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These kind of problems, which are known to bear features of noncompactness
are studied by many authors. First existence results for the problem with a linear
perturbation are due to Brezis-Nirenberg. Set

Sλ(p, g) = inf
u∈H1

g (Ω),∥u∥q=1

∫
Ω
p(x)|∇u(x)|2dx− λ

∫
Ω
|u(x)|2dx(1.3)

They showed that if g = 0 and p = 1, then Sλ(1, 0) is attainted as soon as
Sλ(1, 0) < S and this is the case if n ≥ 4, 0 < λ < λ1, or n = 3 and 0 < λ∗ < λ < λ1
where λ1 is the first eigenvalue of −∆ and λ∗ depends on the domain, (see [6]).
They showed also that if g ̸≡ 0, λ = 0 and p = 1 then the infimum in (1.1) is
achieved, (see [7]). Our approach uses their method.

In the case of p = 1 and g = 0, Coron, Bahri and Coron exploited the topology
of the domain. They proved that equation −∆u = uq−1 in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

has a solution provided that the domain has nontrivial topology, (see [8] and [3]).
We refer to [13], [14] for the study of existence and multiplicity solutions of prob-

lem (1.1) with the presence of a smooth and positive weight and with homogeneous
Dirichlet boundary condition. Nevertheless, in [12], it is shown that if p is discon-
tinuous then a solution of S0(p, 0) still exists.

In [10], the authors studied the minimization problem on compact manifolds in
the case λ = 0 with many variants.

For more general weights, depending on x and on u, in a recent paper written with
Vigneron, we showed that in the case of homogeneous Dirichlet boundary condition
and in the presence of a linear perturbation the corresponding minimizing problem
possesses a solution. The model of the weight is p(x, u) = α+ |x|β|u|k with positive
parameters α, β and k. Note that in this case natural scalings appear and the
answer depends on the ratio β

k . For more details, we refer to [2] and [15].
To motivate our problem, we briefly recall that it is inspired by the study of the

classical Yamabe problem which has been the source of a large literature, (see for
example [1], [3], [6], [8], [10] and [16]), we refer to [15] and the references therein for
many recent developments in quasi-linear elliptic equations.

In this paper, we will assume that if g ̸≡ 0 having a constant sign and the weight
p has a global minimum a ∈ Ω such that satisfies:

p(x) ≤ p0 + γ|x− a|α ∀x ∈ B(a,R) ⊂ Ω,(1.4)

for constants α > 1, γ > 0 and R > 0.
The following auxiliary linear Dirichlet problem will play an important role in

this paper:

(1.5)

{
−div(p∇v) = 0 in Ω,

v = g on ∂Ω.

1.1. Statement of the main result. Our main result is the following:
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Theorem 1.1. Let us assume that the dimension n ≥ 3 and g ∈ H
1
2 (∂Ω) ∩C(∂Ω)

is a given boundary datum. Let v be the unique solution of (1.5). We have

(1) Let assume that g ̸≡ 0 and having a constant sign. Assume that p has a
global minimum a ∈ Ω that satisfies (1.4). Then for every n ∈ [3, 2α + 2[
the infimum S0(p, g) is achieved in H1

g (Ω).

(2) If ||v||q ≥ 1 then for every n ≥ 3 the infimum S0(p, g) is achieved in H1
g (Ω).

The next proposition tell us that one has Σg = {u ∈ H1
g (Ω), ∥u∥q = 1} ̸= ∅ which

ensures that S0(p, g) is well defined:

Proposition 1.2. Let g ∈ H
1
2 (∂Ω)∩C(∂Ω) be given boundary datum and v be the

unique solution of (1.5), we have

• If ||v||q < 1,then there is a bijection between Σ0 and Σg.
• If ||v||q ≥ 1, then Σg ̸= ∅.

Our problem depends on ||v||q. More precisely, we will use a convex argument
to show that if ||v||q ≥ 1 then the infimum (1.1) is achieved, while the case where
||v||q < 1 is not so straightforward and will be treated using the behavior of p near its
minimum and the fact that g has a constant sign. We will argue by contradiction,
supposing that minimizing sequence converges weakly to some limit u. The fact
that the boundary datum is not 0 will give us that u is not identically 0. Then, by
using a suitable test functions, we will show equality (4.2) below which is due to
term of order 0. After precise computations, we get strict inequality in (4.29) which
is due to the next term in the same expansion, which is lead to a contradiction.

