varphi(u) > \min \varphi$, for every $u \in \overline{B}(y^*, r) \setminus \{y^*\}$.

(We denote by $B(y^*, r)$ the open ball centered at y^* , with radius r > 0, and by $\overline{B}(y^*, r)$ its closure.) Let us prove that

$$\inf_{\partial B(y^*,r)} \varphi > \min \varphi \,.$$

By contradiction, assume that there is a sequence $(\xi^n)_n$ in $\partial B(y^*, r)$ such that $\varphi(\xi^n) \to \min \varphi$. Using the Ekeland Principle, it is possible to find a sequence $(\eta^n)_n$ in H_T^1 such that $\varphi(\eta^n) \to \min \varphi$, $\|\eta^n - \xi^n\| \to 0$ and $\nabla \varphi(\eta^n) \to 0$. By (3.1), we can assume without loss of generality that $\bar{\eta}^n \in K$, for every n. Then, by Proposition 3.3, there is a subsequence of $(\eta^n)_n$ which converges to some y in H_T^1 . Being $\partial B(x, r)$ a closed set, we have that $y \in \partial B(y^*, r)$, and by continuity $\varphi(y) = \min \varphi$, a contradiction.

Choosing, e.g., $y^{**} = y^* + \tau_1 a_1$, if r > 0 small enough we have that $y^{**} \notin B(y^*, r)$, and

$$\varphi(y^{**}) = \varphi(y^*) < \inf_{\partial B(y^*,r)} \varphi.$$

So, the Mountain Pass Theorem applies: setting

$$\Gamma = \{ \gamma \in C([0,1], H_T^1) : \gamma(0) = y^*, \gamma(1) = y^{**} \},\$$

and

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \varphi(\gamma(t)) \,,$$

there is a sequence $(u^n)_n$ in H^1_T such that

$$\lim_{n} \varphi(u^{n}) = c, \qquad \lim_{n} \nabla \varphi(u^{n}) = 0.$$

Moreover, $\varphi(y^*) < c$. Proceeding as in the first part of the proof, we can assume without loss of generality that $\bar{u}^n \in K$, and we can find a subsequence of $(u^n)_n$ which

converges to some $u^* \in H^1_T$, so that $\varphi(u^*) = c$ and $\nabla \varphi(u^*) = 0$. Since $\varphi(y^*) < \varphi(u^*)$, we have thus found two critical points, y^* and u^* , which are geometrically distinct.

4. Some examples and an open problem

Let $(e_k)_k$ be an orthonormal basis in H, and assume that the periodicity condition (1.3) holds. Assume moreover (1.1), i.e., that e(t) has a zero mean. Defining, for every $N \ge 1$, the projection

$$P_N: H \to H$$
, $x = \sum_{k=1}^{\infty} x_k e_k \mapsto \sum_{k=N+1}^{\infty} x_k e_k$,

we have that

$$\mathcal{N}(P_N) = \operatorname{span}\{e_1, \dots, e_N\}$$

Then, taking $\mathcal{A} = -P_N$, Theorem 2.1 applies to the system

$$\ddot{x} - P_N x + \nabla_x V(t, x) = e(t) \,,$$

and provides us with at least N + 1 geometrically distinct T-periodic solutions.

Notice that the number of T-periodic solutions increases indefinitely together with N. However, passing to the limit on N, the system becomes

$$\ddot{x} + \nabla_x V(t, x) = e(t) \,,$$

to which Theorem 2.1 still applies, but guarantees only two T-periodic solutions. It is an open problem to know if, in this last case, the existence of more than two T-periodic solutions can be proved.

As a first example of application, we consider the space $H = \ell^2$ and the function

$$V(t,x) = -\sum_{k=1}^{+\infty} \frac{c_k}{\omega_k} \cos(\omega_k x_k) \cos(\omega_{k+1} x_{k+1}),$$

with $c_k > 0$ and $\omega_k > 0$, for every $k \ge 1$. We have the cyclically coupled system

$$x_{k}'' + \left[\frac{c_{k-1}\omega_{k}}{\omega_{k-1}}\cos(\omega_{k-1}x_{k-1}) + c_{k}\cos(\omega_{k+1}x_{k+1})\right]\sin(\omega_{k}x_{k}) = e_{k}(t), \ k = 1, 2, \dots$$

where we have formally set $c_0 = 0$ and $\omega_0 = 1$. Assuming that the sequences

$$(c_k)_k, \quad \left(\frac{1}{\omega_k}\right)_k, \quad \left(\frac{c_{k-1}\omega_k}{\omega_{k-1}}\right)_k$$

all belong to ℓ^2 (e.g., we could take $c_k = 1/k$ and $\omega_k = k$), we can apply Theorem 2.1, so that at least two *T*-periodic solutions exist.

