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where x′ = (x2, . . . , xd) denotes the d− 1 variables in ω and the x′-average symbol

is denoted by

∫
ω
− =

1

|ω|

∫
ω
.

1.1. Main results. The purpose of this note is to prove a necessary condition for
finite energy configurations u provided that W satisfies the following two conditions:

(H1): W has a finite number of wells, i.e.,

card({z ∈ RN : W (z) = 0}) < ∞;

(H2): lim inf
|z|→∞

W (z) > 0.

More precisely, we prove that under these assumptions, there exist two wells u± of
W such that u(x1, ·) converges to u± in L2 and a.e. in ω as x1 → ±∞; in particular,
the x′-average u (as a continuous map in R) of u admits the limits u(±∞) = u± as
x1 → ±∞. In definition (1.2) of u, u(x1, ·) stands for the trace of the Sobolev map

u ∈ Ḣ1(Ω,RN ) on the section {x1} × ω for every x1 ∈ R.

Theorem 1.1. Let Ω = R × ω, where ω ⊂ Rd−1 is an open connected bounded
set with Lipschitz boundary. If W : RN → R+ ∪ {+∞} is a lower semicontinuous

potential satisfying (H1) and (H2), then every u ∈ Ḣ1(Ω,RN ) with E(u) < ∞
connects two wells1 u± ∈ RN of W at x1 = ±∞ (i.e., W (u±) = 0) in the sense that

(1.3) lim
x1→±∞

∥u(x1, ·)− u±∥L2(ω,RN ) = 0 and lim
x1→±∞

u(x1, ·) = u± a.e. in ω.

In particular,

lim
x1→±∞

∫
ω
− u(x1, x

′) dx′ = u±.

Remark 1.2. i) As a consequence of the Poincaré-Wirtinger inequality2, for u ∈
Ḣ1(Ω,RN ) with ū(±∞) = u±, there exist two sequences (R+

n )n∈N and (R−
n )n∈N

such that (R±
n )n∈N → ±∞ and the stronger convergence holds true:

(1.4) ∥u(R±
n , ·)− u±∥H1(ω,RN ) −→

n→∞
0

(see [25, Lemma 3.2]).

ii) Theorem 1.1 also holds true if ω is a closed (i.e., compact, connected without
boundary) Riemannian manifold.

iii) Theorem 1.1 also applies for maps u taking values into a closed set N ⊂ RN

(e.g., N could be a compact manifold embedded in RN ). More precisely, if the
potential W : RN → R+ ∪ {+∞} satisfies (H1), (H2) and N := {z ∈ RN :
W (z) < +∞} is a closed set such that W|N : N → R+ is lower semicontinuous,
then Theorem 1.1 handles the case where the nonlinear constraint u ∈ N is present.

1u− and u+ could be equal.
2The assumption that ω is connected with Lipschitz boundary is needed for the Poincaré-

Wirtinger inequality.
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The result in Theorem 1.1 extends to slightly more general potentials W in the
following context of divergence-free maps. For that, let d = N and Ω = R× ω with
ω = Td−1 and T = R/Z being the flat torus. We consider maps u ∈ H1

loc(Ω,Rd)
periodic in x′ ∈ ω and divergence-free, i.e.,

∇ · u = 0 in Ω.

Then the x′-average ū : R → Rd is continuous and its first component is constant,
i.e., there is a ∈ R such that

ū1(x1) = a for every x1 ∈ R
(see [25, Lemma 3.1]). For such maps u, we consider potentials W satisfying the
following two conditions:

(H1)a: W (a, ·) has a finite number of wells, i.e.,

card({z′ ∈ Rd−1 : W (a, z′) = 0}) < ∞;

(H2)a: lim inf
z1→a, |z′|→∞

W (z1, z
′) > 0.

In this context, we have proved in our previous paper [25] that the x′-average map
ū admits limits u± as x1 → ±∞, where u±1 = a and the limits u± are two wells
of W (a, ·), see [25, Lemma 3.7]. As in Theorem 1.1, we will prove that u(x1, ·)
converges to u± in L2 and a.e. in ω as x1 → ±∞.

Theorem 1.3. Let Ω = R × ω with ω = Td−1 the (d − 1)-dimensional torus and

u ∈ Ḣ1(Ω,Rd) such that E(u) < ∞ and ū1 ≡ a in R for some a ∈ R. If W :
Rd → R+∪{+∞} is a lower semicontinuous potential satisfying (H1)a and (H2)a,

then there exist two wells u± ∈ Rd of W such that (1.3) holds true and u±1 = a. In
particular, ū(±∞) = u±.

Note that we do not assume that u is divergence-free in Theorem 1.3, only the
weaker assumption that ū1 is constant.

1.2. Motivation. Our main result is motivated by the well-known De Giorgi con-
jecture that consists in investigating the one-dimensional symmetry of critical points
of the functional E, i.e., solutions u : Ω → RN to the nonlinear elliptic system

(1.5)

{
∆u = 1

2∇W (u) in Ω,
∂u
∂ν = 0 on ∂Ω = R× ∂ω,

where W is assumed to be locally Lipschitz in (1.5) and ν is the unit outer normal
vector field at ∂ω. Theorem 1.1 states in particular that solutions u of finite energy
satisfy the boundary condition (1.3) for two wells u± of W . A natural question
related to the De Giorgi conjecture arises in this context:

Question: Under which assumptions on the potential W and the dimensions d
and N , is it true that every global minimizer u of E connecting two wells3 of W is
one-dimensional symmetric, i.e., u = u(x1) ?