Since the nonlinearity of the problem is as stronger as n is low, it is rather
surprising that the infimum is achieved for lower dimensions n ∈ [3, 2α + 2[. Note
that the presence of p is more significative if α > 0 is low. The compromise is that
n ∈ [3, 2α+ 2[. Remark that if α = 0 then infimum of p = p0 + γ is not p0.

For general boundary data g, we do not have control over the normal derivative
of a solution of (1.2) on the boundary of Ω and then, standard Pohozaev identity
cannot be used.

1.2. Structure of the paper. The paper is structured as follows: In section 2 we
give the notations and some preliminary results.

In the next section, we state two results related to our main result namely, Theo-
rem 3.1 which gives the sign of the Lagrange-multiplier associated to minimizers of
S0(p, g) given by Theorem 1.1 and Theorem 3.2 which generalizes our main result
in case of the presence of a linear perturbation.

In section 4, we will focus on the proof of Theorem 1.1, which is the main result
of this paper, it will be proved by a contradiction argument that spans the whole
of this section.

In section 5, we give the proof of Theorem 3.1.
The last section is dedicated to the problem of existence of minimizer in the

presence of a linear perturbation and the proof of Theorem 3.2.
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2. Notations and preliminary results

Sobolev inequality says that there exist M > 0 such that∫
Ω
p(x)|∇ϕ|2dx ≥M

(∫
Ω
|ϕ|qdx

) 2
q

for all ϕ ∈ H1
0 (Ω).

The best constant is defined by

S0(p, 0) = inf
u ∈ H1

0 (Ω), ||u||q = 1

∫
Ω
p(x)|∇u|2dx.

Set

S = S0(1, 0) = inf
u ∈ H1

0 (Ω), ||u||q = 1

∫
Ω
|∇u|2dx.

We know that when the domain is IRn, the constant S0(1, 0) is achieved by the
functions:

Ux0, ε(x) =

(
ε

ε2 + |x− x0|2

)n−2
2

, x ∈ IRn

where x0 ∈ IRn and ε > 0, (see [1], [6], [16]). Let us denote by

(2.1) ux0,ε(x) = Ux0, ε(x)ψ(x)

where ψ ∈ C∞(IRn), ψ ≡ 1 in B(x0, r) ψ ≡ 0 on B(x0, 2r) ⊂ Ω, r > 0. We have

(2.2)

∫
Ω
p(x)|∇ux0,ε|2dx = p(x0)K1 +O(εn−2),

(2.3)

∫
Ω
|ux0,ε|qdx = K2 +O(εn),

where K1 and K2 are positive constants with K1

K
2
q
2

= S.

We have also

ux0, ε ⇀ 0 in H1
0 (Ω).

−∆Ux0, ε = cn U
q−1
x0, ε in IRn.

It is well known that S in never achieved for bounded domain, (see [6]).
In the the presence of the weight p we have

Proposition 2.1. Suppose that a ∈ Ω be a global minimum of p. Set p0 = p(a). If
g = 0, we have S0(p, 0) is never achieved and

S0(p, 0) = p0 S0(1, 0) = p0 S.

Proof. When g = 0, the functions
ua,ε

∥ua,ε∥q are admissible test functions for S0(p, 0)

and we have as ε→ 0

p0S ≤ S0(p, 0) ≤
∫
Ω
p(x)

∣∣∣∣∇ ua,ε
∥ua,ε∥q

∣∣∣∣2 dx
= p0 S +

∫
Ω
(p(x)− p0)

∣∣∣∣∇ ua,ε
∥ua,ε∥q

∣∣∣∣2 dx+ o(1)



A NONLINEAR PROBLEM WITH A WEIGHT 969

= p0 S + o(1).

Passing to the limit ε→ 0 state that S0(p, 0) = p0S.
This implies that S0(p, 0) is not achieved. Indeed, let us suppose that S0(p, 0) is

achieved by some u. Using the fact that S is never achived in bounded domains,
we obtain

p0S < p0

∫
Ω
|∇u|2dx ≤

∫
Ω
p(x)|∇u|2dx = p0S.

This leads to a contradiction. □

2.1. The auxiliary Dirichlet problem. The linear Dirichlet problem (1.5) has a
unique solution which solves the following problem

min
v∈H1

g (Ω)

∫
Ω
p(x)|∇v(x)|2dx.(2.4)

Let us give now the proof of Proposition 1.2: Recall that

Σg = {u ∈ H1
g (Ω), ∥u∥q = 1}.