Another example can be obtained if we now identify ℓ^2 with the space of sequences $(\xi_k)_k$ where k ranges from $-\infty$ to $+\infty$, i.e., with $\ell^2(\mathbb{Z})$. Defining

$$\mathcal{V}(t,x) = -\sum_{k=-\infty}^{+\infty} \frac{1}{\omega_k} \cos(\omega_k x_k) \Big(c'_k \cos(\omega_{k-1} x_{k-1}) + c''_k \cos(\omega_{k+1} x_{k+1}) \Big),$$

with $c'_k, c''_k > 0$ and $\omega_k > 0$ for every integer k, we have the system

$$x_k'' + [\alpha_k \cos(\omega_{k-1} x_{k-1}) + \beta_k \cos(\omega_{k+1} x_{k+1})] \sin(\omega_k x_k) = e_k(t), \quad k \in \mathbb{Z},$$

where

$$\alpha_k = \frac{c'_k \omega_{k-1} + c''_{k-1} \omega_k}{\omega_{k-1}}, \qquad \beta_k = \frac{c''_k \omega_{k+1} + c'_{k+1} \omega_k}{\omega_{k+1}}.$$

If we assume that all the sequences $(c_k)_k$, $(\omega_k^{-1})_k$, $(\alpha_k)_k$, $(\beta_k)_k$ belong to $\ell^2(\mathbb{Z})$ (e.g., taking $c'_k = c''_k = (|k|+1)^{-1}$ and $\omega_k = |k|+1$), by Theorem 2.1 we conclude that at least two *T*-periodic solutions must exist.

Acknowledgement. The authors wish to thank Alberto Boscaggin and Maurizio Garrione for suggesting the two final examples, and the referee for valuable suggestions.

References

- A. Boscaggin, A. Fonda and M. Garrione, An infinite-dimensional version of the Poincaré-Birkhoff theorem on the Hilbert cube, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (2020), 751–770.
- H. Brezis, Opérateurs maximux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973.
- [3] K.C. Chang, On the periodic nonlinearity and the multiplicity of solutions, Nonlinear Anal. 13 (1989), 527–537.
- [4] C.C. Conley and E.J. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold, Invent. Math. 73 (1983), 33-49.
- [5] E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems, Ann. Mat. Pura Appl. 131 (1982), 167–185.
- [6] P.L. Felmer, Periodic solutions of spatially periodic Hamiltonian systems, J. Differential Equations 98 (1992), 143–168.
- [7] A. Fonda and J. Mawhin, Multiple periodic solutions of conservative systems with periodic nonlinearity, in: Differential equations and applications (Columbus, OH, 1988), 298–304, Ohio Univ. Press, Athens, OH, 1989.
- [8] A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud. 12 (2012), 395–408.
- [9] A. Fonda and A.J. Ureña, A higher dimensional Poincaré-Birkhoff theorem for Hamiltonian flows, Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 679–698.
- [10] G. Fournier, D. Lupo, M. Ramos and M. Willem, *Limit relative category and critical point theory*, in: Dynamics reported. Expositions in Dynamical Systems, vol. 3, 1–24, Springer, Berlin, 1994.
- [11] J. Franks, Generalizations of the Poincaré–Birkhoff theorem, Ann. Math. 128 (1988), 139–151.
- [12] G. Hamel, Über erzwungene Schwingungen bei endlichen Amplituden, Math. Ann. 86 (1922), 1–13.
- [13] F. Josellis, Lyusternik-Schnirelman theory for flows and periodic orbits for Hamiltonian systems on Tⁿ × ℝⁿ, Proc. London Math. Soc. (3) 68 (1994), 641–672.
- [14] J.Q. Liu, A generalized saddle point theorem, J. Differential Equations 82 (1989), 372–385.
- [15] J. Mawhin, Forced second order conservative systems with periodic nonlinearity, Analyse non linéaire (Perpignan, 1987), Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), suppl., 415– 434.
- [16] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations 52 (1984), 264–287.
- [17] J. Mawhin and M. Willem, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation, in: Nonlinear Analysis and Optimization (Bologna, 1982), 181–192, Lecture Notes in Math. 1107, Springer, Berlin, 1984.

- [18] J. Mawhin and M. Willem, Critical point theory and Hamiltonian systems, Springer, Berlin, 1989.
- [19] P. Rabinowitz, On a class of functionals invariant under a \mathbb{Z}^n action. Trans. Amer. Math. Soc. **310** (1988), 303–311.
- [20] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlinear Anal. 15 (1990), 725–739.
- [21] M. Willem, Oscillations forcées de l'équation du pendule, Publ. IRMA Besançon 3 (1981), v1-v3.

Manuscript received June 13 2019 revised October 21 2019

A. Fonda

Dipartimento di Matematica e Geoscienze, Università di Trieste, P.le Europa 1, I-34127 Trieste, Italy

E-mail address: a.fonda@units.it

J. Mawhin

Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

E-mail address: jean.mawhin@uclouvain.be

M. WILLEM

Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

E-mail address: michel.willem@uclouvain.be