Link with the Gibbons and De Giorgi conjectures. i) In the scalar case N = 1 (d
is arbitrary) and W (u) = 1

2(1 − u2)2, the answer to the above question is positive

3We say that u connects two wells u± of W if (1.3) is satisfied.
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provided that the limits (1.3) are replaced by uniform convergence (see [12, 17]);
within these uniform boundary conditions, the problem is called the Gibbons con-
jecture. We mention that many articles have been written on Gibbons’ conjecture
in the case of the entire space Ω = Rd: more precisely, if a solution4 u : Rd → R of
the PDE

(1.6) ∆u =
1

2

dW

du
(u) in Rd

satisfies the convergence limx1→±∞ u(x1, x
′) = ±1 uniformly in x′ ∈ Rd−1 and

|u| ≤ 1 in Rd, then u is one-dimensional (see [5, 6, 11, 18]).
Let us now speak about the long standing De Giorgi conjecture in the scalar case

N = 1. It predicts that any bounded solution u of (1.6) that is monotone in the x1
variable is one-dimensional in dimension d ≤ 8, i.e., the level sets {u = λ} of u are
hyperplanes. The conjecture has been solved in dimension d = 2 by Ghoussoub-
Gui [22], using a Liouville-type theorem and monotonicity formulas. Using similar
techniques, Ambrosio-Cabré [4] extended these results to dimension d = 3, while
Ghoussoub-Gui [23] showed that the conjecture is true for d = 4 and d = 5 under
some antisymmetry condition on u. The conjecture was finally proved by Savin
[32] in dimension d ≤ 8 under the additional condition limx1→±∞ u(x1, x

′) = ±1
pointwise in x′ ∈ Rd−1, the proof being based on fine regularity results on the level
sets of u. Lately, Del Pino-Kowalczyk-Wei [13] gave a counterexample to the De
Giorgi conjecture in dimension d ≥ 9, which satisfies the pointwise limit conditions
limx1→±∞ u(x1, x

′) = ±1 for a.e. x′ ∈ Rd−1. It would be interesting to investigate
whether these results transfer (or not) to the context of the strip Ω = R × ω as
stated in Question. Theorem 1.1 is helpful here because it proves that the pointwise
convergence as x1 → ±∞ is a necessary condition in the context of a strip R × ω
and for finite energy configurations.

ii) Less results are available for the vector-valued case N ≥ 2. In the case Ω = Rd,
N = 2 and W (u1, u2) = 1

2(u
2
1 − 1)2 + 1

2(u
2
2 − 1)2 + Λu21u

2
2 − 1

2 with Λ > 1 (so
W ≥ 0 and W has exactly four wells {(0,±1), (±1, 0)}, thus, (H1) and (H2) are
satisfied), the Gibbons and De Giorgi conjectures corresponding to the system (1.5)
are discussed in [19]. Several other phase separation models (e.g., arising in a binary
mixture of Bose-Einstein condensates) are studied in the vectorial case where W
has a non-discrete set of zeros (see e.g., [7, 8, 20]).

We recall that in the study of the De Giorgi conjecture for (1.6), i.e., N = 1,
there is a link between monotonicity of solutions (e.g., the condition ∂1u > 0),
stability (i.e., the second variation of the corresponding energy at u is nonnegative),
and local minimality of u (in the sense that the energy does not decrease under
compactly supported perturbations of u). We refer to [2, Section 4] for a fine study
of these properties. In particular, it is shown that the monotonicity condition in
the De Giorgi conjecture implies that u is a local minimizer of the energy (see [2,
Theorem 4.4]). Therefore, it is natural to study Question under the monotonicity
condition in x1 (instead of the global minimality condition on u).

4Here, u needs not be a global minimizer of E within the boundary condition (1.3), nor monotone
in x1, i.e., ∂1u > 0. Obviously, this result applies also to global minimizers, as |u| ≤ 1 in Rd by the
maximum principle.
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Link with micromagnetic models. We have studied Question in the context of
divergence-free maps u : R × ω → RN where d = N and ω = Td−1 is the (d − 1)-
dimensional torus, see [25]. By developing a theory of calibrations, we have suc-
ceeded to give sufficient conditions on the potential W in order that the answer to
Question is positive, in particular in the case where (H1)a and (H2)a are satisfied,
see [25, Theorem 2.11]. In that context, Question is related to some reduced model
in micromagnetics in the regime where the so-called stray-field energy is strongly
penalized favoring the divergence constraint ∇ · u = 0 of the magnetization u (the
unit-length constraint on u being relaxed in the system). In the theory of micro-
magnetics, a challenging question concerns the symmetry of domain walls. Indeed,
much effort has been devoted lately to identifying on the one hand, the domain
walls that have one-dimensional symmetry, such as the so-called symmetric Néel
and symmetric Bloch walls (see e.g. [14, 27, 24]), and on the other hand, the do-
main walls involving microstructures, such as the so-called cross-tie walls (see e.g.,
[3, 31]), the zigzag walls (see e.g., [26, 30]) or the asymmetric Néel / Bloch walls (see
e.g. [16, 15]). Thus, answering to Question would give a general approach in identi-
fying the anisotropy potentials W for which the domain walls are one-dimensional
in the elliptic system (1.5).

Link with heteroclinic connections. One-dimensional5 solutions u = u(x1) of the
system (1.5) are called heteroclinic connections. Given two wells u± of a potential
W satisfying (H1) and (H2), it is known that there exists a heteroclinic connection
γ : R → RN obtained by minimizing

∫
R|

d
dx1

γ|2 + W (γ) dx1 under the condition

γ(±∞) = u± (see [28, 34, 35]). In the vectorial case N ≥ 2, this connection may
not be unique in the sense that there could exist two (minimizing) heteroclinic
connections γ1, γ2 such that γi(±∞) = u± for i = 1, 2 but γ1(·) and γ2(· − τ) are
distinct for every τ ∈ R. If this is the case, at least in dimension d = 2 and Ω = R2,
there also exists a solution u to ∆u = 1

2∇W (u) which realizes an interpolation
between γ1 and γ2 in the following sense (see [33, 1, 29]):

u(x1, x2) → u± as x1 → ±∞ uniformly in x2,

u(x1, x2) → γ1(x1) as x2 → −∞ uniformly in x1,

u(x1, x2) → γ2(x1) as x2 → +∞ uniformly in x1.

Moreover, this solution u is energy local minimizing, i.e., the energy cannot decrease
by compactly supported perturbations of u. Solutions to the system ∆u = 1

2∇W (u)
naturally arise when looking at the local behavior of a transition layer near a point
at the interface between two wells u± ; solutions satisfying the preceding boundary
conditions correspond to the case of an interface point where the 1D connection
passes from γ1 to γ2. The existence of such stable entire solutions to the Allen-
Cahn system makes a significative difference with the scalar case, i.e. N = 1, where
only 1D solutions are present by the De Giorgi conjecture.