In the first case we can construct a bijection between Σ0 and Σg. Indeed, let us
define, for t in IR and u ∈ Σ0 the function

(2.5) f(t) =

∫
Ω
|tu+ v|q

since f is smooth, f ′′(t) = q(q− 1)
∫
Ω |tu+ v|q−2u2, f(0) < 1 and limt→∞ f(t) = ∞,

using the intermediate value theorem and the convexity of f , we obtain, for every
u in Σ0, the existence of a unique t(u) > 0 such that ||t(u)u+ v||q = 1.

Let us denote by φ : Σ0 → Σg the function defined by φ(u) = t(u)u + v. Let
u1 and u2 in Σ0 such that φ(u1) = t(u1)u1 + v = φ(u2) = t(u2)u2 + v , we have
nesseceraly ||t(u1)u1||q = ||t(u2)u2||q, this implies that t(u1) = t(u2) and u1 = u2.
Therefore we have that φ is one to one function. Let w ∈ Σg, w ̸= v, set u = w−v

||w−v||q ,

we have t(u) = ||w − v||q and φ( w−v
||w−v||q ) = w. Thus, φ is a bijection.

Suppose ||v||q ≥ 1, let ζ ∈ C∞
c (Ω) is such that ||v − ζv||q < 1. Observe that

v − ζv = g on boundary. The same argument as above gives t > 0 such that
||v − tζv||q = 1.

3. Statement of further results

3.1. The sign of the Euler-Lagrange. Let u be a minimizer for the problem
(1.1), then, it satisfies the following Euler-Lagrange equation

−div(p(x)∇u) = Λuq−1 in Ω,
u > 0 in Ω,
u = g on ∂Ω,

||u||q = 1,

(3.1)

where Λ ∈ IR is the Lagrange multiplier associated to the problem (1.1), let v be
defined by (1.5). The sign of Λ is given by the following:

Theorem 3.1. The sign of Λ is as the following: If ||v||q < 1 then Λ > 0, if
||v||q > 1 then Λ < 0 and if ||v||q = 1 then Λ = 0.
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3.2. Presence of a linear perturbation. Over the course of the proof of Theorem
1.1, one also reaps the following compactness result.

Theorem 3.2. We assume that p, g and v satisfy the same conditions as in The-
orem 1.1. Let us denote by λ1 the first eigenvalue of the operator −div(p∇.) with
homogeneous Dirichlet boundary condition. Then for λ < λ1 we have the infimum
in Sλ(p, g) is achieved in the following cases:

(1) λ > 0, α > 2 and n ≥ 3,
(2) λ > 0, α ≤ 2 and n ∈ [3, 2α+ 2,
(3) λ < 0, n = 3 or 4 with α > 1 and n = 5 with α > 3

2 .

In the presence of a linear perturbation, we will highlight a competition between
three quantities, the dimension n, the exponent α in (1.4) and the term of the
linear perturbation. As we will see and as in Theorem 1.1 the behavior of p near its
minimum plays an important role. The exponent α = 2 is critical in the case λ ̸= 0.

4. Proof of Theorem 1.1.

Let us start by proving the first part of Theorem 1.1. Since the function u is a
solution of S0(p,−g) if and only if −u is solution of S0(p, g), it suffices to consider
the case g ≥ 0.

Let (uj) be a minimizing sequence for S0(p, g), that is,∫
Ω
p(x)|∇uj(x)|2dx = S0(p, g) + o(1)

and

||uj ||q = 1, uj = g in ∂Ω.

Since g ≥ 0, we may always assume that uj ≥ 0, indeed, (|uj |) is also a minimizing
sequence. Since (uj) is bounded inH1 we may extract a subsequence still denoted by
(uj) such that (uj) converges weakly in H1 to a function u ≥ 0 a.e., (uj) converges
strongly to u in L2(Ω), and (uj) converges to u a.e. on Ω with u = g on ∂Ω.

Using a standard lower semicontinuity argument, we infer that ||u||q ≤ 1. To
show that our infimum is achieved it suffices to prove that ||u||q = 1. Arguing by
contradiction, let us assume that

||u||q < 1.

We will prove that this is not possible with the assistance of several lemmas. We
start by giving the first-order term of the energy

∫
Ω p(x)|∇u(x)|

2dx, next, we show
that u satisfies some kind Euler-Lagrange equation and then it is smooth. Finally,
we compute the second-order term and highlight a contradiction.

4.1. The first-order term.

Lemma 4.1. For every w ∈ H1
g (Ω) such that ||w||q < 1, we have

S0(p, g)−
∫
Ω
p(x)|∇w(x)|2dx ≤ p0S

(
1−

∫
Ω
|w|q

) 2
q

.(4.1)
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For the weak limit u, we have the equality:

S0(p, g)−
∫
Ω
p(x)|∇u(x)|2dx = p0S

(
1−

∫
Ω
|u|q
) 2

q

.(4.2)

Proof. Let w ∈ H1
g (Ω) such that ||w||q < 1. Therefore we can find a constant

cε,a > 0 such that

||w + cε,auε,a||q = 1.

Using Brezis-Lieb Lemma (see [4]), we obtain

cqε,a =
1

K2

(
1−

∫
Ω
|w|q

)
+ o(1)(4.3)

where K2 is defined in (2.3). Careful expansion as ε → 0 shows that (see [13]), for
n ≥ 4

(4.4)

∫
Ω
p(x)|∇ua,ε(x)|2dx ≤

p0K1 +O(εn−2) if

{
n ≥ 4 and
n− 2 < α,

p0K1 +A1ε
α + o(εα) if

{
n ≥ 4 and
n− 2 > α,

p0K1 +A2 ε
n−2| log ε|+ o(εn−2| log ε|) if

{
n ≥ 4 and
α = n− 2,

with

K1 = (n− 2)2
∫
IRn

|y|2

(1 + |y|2)n
dy

and where A1, A2 and A3 are positive constants depending only on n, γ and α, and
for n = 3 and for α > 1 we have as ε→ 0,∫

p(x)|∇ua,ε(x)|2dx = p0K1 + [ω3

∫ R

0
(p0+ γrα)|ψ′(r)|2dr +

ω3kα

∫ R

0
|ψ|2rα−2dr]ε+ o(ε).

where ψ is defined as in (2.1).
Therefore for n = 3 and α > 1 we obtain

(4.5)

∫
p(x)|∇ua,ε(x)|2dx = p0K1 +A4ε+ o(ε).

where A4 is a positive constant.
Remark that regardless of dimension n as long as n ≥ 3 and for α > 1 we have∫

Ω
p(x)|∇ua,ε(x)|2dx ≤ p0K1 + o(1).(4.6)

Using wε = w + cε,auε,a as testing function in S0(p, g) we obtain

S0(p, g) ≤
∫
Ω
p(x)|∇w(x)|2dx+ c2ε,a

∫
Ω
p(x)|∇ua,ε(x)|2 + o(1).



972 REJEB HADIJI

Using (4.3), the fact that K1

K
2
q
2

= S and taking into account (4.6) we get the first

assertion of the Lemma 4.1.

For the second part, thanks to (4.1), it suffices to prove one inequality for u.

S(p, g)−
∫
Ω
p(x)|∇u(x)|2dx ≥ p0S

(
1−

∫
Ω
|u|q
) 2

q

.(4.7)

Set vj = uj − u so that vj = 0 in ∂Ω and (vj) converges weakly to 0 in H1
0 and

a.e. We have by Sobolev inequality∫
Ω
p(x)|∇vj |2 ≥ p0S||vj ||2q .(4.8)

On the other hand, we have (see [4])

1 =

∫
Ω
|vj |q +

∫
Ω
|u|q + o(1).(4.9)

Since (uj) is a minimizing sequence we have

S0(p, g) =

∫
Ω
p(x)|∇vj |2 +

∫
Ω
p(x)|∇u|2 + o(1),(4.10)

hence, combining (4.8), (4.9) and (4.10) we obtain the desired conclusion. □

We will now use the fact that g is not identically zero. A consequence of the
above lemma is the following:

Lemma 4.2. The function u satisfies{
−div(p∇u) = p0S

(
1−

∫
Ω |u|q

) 2−q
q |u|q−2u in Ω

u = g on ∂Ω
(4.11)

Moreover, u is smooth, u ∈ L∞(Ω) and u > 0 in Ω.