5If u = u(x1), the Neumann condition ∂u
∂ν

= 0 is automatically satisfied.
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2. Pointwise convergence and convergence of the x′-average

In this section we prove that under the assumptions in Theorem 1.1, the x′-
average u (as a continuous map in R) has limits u(±∞) = u± as x1 → ±∞ corre-
sponding to two wells of W . For that, we will follow the strategy that we developed
in our previous paper (see [25, Section 3.1]). The idea consists in introducing an
“averaged” potential V in RN with W ≥ V ≥ 0 and {V = 0} = {W = 0} (see
Lemma 2.1), and a new functional EV associated to the x′-average u of a map u
such that 1

|ω|E(u) ≥ EV (ū). This can be seen as a dimension reduction technique

since the new map ū has only one variable. We will prove that every transition
layer ū connecting two wells u± has the energy EV (ū) bounded from below by
the geodesic pseudo-distance geodV between the wells u± (see Lemma 2.3). As
the Euclidean distance in RN is absolutely continuous with respect to geodV (see
Lemma 2.2), we will conclude that ū admits limits at ±∞ given by two wells of W
(see Lemma 2.4). Note that in Section 3, we will give a second proof of the claim
ū(±∞) = u± without using the geodesic pseudo-distance geodV .

We first introduce the energy functional E (defined in (1.1)) restricted to appro-
priate subsets A ⊂ Ω (e.g., A can be a subset of the form I × ω for an interval

I ⊂ R): for every map u ∈ Ḣ1(A,RN ), we set

E(u,A) :=

∫
A
|∇u|2 +W (u) dx,

so that for A = Ω, we have E(u) = E(u,A). For any interval I ⊂ R, the Jensen
inequality yields

E(u, I × ω) =

∫
I

∫
ω

(
|∂1u|2 + |∇′u|2 +W (u)

)
dx′ dx1

≥ |ω|
∫
I

∣∣∣ d

dx1
u(x1)

∣∣∣2 + e(u(x1, ·)) dx1,

where ∇′ = (∂2, . . . , ∂d), ū is the x′-average of u given in (1.2) and the x′-average
energy e is defined by

e(v) :=

∫
ω
−

(
|∇′v|2 +W (v)

)
dx′ for all v ∈ H1(ω,RN ).

Introducing the averaged potential V : RN → R+∪{+∞} defined for all z ∈ RN by

(2.1) V (z) := inf

{
e(v) : v ∈ H1(ω,RN ),

∫
ω
− v dx′ = z

}
≥ 0,

we have

(2.2) E(u, I × ω) ≥ |ω|
∫
I

(∣∣∣ d

dx1
u(x1)

∣∣∣2 + V (u(x1))

)
dx1.

This observation is the starting point in the proof of the following lemma:

Lemma 2.1. Let W : RN → R+ ∪ {+∞} be a lower semicontinuous function
satisfying (H2). Then the averaged potential V : RN → R+ ∪ {+∞} defined in
(2.1) satisfies the following:

(1) V is lower semicontinuous in RN ,
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(2) for all z ∈ RN , V (z) ≤ W (z), the infimum in (2.1) is achieved and6
[
V (z) =

0 ⇔ W (z) = 0
]
,

(3) V∞ := lim inf
|z|→∞

V (z) > 0,

(4) for every interval I ⊂ R and for every u ∈ Ḣ1(I × ω,RN ), one has

1

|ω|
E(u, I × ω) ≥ EV (u, I), EV (u, I) :=

∫
I

∣∣∣ d

dx1
u(x1)

∣∣∣2 + V (u(x1)) dx1.

The new energy EV (ū) := EV (u,R) associated to the x′-average ū will play an
important role for proving the existence of the two limits ū(±∞).

Proof of Lemma 2.1. The claim 4 follows from (2.2). We divide the rest of the proof
in three steps.

Step 1: proof of claim 2. Clearly, for all z ∈ RN , one has V (z) ≤ e(z) = W (z).
By the compact embeddingH1(ω) ↪→ L1(ω), the lower semicontinuity ofW , Fatou’s
lemma and the lower semicontinuity of the L2 norm in the weak L2-topology (see
[9]), we deduce that e is lower semicontinuous in the weak H1(ω,RN )-topology.
Then the direct method in the calculus of variations implies that the infimum is
achieved in (2.1) (infimum that could be equal to +∞ as W can take the value
+∞).

If W (z) = 0, then V (z) = 0 (as 0 ≤ V ≤ W in RN ). Conversely, if V (z) = 0 with
z ∈ RN , then a minimizer v ∈ H1(ω,RN ) in (2.1) satisfies V (z) = e(v) = 0 so that
v ≡ z and W (z) = 0.

Step 2: V is lower semicontinuous in RN . Let (zn)n∈N be a sequence con-
verging to z in RN . We need to show that

V (z) ≤ lim inf
n→∞

V (zn).

Without loss of generality, one can assume that (V (zn))n∈N is a bounded sequence
that converges to lim infn→∞ V (zn). By Step 1, for each n ∈ N, there exists vn ∈
H1(ω,RN ) such that ∫

ω
− vn dx

′ = zn and e(vn) = V (zn).

Since (zn)n∈N and (e(vn))n∈N are bounded, we deduce that (vn)n∈N is bounded in
H1(ω,RN ) by the Poincaré-Wirtinger inequality. Thus, up to extraction, one can
assume that (vn)n∈N converges weakly in H1, strongly in L1 and a.e. in ω to a limit
v ∈ H1(ω,RN ). In particular,

∫
ω− v dx′ = z. Since e is lower semicontinuous in weak

H1(ω,RN )-topology (by Step 1), we conclude

V (z) ≤ e(v) ≤ lim inf
n→∞

e(vn) = lim inf
n→∞

V (zn).

Step 3: proof of claim 3. Assume by contradiction that there exists a sequence
(zn)n∈N ⊂ RN such that |zn| → ∞ and V (zn) → 0 as n → ∞. Then, there exists a

6In particular, if W satisfies (H1), then V satisfies (H1), too.
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sequence of maps (wn)n∈N in H1(ω,RN ) satisfying∫
ω
wn(x

′) dx′ = 0 for each n ∈ N and e(zn + wn) −→
n→∞

0.