Proof. Applying (4.1) to w = u+ tφ, φ ∈ C∞
0 (Ω) and |t| small enough, we have

S0(p, g) ≤
∫
Ω
p(x)|∇u|2 − 2t

∫
Ω
p(x)∇u∇φ+ o(t)+

p0S

(
1−

∫
Ω
|u|q − qt

∫
Ω
|u|q−2uφ+ o(t)

) 2
q

,

thus

S0(p, g) ≤
∫
Ω
p(x)|∇u|2 − 2t

∫
Ω
p(x)∇u∇φ+

p0S

(
1−

∫
Ω
|u|q
) 2

q
(
1− 2t

∫
Ω |u|q−2uφ

1−
∫
Ω |u|q

+ o(t)

)
.
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Hence, by using (4.7) we obtain for every φ ∈ C∞
0 (Ω)

−
∫
Ω
p(x)∇u∇φ−

(
1−

∫
Ω
|u|q
) 2−q

q
∫
Ω
|u|q−2uφ = 0.(4.12)

Since u = g on ∂Ω we obtain (4.11).
For proving the regularity of u, it suffices, in view of the standard elliptic regu-

larity theory to show that u is in Lt(Ω) for all t < ∞. To see this, we shall apply
Lemma A1 of [5], then, u is as smooth as the regularity of p and g permits.

By using the strong maximum principle, and the fact that g ≥ 0, g ̸≡ 0 we get

(4.13) u > 0 in Ω.

□

4.2. The second-order term. Now, we need a refined version of (4.1). Similarly
as in the proof of (4.1), let cϵ,a be defined by 1 =

∫
Ω |u+ cϵ,auϵ,a|q. We can write

cε,a = c0(1− δ(ε))(4.14)

with

cq0 =
1

K2

(
1−

∫
Ω
|u|q
)

and lim
ε→0

δ(ε) = 0.(4.15)

Lemma 4.3. We have

δ(ε)K2c
q
0 ≥ p0ε

n−2
2

(
c0

∫
Ω
uq−1 ψ

|x− a|n−2
cq0(q − 1)Du(a)

)
(4.16)

+
q − 1

2
cq0K2δ

2(ε) + o(δ2(ε)) + o(ε
n−2
2 ).

where D is a positive constant.

Proof. First case q ≥ 3. We need the following inequality, for all a ≥ 0 and b ≥ 0
we have

(a+ b)q ≥ aq + qaq−1b+ qabq−1 + bq(4.17)

which follows from
tq + qtq−1 + qt+ 1

(1 + t)q
≤ 1

for t such that t = b
a if a ̸= 0.

Using (4.17) and the fact that u > 0 we get

1 =

∫
Ω
|u+ cε,auε,a|q

≥
∫
Ω
uq + qcq−1

ε,a

∫
Ω
uuq−1

ε,a + qcε,a

∫
Ω
uq−1uε,a + cqε,a

∫
Ω
uqε,a,

and thus
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1 ≥
∫
Ω
uq + qcq−1

ε,a

∫
Ω
uuq−1

ε,a + qc0(1− δ(ε))

∫
Ω
uq−1uε,a(4.18)

+ qcq0

(
1− qδ(ε) +

q(q − 1)

2
δ2(ε) + o(δ2(ε)

)∫
Ω
uqε,a.

On the other hand we have∫
Ω
uuq−1

ε,a = ε
n−2
2 Du(a) + o(ε

n−2
2 )(4.19)

where D is a positive constant, and∫
Ω
uq−1uε,a = ε

n−2
2

∫
Ω
uq−1 ψ

|x− a|n−2
+ o(ε

n−2
2 ).(4.20)

Combining (2.3), (4.18), (4.19) and (4.20) we obtain (4.16).

Second case 2 < q < 3. In what follows C denote a positive constant independent
of ε. The keys are the two following inequalities, we have for all a ≥ 0 and b ≥ 0

|(a+ b)q − (aq + qaq−1b+ qabq−1 + bq)| ≤ Caq−1b if a ≤ b(4.21)

and

|(a+ b)q − (aq + qaq−1b+ qabq−1 + bq)| ≤ Cabq−1 if a ≥ b(4.22)

which follows respectively from

|(1 + t)q − (tq + qtq−1 + qt+ 1)|
t

≤ C(4.23)

for t ≥ 1 and

|(1 + t)q − (tq + qtq−1 + qt+ 1)|
tq−1

≤ C(4.24)

for t ≤ 1 for t such that t = b
a if a ̸= 0.

Using (4.21) and (4.22) we get

1 =

∫
Ω
|u+ cε,auε,a|q(4.25)

=

∫
Ω
uq + qcq−1

ε,a

∫
Ω
uuq−1

ε,a + qcε,a

∫
Ω
uq−1uε,a + cqε,a

∫
Ω
uqε,a

+ R(1)
ε +R(2)

ε .

where

R(1)
ε ≤ C

∫
{x,u≥cε,aψUa,ε}

u|ψUa,ε|q−1

and
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R(2)
ε ≤ C

∫
{x,u<cε,aψUa,ε}

uq−1ψUa,ε.

We claim that the remainders terms R
(1)
ε and R

(2)
ε verify

R(1)
ε = o(ε

n−2
2 ) and R(2)

ε = o(ε
n−2
2 ).(4.26)

Let us justify the first assertion in (4.26). In the set Ω \B(a, r) we have U q−1
a,ε ≤

Cε
n+2
2 and in the set B(a, r) ∩ {x, u ≥ cε,aψUa,ε} we have Ua,ε ≤ C and then

necessarily |x− a| ≥ Cε
1
2 , therefore

(4.27) R(1)
ε ≤ C

∫
{x,Cε

1
2<|x−a|≤r}

(
ε

ε2 + |x− a|2

)n+2
2

dx = o(ε
n−2
2 ).

Let us verify that R
(2)
ε = o(ε

n−2
2 ). In the set Aa,ε = {x, u < cε,aψUa,ε} we have

ψ > 0 and consequently, since u is smooth, there exists δ > 0 such that u > δ in

Aa,ε thus Ua,ε ≥ C. This implies that |x− a| ≤ Cε
1
2 . We have

(4.28) R(2)
ε ≤ C

∫
{x,|x−a|≤Cε

1
2 }

(
ε

ε2 + |x− a|2

)n−2
2

dx = o(ε
n−2
2 ).

Combining (4.25), (4.19), (4.20), and (4.26) we obtain that δ(ε) = O(ε
n−2
2 ) and

(4.16). □

We are able to prove now:

Lemma 4.4. If n ≥ 3 and α > 1 then we have for every 3 ≤ n < 2α+ 2 we have

S0(p, g)−
∫
Ω
p(x)|∇u(x)|2dx < p0S

(
1−

∫
Ω
|u|q
) 2

q

.(4.29)

Let us postpone the proof of Lemma 4.4 and complete the first part of the proof
of Theorem 1.1. Combining (4.29) and (4.2) this leads to a contradiction and then
we obtain that ||u||q = 1 and therefore the infimum S0(p, g) is achieved.

Proof of the first part of Theorem 1.1. Let us chose wε = u + cε,auε,a as testing
function in S0(p, g), we obtain

S0(p, g) ≤
∫
Ω
p|∇(u+ cε,aua,ε)|2.(4.30)

By (4.30) and (4.14) it is easy to see

S0(p, g) ≤
∫
Ω
p|∇u|2 − 2c0ε

n−2
2

∫
Ω
(div(p∇u) ψ

|x− a|n−2

+ c20(1− 2δ(ε) + δ2(ε))

∫
Ω
p(x)|∇ua,ε|2dx+ o(ε

n−2
2 ).
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Now, using (4.16) and the fact that δ(ε) = o(1) we infer

S0(p, g) ≤
∫
Ω
p|∇u|2 + p0K1c

2
0 − 2c0ε

n−2
2

∫
Ω
div(p∇u) ψ

|x− a|n−2
(4.31)

− 2c20

[
ε

n−2
2

K2c
q
0

(
c0

∫
Ω
uq−1 ψ

|x− a|n−2
+ cq−1

0 Du(a)

)
+
q − 1

2
δ2(ε) + o(δ2(ε))

]
∫
Ω
p(x)|∇ua,ε|2dx+ c20δ

2(ε)

∫
Ω
p(x)|∇ua,ε|2dx+ o(ε

n−2
2 ).

Since
∫
Ω p(x)|∇ua,ε|

2dx = K2 + o(1) we obtain

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20

∫
Ω
p(x)|∇ua,ε|2dx− (q − 2)c20δ

2(ε) + o(δ2(ε))−

2c0

[∫
Ω
div(p∇u) ψ

|x− a|n−2

+

(
c2−q0

K2

∫
Ω
uq−1 ψ

|x− a|n−2
+

D

K2
u(a)

)
(K2 + o(1))

]
ε

n−2
2 + o(ε

n−2
2 ).