By the Poincaré-Wirtinger inequality, we have that (wn)n∈N is bounded in H1.
Thus, up to extraction, one can assume that it converges weakly in H1, strongly in
L1 and a.e. to a map w ∈ H1(ω,RN ). We claim that w is constant since∫

ω
− |∇′w|2 dx′ ≤ lim inf

n→∞

∫
ω
− |∇′wn|2 dx′ ≤ lim inf

n→∞
e(zn + wn) = 0.

We deduce w ≡ 0 since
∫
ω w = limn→∞

∫
ω wn = 0. Thus wn → 0 a.e and (H2)

implies that for a.e. x′ ∈ ω,

lim inf
n→∞

W (zn + wn(x
′)) ≥ lim inf

|z|→∞
W (z) > 0,

which contradicts the fact that e(zn + wn) → 0. □

For every lower semicontinuous function W : RN → R+ ∪ {+∞} satisfying (H1)
and (H2), we introduce the geodesic pseudo-distance geodW in RN endowed with
the singular pseudo-metric 4Wg0, g0 being the standard Euclidean metric in RN ;
this geodesic pseudo-distance (that can take the value +∞) is defined for every
x, y ∈ RN by

geodW (x, y) := inf

{∫ 1

−1
2
√

W (σ(t))|σ̇|(t) dt :(2.3)

σ ∈ Lipploc([−1, 1],RN ), σ(−1) = x, σ(1) = y

}
,

where Lipploc([−1, 1],RN ) is the set of continuous and piecewise locally Lipschitz

curves 7 on [−1, 1]:

Lipploc([−1, 1],RN ) :=
{
σ ∈ C0([−1, 1],RN ) :

there is a partition − 1 = t1 < · · · < tk+1 = 1,

with σ ∈ Liploc((ti, ti+1)) for every 1 ≤ i ≤ k
}
.

By pseudo-distance, we mean that geodW satisfies all the axioms of a distance; the
only difference with respect to the standard definition is that a pseudo-distance
can take the value +∞. We will prove that geodW yields a lower bound for the
energy E (see Lemma 2.3); this plays an important role in the proof of our claim
u(±∞) = u±.

We start by proving some elementary facts about the pseudo-metric structure
induced by geodW on RN :

7In general, we cannot hope that a minimizing sequence in (2.3) is better than piecewise locally
Lipschitz because W is not assumed locally bounded (σ̇ is the derivative of σ). However, in the case
of a locally bounded W , we could use a regularization procedure in order to restrict to Lipschitz
curves σ.
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Lemma 2.2. Let W : RN → R+ ∪ {+∞} be a lower semicontinuous function sat-
isfying (H1) and (H2). Then the function geodW : RN × RN → R+ ∪ {+∞}
defines a pseudo-distance over RN and the Euclidean distance is absolutely contin-
uous with respect to geodW , i.e., for every δ > 0, there exists ε > 0 such that for
every x, y ∈ RN with geodW (x, y) < ε, we have |x− y| < δ.

Proof of Lemma 2.2. In proving that geodW : RN × RN → R+ ∪ {+∞} defines a
pseudo-distance over RN , the only non-trivial axiom to check is the non-degeneracy,
i.e., geodW (x, y) > 0 whenever x ̸= y. In fact, we prove the stronger property that
for every δ > 0, there exists ε > 0 such that for every x, y ∈ RN , |x− y| ≥ δ implies
geodW (x, y) ≥ ε which also yields the absolute continuity of the Euclidean distance
with respect to geodW . For that, we recall that the set {W = 0} is finite (by (H1));
therefore, w.l.o.g. we can assume that δ > 0 is small enough so that the open balls
B(p, δ/2) with respect to the Euclidean distance for p ∈ {W = 0}, are disjoint. We
consider the following disjoint union of balls

Σδ :=
⊔

p∈{W=0}

B(p,
δ

4
),

the Euclidean distance between each ball being larger than δ/2. We now take
two points x, y ∈ RN with |x − y| ≥ δ. In order to obtain a lower bound on
geodW (x, y), we take an arbitrary continuous and piecewise locally Lipschitz curve
σ : [−1, 1] → RN such that σ(−1) = x and σ(1) = y. As |x − y| ≥ δ (so no ball
in Σδ can contain both x and y), by connectedness, the image σ([−1, 1]) cannot be
contained in Σδ. Thus, there exists t0 ∈ [−1, 1] with σ(t0) /∈ Σδ. It implies that
B(σ(t0), δ/8)∩Σδ/2 = ∅. Moreover, since |x−y| ≥ δ, we have either |σ(t0)−x| ≥ δ/2
or |σ(t0) − y| ≥ δ/2; w.l.o.g., we may assume that |σ(t0) − y| ≥ δ/2. Then the
(continuous) curve σ

∣∣
[t0,1]

has to get out of the ball B(σ(t0), δ/8); in particular, it

has length larger than δ/8 and∫ 1

−1
2
√

W (σ(t))|σ̇|(t) dt ≥ δ

4
inf

z∈B(σ(t0),δ/8)

√
W (z) ≥ δ

4
inf

z∈RN\Σδ/2

√
W (z).

Since W is lower semicontinuous and bounded from below at infinity (by (H2)), we
deduce that W is bounded from below by a constant cδ > 0 on RN \ Σδ/2. Taking

the infimum over curves σ ∈ Lipploc([−1, 1],RN ) connecting x to y, we deduce from
the preceding lower bound that

geodW (x, y) ≥
δ
√
cδ
4

> 0.

This finishes the proof of the result. □
We now use a regularization argument to derive the following lower bound on the

energy:

Lemma 2.3. Let W : RN → R+ ∪ {+∞} be a lower semicontinuous function.

Then, for every interval I ⊂ R and every map σ ∈ Ḣ1(I,RN ) having limits σ(inf I)
and σ(sup I) at the endpoints of I, we have

(2.4) EW (σ, I) :=

∫
I

(
|σ̇(t)|2 +W (σ(t))

)
dt ≥ geodW

(
σ(inf I), σ(sup I)

)
.
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Proof of Lemma 2.3. W.l.o.g. we assume that I is an open interval. Since
Ḣ1(I,RN ) ⊂ W 1,1

loc (I,R
N ), we can define the arc-length s : I → J := s(I) ⊂ R

by

s(t) :=

∫ t

t0

|σ̇|(x1) dx1, t ∈ I,

where t0 ∈ I is fixed. Thus s is a nondecreasing continuous function with ṡ = |σ̇|
a.e. in I. Then the arc-length reparametrization of σ, i.e.

σ̃(s(t)) := σ(t), t ∈ I,

is well-defined and provides a Lipschitz curve σ̃ : J → RN with constant speed on
the interval J , i.e. | ˙̃σ| = 1 a.e., and such that σ̃(inf J) = σ(inf I) and σ̃(sup J) =
σ(sup I). W.l.o.g. we may assume that σ is not constant, so J has a nonempty
interior. Then we consider an arbitrary function φ ∈ Liploc((−1, 1), intJ) which is
nondecreasing and surjective onto the interior of the interval J and we set

γ(t) := σ̃(φ(t)), t ∈ (−1, 1).

So γ is a locally Lipschitz map that is continuous on [−1, 1] as σ̃ admits limits at
inf J and sup J ; thus, γ ∈ Lipploc([−1, 1],RN ). The changes of variable s := φ(t),
resp. s := s(t), yield∫ 1

−1
2
√

W (γ(t))|γ̇|(t) dt =
∫
J
2
√
W (σ̃(s))| ˙̃σ|(s) ds =

∫
I
2
√
W (σ(t)) |σ̇|(t) dt.

Combined with γ(−1) = σ(inf I) and γ(1) = σ(sup I), the definition of geodW and
the Young inequality imply

EW (σ, I) ≥
∫
I
2
√

W (σ(t)) |σ̇|(t) dt

=

∫ 1

−1
2
√
W (γ(t))|γ̇|(t) dt ≥ geodW

(
σ(inf I), σ(sup I)

)
.

This completes the proof. □
The convergence of the x′-average in Theorem 1.1 stating that u(±∞) = u± is a

consequence of the following lemma:

Lemma 2.4. Let W : RN → R+∪{+∞} be a lower semicontinuous function satisfy-

ing (H1) and (H2). Then for every map σ ∈ Ḣ1(R,RN ) such that EW (σ,R) < +∞
with EW defined at (2.4), there exist two wells u−, u+ ∈ {W = 0} such that
lim

t→±∞
σ(t) = u±.

Proof of Lemma 2.4. We use the fact that the energy bound EW (σ,R) < +∞ yields
a bound on the total variation of σ : R → RN where RN is endowed with the pseudo-
metric geodW . More precisely, for every sequence t1 < · · · < tk in R, we have by
Lemma 2.3:

k∑
i=1

geodW (σ(ti+1), σ(ti)) ≤
k∑

i=1

EW (σ, [ti, ti+1]) ≤ EW (σ,R) < +∞.

In particular, for every ε > 0, there exists R > 0 such that for all t, s ∈ R with
t, s ≥ R or t, s ≤ −R, one has geodW (σ(t), σ(s)) < ε. Since by Lemma 2.2, smallness
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of geodW (x, y) implies smallness of |x−y|, we deduce that σ has a limit u± ∈ RN at
±∞. Since W (σ(·)) is integrable in R, we have furthermore that W (u±) = 0. □

Now we can prove the convergence of the x′-average ū at ±∞ as stated in
Theorem 1.1:

Proof of the convergence in x′-average in Theorem 1.1. By Lemma 2.1, we have
EV (u,R) < +∞ for the lower semicontinuous function V : RN → R+ ∪ {+∞}
satisfying (H1) and (H2). By Lemma 2.4 applied to EV , we deduce that there
exists u± ∈ {V = 0} = {W = 0} such that limt→±∞ u(t) = u±. □

The pointwise convergence of u(x1, ·) as x1 → ±∞ stated in Theorem 1.1 is
proved in the following:

Proof of the pointwise convergence in Theorem 1.1. We prove that u(x1, ·) converges
a.e. in ω to u± ∈ {W = 0} as x1 → ±∞, where u± are the limits ū(±∞) of the
x′-average ū proved above. For that, we have by Fubini’s theorem:

E(u) ≥
∫
Ω
|∂1u|2 +W (u) dx ≥

∫
ω
EW (u(·, x′),R) dx′

with the usual notation

EW (σ,R) =
∫
R
|σ̇|2 +W (σ) dx1, σ ∈ Ḣ1(R,RN ).

As E(u) < ∞, we deduce that EW (u(·, x′),R) < ∞ for a.e. x′ ∈ ω. By Lemma 2.4,
we deduce that for a.e. x′ ∈ ω, there exist two wells u±(x′) of W such that

(2.5) lim
x1→±∞

u(x1, x
′) = u±(x′).

By (1.4), as ū(±∞) = u±, we know that ∥u(R±
n , ·) − u±∥L2(ω,RN ) → 0 as n → ∞

for two sequences R±
n → ±∞. Up to a subsequence, we deduce that u(R±

n , ·) → u±

a.e. in ω as n → ∞. By (2.5), we conclude that u±(x′) = u± for a.e. x′ ∈ ω. □

3. The L2 convergence

In this section, we prove that u(x1, ·) converges in L2(ω,RN ) to u± as x1 → ±∞.
The idea is to go beyond the averaging procedure in Section 2 and keep the full
information given by the x′-average energy e introduced at Section 2 over the set
H1(ω,RN ). More precisely, we extend e to the space L2(ω,RN ) as follows

(3.1) e(v) =


∫
ω
−

(
|∇′v|2 +W (v)

)
dx′ if v ∈ H1(ω,RN ),

+∞ if v ∈ L2(ω,RN ) \H1(ω,RN ).

In particular, we have for every u ∈ Ḣ1(Ω,RN ),

(3.2) E(u) =

∫
R

(
∥∂1u(x1, ·)∥2L2(ω,RN ) + |ω|e(u(x1, ·))

)
dx1.