This leads to

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20

∫
Ω
p(x)|∇ua,ε|2dx− (q − 2)c20K2δ

2(ε) + o(δ2(ε))

− 2c0
DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

We know that δ2(ε) = o(1) thus

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20

∫
Ω
p(x)|∇ua,ε|2dx(4.32)

− 2c0
DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

We are now able to give a precise asymptotic behavior of the RHS of (4.30). This
will possible thanks to the fact that u(a) ̸= 0, namely u(a) > 0. One needs to
distinguish between dimensions and the parameter α. Four cases follow from (4.4)
and (4.32):

• The case when n ≥ 4 and n < α+ 2. We have

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20

(
p0K1 + o(εn−2)

)
− 2c0

DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

Consequently, we have

(4.33) S0(p, g) ≤
∫
Ω
p|∇u|2 + p0c

2
0K1 − 2c0

DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

• The case when n ≥ 4 and n > α+ 2. We have
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S0(p, g) ≤
∫
Ω
p|∇u|2 + c20 (p0K1 +A2ε

α + o(εα))

− 2c0
DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

Therefore, we have

S0(p, g) ≤
∫
Ω
p|∇u|2 + p0c

2
0K1 − 2c0

DK1

K2
u(a)ε

n−2
2 +A2c

2
0ε
α + o(εα) + o(ε

n−2
2 ).

Hence, if n < 2α+ 2 then

S0(p, g) ≤
∫
Ω p|∇u|

2 − 2c0
DK1
K2

u(a)ε
n−2
2 + o(ε

n−2
2 ).(4.34)

• The case when n ≥ 4 and α = n− 2. We have

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20

(
p0K1 +A2 ε

n−2| log ε|+ o(εn−2| log ε|)
)

− 2c0
DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

thus we get

(4.35) S0(p, g) ≤
∫
Ω
p|∇u|2 + p0c

2
0K1 − 2c0

DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).

• 4 The case when n = 3 and α > 1. We have

S0(p, g) ≤
∫
Ω
p|∇u|2 + c20[p0K1 +A4ε+ o(ε)]− 2c0

DK1

K2
u(a)ε

1
2 + o(ε

1
2 ).

Hence we have

(4.36) S0(p, g) ≤
∫
Ω
p|∇u|2 + p0c

2
0K1 − 2c0

DK1

K2
u(a)ε

1
2 + o(ε

1
2 ).

Now, thanks to (4.33), (4.34), (4.35), (4.36) and the fact that u(a) > 0 we obtain
the estimates in Lemma 4.4. □

4.3. The case ||v||q ≥ 1. For the proof of the second part of Theorem 1.1 we set

α := inf
u∈H1

g (Ω),∥u∥q=1

∫
Ω
p(x)|∇u(x)|2dx

and

β := inf
u∈H1

g (Ω),∥u∥q≤1

∫
Ω
p(x)|∇u(x)|2dx.

Indeed using the convexity of the problem β, it is clear that the infimum in β
is achieved by some function w ∈ H1

g (Ω) satisfying ||w||q ≤ 1. Necessarily we have
equality. Let us reason by contradiction, if we had ||w||q < 1, let ζ ∈∞

c (Ω), for t
real and small such that we have ||w + tζ||q < 1, using w + tζ as test function in
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β we obtain that w would be the unique solution of the following Euler-Lagrange
equation:

(4.37)

{
−div(p∇w) = 0 in Ω,
w = g on ∂Ω.

that is mean w and v coincide, this leads to a contradiction since ||v||q ≥ 1. There-
fore α is achieved.

Since ||w||q = 1 we have
∫
Ω p(x)|∇w(x)|

2dx = β ≤ α ≤
∫
Ω p(x)|∇w(x)|

2dx. Thus
α = β. □

5. The sign of the Euler-Langange multiplier. Proof of Theorem 3.1

We follow an idea of [11]. Let u be a minimizer for the problem (1.1) and v
be defined by (1.5), using the fact that problem (1.5) has a unique solution which
minimizes (2.4), we remark that we have ||v||q ̸= 1 if and only if we have Λ ̸= 0.