In the sequel, we will also need the following properties of the energy e:

Lemma 3.1. If W : RN → R+ ∪ {+∞} is a lower semicontinuous function satis-
fying (H2), then
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(1) e is lower semicontinuous in L2(ω,RN ),
(2) the sets of zeros of e and W coincide; moreover Σ := {e = 0} = {W = 0} ⊂

RN is compact,
(3) for every ε > 0, we have

kε := inf
{
e(v) : v ∈ L2(ω,RN ) with dL2(v,Σ) ≥ ε

}
> 0.

Proof. We divide the proof in several steps:

Step 1. Lower semicontinuity of e in L2(ω,RN ). Indeed, let vn → v in
L2(ω,RN ). W.l.o.g., we may assume that (e(vn))n is bounded, in particular, (vn)n
is bounded in H1(ω,RN ); thus, (vn)n converges to v weakly in H1(ω,RN ). By
Step 1 in the proof of Lemma 2.1, we know that e

∣∣
H1(ω,RN )

is lower semicontinuous

w.r.t. the weak H1 topology and the conclusion follows.

Step 2. Zeros of e. The equality of the zero sets of e and W is straightforward
thanks to the connectedness of ω. Thanks to the assumption (H2), the set of zeros
Σ of W is bounded and by the lower semicontinuity and non-negativity of W , the
set of zeros Σ of W is closed; thus, Σ is compact in RN .

Step 3. We prove that kε > 0. Assume by contradiction that kε = 0 for
some ε > 0. Then there exists a minimizing sequence vn ∈ L2(ω,RN ) such that
dL2(vn,Σ) ≥ ε for every n ∈ N and limn→∞ e(vn) = 0. W.l.o.g., we may assume
that vn ∈ H1(ω,RN ) for every n as ∥vn∥Ḣ1 → 0. Denoting vn the (x′-)average of
vn, the Poincaré-Wirtinger inequality implies that the sequence (wn := vn − vn)n
converges in H1(ω,RN ) to 0. Up to extracting a subsequence, we may assume that
wn → 0 for a.e. x′ ∈ ω.

Claim: The sequence (vn)n is bounded in RN .

Indeed, assume by contradiction that there exists a subsequence of (vn)n (still de-
noted by (vn)n) such that |vn| → ∞ as n → ∞. As W is l.s.c. and wn → 0 for a.e.
x′ ∈ ω, the assumption (H2) implies

lim inf
n→∞

W (vn(x
′)) = lim inf

n→∞
W (wn(x

′) + vn) ≥ lim inf
|z|→∞

W (z) > 0 for a.e. x′ ∈ ω

which by integration over x′ ∈ ω contradicts the assumption e(vn) → 0. This
finishes the proof of the claim.

As a consequence of the claim, we deduce that (vn)n∈N is bounded in H1(ω,RN ).
In particular, (vn)n∈N has a subsequence that converges in L2(ω,RN ) to a map
v ∈ H1(ω,RN ) and we deduce dL2(v,Σ) ≥ ε, in particular, v is not a zero of e,
i.e., e(v) > 0. As e is l.s.c. in L2(ω,RN ), we have 0 = limn→∞ e(vn) ≥ e(v), which
contradicts that e(v) > 0. □

Now we prove the L2-convergence of u(x1, ·) to u± as x1 → ±∞:

Proof of the L2-convergence in Theorem 1.1. Take u ∈ H1
loc(Ω,RN ) such that

E(u) < +∞ and set σ(t) := u(t, ·) ∈ H1(ω,RN ) for a.e. t ∈ R. We prove that
σ(t) converges in L2(ω,RN ) to a limit that is a zero in Σ as t → +∞ (the proof
of the convergence as t → −∞ is similar). Moreover, we will see that these limits
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are in fact the zeros u± of W given by the x′-average ū and the a.e. convergence of
u(x1, ·) as x1 → ±∞.

Step 1: Continuity. We prove that t ∈ R 7→ σ(t) ∈ L2(ω,RN ) is continuous in
R, and moreover, it is a 1

2 -Hölder map. Indeed, for a.e. t, s ∈ R, we have

dL2(σ(t), σ(s))2 =

∫
ω

∣∣∣ ∫ s

t
∂x1u(x1, x

′) dx1

∣∣∣2 dx′ ≤ |t− s|∥∂x1u∥2L2(Ω,RN ).

Step 2: Convergence of a subsequence (σ(tn))n to some u+ ∈ Σ.
Since e(σ(·)) ∈ L1(R) by (3.2), there is a sequence (tn)n∈N → +∞ such that
limn→∞ e(σ(tn)) = 0. Exactly like in Step 3 in the proof of Lemma 3.1, we de-
duce that (σ(tn))n∈N has a subsequence that converges strongly in L2(ω,RN ) to
some map σ∞ ∈ L2(ω,RN ) (the assumption (H2) is essential here). Since e is l.s.c.
in L2 and e ≥ 0 in L2, we deduce that e(σ∞) = 0 and so, there exists u+ ∈ Σ such
that σ∞ ≡ u+.

Step 3: Convergence to u+ in L2 as t → +∞. Assume by contradiction that
σ(t) does not converge in L2(ω,RN ) to u+ as t → ∞. Then there is a sequence
(sn)n∈N → +∞ such that ε := infn∈N dL2(σ(sn), u

+) > 0. Now, by Step 1, the curve
t ∈ [sn,+∞) 7→ σ(t) ∈ L2(ω,RN ) is continuous. Moreover, σ(sn) doesn’t belong to
the L2-ball centered at u+ with radius 3ε

4 . By Step 2, it has to enter (at some time

t > sn) in the L2-ball centered at u+ with radius ε
4 . Therefore, the curve σ|(sn,+∞)

has to cross the ring R := BL2(u+, 3ε4 ) \BL2(u+, ε4), so it has L2-length larger than
ε
2 , i.e., ∫

{t∈(sn,+∞) :σ(t)∈R}
∥∂x1u(t, ·)∥L2(ω,RN ) dt

=

∫
{t∈(sn,+∞) :σ(t)∈R}

∥σ̇∥L2(ω,RN ) dt ≥
ε

2
.

Moreover, by the third claim in Lemma 3.1, we know that e(σ(t)) ≥ kε/4 if σ(t) ∈ R
(up to lowering ε, we may assume that the other zeros of Σ are placed at L2-distance
larger than 2ε from u+, the assumption (H1) is essential here). For every large n,
we obtain ∫ +∞

sn

√
e(u(t, ·)) ∥∂x1u(t, ·)∥L2(ω,RN ) dt(3.3)

≥
∫
{t∈(sn,+∞) :σ(t)∈R}

√
e(u(t, ·)) ∥∂x1u(t, ·)∥L2(ω,RN ) dt ≥

ε

2

√
kε/4.

This is a contradiction with the assumption E(u) < +∞ implying by (3.2):

2|ω|
1
2

∫ +∞

sn

√
e(u(t, ·)) ∥∂x1u(t, ·)∥L2(ω,RN ) dt

≤
∫ +∞

sn

(
|ω|e(u(t, ·)) + ∥∂x1u(t, ·)∥2L2(ω,RN )

)
dt −→

n→∞
0.

Step 4: The L2 limits u± coincide with the average limits ū(±∞). This
is clear as L2 convergence implies convergence in average. □
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Remark 3.2. i) The above proof does not use (so, it is independent of) the almost
everywhere convergence of u(x1, ·) as x1 → ±∞ or the convergence of the x′-average
ū. Therefore, thanks to this proof, one can obtain as a direct consequence the
convergence of the x′-average ū as well as the almost everywhere convergence of
u(x1, ·) as x1 → ±∞.8

ii) Also, the above proof applies to Lemma 2.4 leading to a second method that
does not use the geodesic distance geodW .

iii) Behind the above proof, the notion of geodesic distance over L2(ω,RN ) with
the degenerate weight

√
e is hidden (see (3.3)). Therefore, one could repeat the

arguments in the first proof of Theorem 1.1 based on this geodesic distance.

The above argument can also be used directly to obtain a second proof for the
existence of limits of ū at ±∞ without using the geodesic pseudo-distance geodW
(as presented in the proof in Section 2). For completeness, we redo the proof in the
sequel:

Second proof of the convergence in x′-average in Theorem 1.1. Let u ∈ Ḣ1(Ω,RN )
such that E(u) < ∞. We want to prove that the x′-average ū admits a limit u+

as x1 → ∞ and W (u+) = 0 (the proof of the convergence as x1 → −∞ is similar).
Let V and EV given by Lemma 2.1. Recall that Σ := {V = 0} = {W = 0} and
EV (ū) ≤ 1

|ω|E(u) < ∞.

Step 1. We prove that for every ε > 0,

κε := inf
{
V (z) : z ∈ RN , dRN (z,Σ) ≥ ε

}
> 0.

Assume by contradiction that there exists a sequence (zn)n such that V (zn) → 0 and
dRN (zn,Σ) ≥ ε. By the third claim in Lemma 2.1, we deduce that (zn)n is bounded,
so that, up to a subsequence, zn → z for some z ∈ RN yielding dRN (z,Σ) ≥ ε and
V (z) = 0, i.e., z ∈ Σ (since V is l.s.c. and V ≥ 0) which is a contradiction.

Step 2. There exists a sequence (ū(tn))n converging to a well u+ ∈ Σ.
Indeed, as V (ū) ∈ L1(R), there exists a sequence tn → ∞ with V (ū(tn)) → 0. By
(H2), (ū(tn))n is bounded, so that up to a subsequence, ū(tn) → u+ as n → ∞ for
some point u+ ∈ RN . As V is l.s.c. and V ≥ 0, we deduce that V (u+) = 0, i.e.,
u+ ∈ Σ.

Step 3: Convergence of ū to u+ as x1 → +∞. Assume by contradiction that
ū(x1) does not converge to u+ as x1 → ∞. Then there is a sequence (sn)n∈N → +∞
such that ε := infn∈N dRN (ū(sn), u

+) > 0. As ū : [sn,+∞) → RN is continuous, by
Step 2, the curve has to get out of the Euclidean ball B(ū(sn), ε/4) and it has to
enter in the ball B(u+, ε/4). Therefore, ū has to cross the ring R := B(u+, 3ε4 ) \
B(u+, ε4) ⊂ RN . Moreover, by Step 1, we know that V (ū(x1)) ≥ κε/4 if ū(x1) ∈ R
(where we assumed w.l.o.g. that ε > 0 is small enough so that the other zeros of Σ

8As the L2-convergence implies almost everywhere convergence of u(x1, ·) only up to a subse-
quence, one should repeat the argument in the proof of the a.e. convergence in Theorem 1.1 at
page 991.
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are placed at distance larger than 2ε from u+). We obtain∫ +∞

sn

√
V (ū(x1))

∣∣ d

dx1
u(x1)

∣∣ dx1
≥

∫
{x1∈(sn,+∞) : ū(x1)∈R}

√
V (ū(x1))

∣∣ d

dx1
u(x1)

∣∣ dx1 ≥ ε

2

√
κε/4.

This is a contradiction with the assumption EV (ū) < +∞ implying

2

∫ +∞

sn

√
V (ū(x1))

∣∣ d

dx1
u(x1)

∣∣dx1
≤

∫ +∞

sn

(∣∣ d

dx1
u(x1)

∣∣2 + V (ū(x1))
)
dx1 −→

n→∞
0.

□

4. Proof of Theorem 1.3

In this section, we consider d = N , Ω = R×ω with ω = Td−1 and u ∈ H1
loc(Ω,Rd)

periodic in x′ ∈ ω with ū1 = a in R for some constant a ∈ R (recall that ū is the
x′-average of u). Note that |ω| = 1. We set

L2
a(ω,Rd) :=

{
v = (v1, . . . , vd) ∈ L2(ω,Rd) :

∫
ω
v1 dx

′ = a

}
and H1

a(ω,Rd) := H1 ∩ L2
a(ω,Rd). Note that for a.e. x1 ∈ R, u(x1, ·) ∈ H1

a(ω,Rd).
We define the following energy ea on the convex closed subset L2

a(ω,Rd) of L2(ω,Rd):

(4.1) ea(v) =


∫
ω

(
|∇′v|2 +W (v)

)
dx′ if v ∈ H1

a(ω,Rd),

+∞ if v ∈ L2
a(ω,Rd) \H1(ω,Rd).