Using (3.1) and (1.5) we obtain{
−div(p(x)∇(u− v)) = Λuq−1 in Ω,

u− v = 0 on ∂Ω.
(5.1)

First, suppose that ||v||q < 1. Multiplying (5.1) by u − v and integrating we
obtain

(5.2) Λ(||u||qq −
∫
Ω
|u|q−1v) =

∫
Ω
p(x)|∇(u− v)|2.

From Hölder inequality and the fact that ||u||q = 1 we obtain

(5.3) ||u||qq −
∫
Ω
|u|q−1v ≥ 1− ||v||q > 0.

Putting together (5.2) and (5.3) and using the fact that u ̸= v we see that Λ > 0.
Suppose now that ||v||q > 1. For t ∈ IR, let us define the function f by

f(t) =

∫
Ω
|tu+ (1− t)v|qdx.

Note that the function f is smooth and convex since f ′′(t) = q(q−2)
∫
Ω tu+(1−

t)v|q−1(u− v)2 ≥ 0 and we have

(5.4) f(0) = ||v||qq > 1 and f(1) = ||u||qq = 1.

We may use the following:

Lemma 5.1. For all t ∈ [0, 1[ we have f(t) > 1.

Proof. Arguing by contradiction, since f is continuous, by the intermediate value
theorem there exists t0 ∈ [0, 1[ such that f(t0) = 1. Using t0u + (1 − t0)v ∈ Σg as
testing function in S0(, p, g) we have

(5.5) S0(p, g) =

∫
Ω
p(x)|∇u|2 ≤

∫
Ω
p(x)|∇(t0u+ (1− t0)v|2
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Multiplying (1.5) by u− v and integrating we obtain

(5.6)

∫
Ω
p|∇v|2 =

∫
Ω
p∇u∇v

Using (5.5), (5.6) and the fact that t0 < 1 we obtain∫
Ω
p|∇u|2 ≤

∫
Ω
p|∇v|2

Since v is the unique solution of (1.5) we obtain that u = v which clearly contra-
dicts (5.4). This complete the proof of Lemma 5.1. □

By the convexity of f and Lemma 5.1 we deduce that f ′(1) ≤ 0. But f ′(1) =
q
∫
Ω |u|q−1(u − v) and then by (5.1) we have f ′(1) = q

Λ

∫
Ω p(x)|∇(u − v)|2. We

conclude that Λ < 0. □

6. Existence of minimizer in the presence of a linear perturbation:
Proof of Theorem 3.2

First, we claim that if problem (1.3) has a solution then λ < λ1. Indeed, let u be
a solution of (1.1) and v satisfying (1.5), we have

 −div(p(x)∇(u− v) = Λ(λ, u)uq−1 + λu in Ω,
u > 0 in Ω,

u− v = 0 on ∂Ω.
(6.1)

where Λ(λ, u) is a Euler-Lagrange multiplier. Since ||v||q < 1, using section 5, we
find that Λ(λ, u) > 0. Let φ1 be the eigenfunction of the operator −div(p∇.) with
homogeneous Dirichlet boundary condition corresponding to λ1. Multiplying (6.1)
by φ1 and integrating we obtain

−
∫
Ω
div(p(x)∇(u− v))φ1 = λ1

∫
Ω
(u− v)φ1

= Λ(λ, u)

∫
Ω
uq−1φ1 + λ

∫
Ω
uφ1.

Then we get

(λ1 − λ)

∫
Ω
(u− v)φ1 ≥ λ1

∫
Ω
vφ1

and thus λ < λ1.
The proof of Theorem 1.1 is similar to the one of Theorem 1.1 so that we briefly

outline it. We need only to take into account the linear perturbation term. We will
then follow exactly all the steps in the proof of Theorem 1.1 untill (4.32), we just
need to account the linear perturbation. We get

Sλ(p, g) ≤
∫
Ω p|∇u|

2 + c20
(∫

Ω p(x)|∇ua,ε|
2dx− λ

∫
Ω |ua,ε|2dx

)
(6.2)

−2c0
DK1

K2
u(a)ε

n−2
2 + o(ε

n−2
2 ).
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From [6] we have

∥ ua,ε ∥22 =


K3ε

2 +O(εn−2) if n ≥ 5,

C1ε
2| log ε|+O(ε2) if n = 4,

C2ε+O(ε2) if n = 3

(6.3)

where C1, C2 and C3 are positive constants. Using (4.4), (6.2) and (6.3) and the
fact that u(a) > 0 we conclude the proof of Theorem 3.2. □
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