In particular, we have for every u ∈ Ḣ1(Ω,Rd) with ū1 = a:

(4.2) E(u) =

∫
R

(
∥∂1u(x1, ·)∥2L2(ω,Rd) + ea(u(x1, ·))

)
dx1.

The aim is to adapt the proof of Theorem 1.1 given in Section 3 to prove Theo-
rem 1.3. We start by transfering the properties of the energy e in Lemma 3.1 to the
energy ea defined in L2

a(ω,Rd). More precisely, if W : Rd → R+ ∪ {+∞} is a lower
semicontinuous function, then ea is lower semicontinuous in L2

a(ω,Rd) endowed with
the strong L2-norm and the sets of zeros of ea and W (a, ·) coincide, i.e.,

Σa := {v ∈ L2
a(ω,Rd) : ea(v) = 0} = {z = (a, z′) ∈ Rd : W (a, z′) = 0}.

If in addition W satisfies (H2)a, then Σa is compact in Rd and for every ε > 0, we
have

kaε := inf
{
ea(v) : v ∈ L2

a(ω,Rd) with dL2(v,Σa) ≥ ε
}
> 0

(the proof of these properties follows by the same arguments presented in the proof
of Lemma 3.1).
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Proof of Theorem 1.3. Let u ∈ H1
loc(Ω,Rd) such that E(u) < +∞ and ū1 = a

in R. We set σ(t) := u(t, ·) ∈ H1
a(ω,Rd) for a.e. t ∈ R. We prove that σ(t)

converges in L2(ω,Rd) to a limit that is a zero in Σa as t → +∞ (the proof of
the convergence as t → −∞ is similar). As in Steps 1 and 2 in the proof of the
L2-convergence in Theorem 1.1, we have that t ∈ R 7→ σ(t) ∈ L2

a(ω,Rd) is a 1
2 -

Hölder continuous map in R and there is a sequence (tn)n∈N → +∞ such that
σ(tn) → u+ in L2(ω,Rd) for a well u+ ∈ Σa (the assumption (H2)a is essential
here). In order to prove the convergence of σ(t) to u+ in L2 as t → +∞, we argue
by contradiction. If σ(t) does not converge in L2(ω,Rd) to u+ as t → ∞, then
there is a sequence (sn)n∈N → +∞ such that ε := infn∈N dL2(σ(sn), u

+) > 0. We
repeat the argument in Step 3 in the proof of the L2-convergence in Theorem 1.1
by restricting ourselves to L2

a(ω,Rd) endowed by the strong L2 topology. More
precisely, the continuous curve t ∈ [sn,+∞) 7→ σ(t) ∈ L2

a(ω,Rd) has to cross the
ring Ra :=

(
BL2(u+, 3ε4 ) \ BL2(u+, ε4)

)
∩ L2

a(ω,Rd), so it has L2-length larger than
ε
2 , i.e., ∫

{t∈(sn,+∞) :σ(t)∈Ra}
∥∂x1u(t, ·)∥L2(ω,Rd) dt

=

∫
{t∈(sn,+∞) :σ(t)∈Ra}

∥σ̇∥L2(ω,Rd) dt ≥
ε

2
.

As e(σ(t)) ≥ kaε/4 if σ(t) ∈ Ra (up to lowering ε, we may assume that the other

zeros of Σa are placed at distance larger than 2ε from u+, the assumption (H1)a is
essential here), we obtain∫

{t∈(sn,+∞) :σ(t)∈Ra}

√
ea(u(t, ·)) ∥∂x1u(t, ·)∥L2(ω,Rd) dt ≥

ε

2

√
kaε/4.

This is a contradiction with (4.2):

2

∫ +∞

sn

√
ea(u(t, ·)) ∥∂x1u(t, ·)∥L2(ω,Rd) dt

≤
∫ +∞

sn

(
ea(u(t, ·)) + ∥∂x1u(t, ·)∥2L2

)
dt −→

n→∞
0.

Clearly, the L2 convergence implies also the convergence in average of σ(t) over ω as
t → ∞ as well as the a.e. convergence σ(t) → u+ in ω but only up to a subsequence.
For the full almost everywhere convergence of u(x1, ·) → u+, we proceed as follows.
First, by the Poincaré-Wirtinger inequality on ω = Td−1, we have for a.e. x1 ∈ R,∫

ω
|∇′u1(x1, x

′)|2 dx′ ≥ 4π2

∫
ω
|u1(x1, x′)− ū1(x1)|2 dx′

= 4π2

∫
ω
|u1(x1, x′)− a|2 dx′.

By Fubini’s theorem, we deduce that

E(u) ≥
∫
Ω

(
|∂1u|2 + |∇′u1|2 +W (u)

)
dx ≥

∫
Td−1

EWa(u(·, x′),R) dx′,
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where Wa(z) := W (z) + 4π2|z1 − a|2 and, as usual,

EWa(σ,R) =
∫
R

(
|σ̇|2 +Wa(σ)

)
dx1, σ ∈ Ḣ1(R,RN ).

Hence, EWa(u(·, x′),R) < ∞ for a.e. x′ ∈ ω. Note that Wa is lower semicontinuous
and satisfies assumptions (H1) (the set of zeros of Wa coincides with Σa, which
is finite by (H1)a) and the coercivity condition (H2) (thanks to (H2)a). Thus,
Lemma 2.4 implies that for a.e. x′ ∈ ω, there exist two wells u±(x′) of Wa such that

(4.3) lim
x1→±∞

u(x1, x
′) = u±(x′).

By (1.4), as ū(±∞) = u±, we know that ∥u(R±
n , ·)−u±∥L2(ω,RN ) → 0 as n → ∞ for

two sequences (R±
n )n∈N → ±∞. Up to a subsequence, we deduce that u(R±

n , ·) → u±

a.e. in ω as n → ∞. By (4.3), we conclude that u±(x′) = u± for a.e. x′ ∈ ω. □
Acknowledgment. R.I. acknowledges partial support by the ANR project ANR-
14-CE25-0009-01.
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Landau, C. R. Acad. Sci. Paris Ser. I Math. 319 (1994), 167–170.
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