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A GENERALIZED SEQUENTIAL FORMULA FOR
SUBDIFFERENTIAL OF MULTI-COMPOSED FUNCTIONS
DEFINED ON BANACH SPACES AND APPLICATIONS

MOHAMED LAGHDIR, ISSAM DALI, AND MOHAMED BILAL MOUSTAID

ABSTRACT. In this paper, a sequential formula is obtained for the subdifferential
of multi-composed convex functions in Banach spaces. We present two applica-
tions illustrating the main result of this study.

1. INTRODUCTION

Recently, a new class of optimization problems has been introduced in [4, 12],
where the objective function is written as a composition of more than two functions.
This type of problems is called multi-composed optimization problems. In fact,
multi-composed optimization problems can be employed for modelling many prac-
tical problems in connection, for example, to facility location problems [5, 13, 14],
fractional and entropy optimization [4]. By considering a convex multi-composed
optimization problem with geometric and cone constraints, Wanka and Wilfer [12]
have obtained the optimality conditions by using the conjugate duality approach
(precisely, Lagrange duality) under a class of regularity conditions guaranteeing
strong duality. In most cases, to derive necessary and sufficient optimality condi-
tions for a general constrained convex optimization problem, a qualification condi-
tion is needed (for instance, generalized Slater condition). However, the qualifica-
tion condition does not always hold even for very simple optimization problems. To
overcome this difficulty, many authors investigate sequential optimality conditions
characterizing optimal solution in terms of nets (or sequences) in exact subdifferen-
tials at some nearby points without considering any qualification condition (see [1],
6], [7], [8], [9], [10]).

The aim of this work is twofold. First, by applying an interesting result of Fitz-
patrick and Simons [3], we establish a sequential formula for the subdifferential of
the sums of m (m > 2) proper, convex and lower semicontinuous functions, without
any qualification condition. Second, we formulate the sequential subdifferential of
the multi-composed convex function f + @ o1 +gohjohgo...oh,, by using an ap-
proach which enables us to reduce the subdifferential calculus of the multi-composed
convex function to that of the sums of p 4+ 4 convex functions (p > 2). We present
two applications illustrating the main result of this study.
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quential optimality conditions.
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The rest of the work is written as follows. In Section 2, we introduce some
definitions, notations from convex analysis and we present some important results
used in what follows. In Section 3, we state a formula describing the sequential
subdifferential of the sums of m (m > 2) proper, convex and lower semicontinuous
functions, without any qualification condition. In Section 4, we provide sequential
formula for the subdifferential of the multi-composed convex function. Finally, in
Section 5, we derive sequential optimality conditions for a general multi-composed
optimization problem with geometric and cone constraints, without considering any
qualification condition. Moreover, we give an example dealing with facility location
problems.

2. NOTATIONS, DEFINITIONS AND PRELIMINARIES

In this section we describe the notations used throughout this paper and present
some preliminary results. Let X and Y be two Hausdorff locally convex spaces
paired in duality by (.,.) where their topological duals X* and Y™ are endowed
respectively with the weak-star topology w(X™, X) and w(Y*,Y). For a subset
C C X*, we denote by éw(X*’X) the closure of C' with respect to the weak-star
topology in X*. Consider a nonempty convex cone K C Y. We define by

K ={y"eY": (y",y) >0, VyeK}

the dual cone of K. Further, on Y we consider the partial order 7 <y’
K defined by

i

induced by

y1,y2 €Y, Y1 Sk Y2 = y2—y1 € K.

With respect to 7 <g ” the augmented set Y U {400y } is considered where 400y
is an abstract element verifying the following operations and conventions

Y Sk +ooy, Y+ (+ooy) = (+ooy)+y:=+o0y, Vy€Y U{+ooy},

(y*, (+o0y)) := 400, a.(+ooy) :=+ooy, Vy*e K*, Va>D0.

Let us mention that throughout this paper all cones we consider contain the origin.

Let us now recall some well known concepts from convex analysis. For a given
function f : X — R = RU {£oc}, f is said to be proper if its effective domain
domf := {x € X : f(z) € R} # 0 and f(z) > —oo for all x € X, and it is
called convex if f(Azxy + (1 — N)z2) < Af(x1) + (1 — A) f(x2) for all x1, 22 € X and
all A € [0,1]. Moreover, a function f : X — R is called lower semicontinuous if
f(@) < liminf,_,z f(x) for all # € X. The conjugate function of f : X — R is
defined by

ff: X* — R
a* — sup{(z*, x) — f(2)}.
zeX

We have the so called Young-Fenchel inequality

() + f(z) > (z*,z), VY(z,z%)e X x X*.

Let f : X — R be a function and € domf, then the e-subdifferential of f at Z,
where € > 0, and the subdifferential of f at T are defined respectively by

0f(T) ={z" e X" : f(zx) > f(@) + (z¥, 2 —T) —e, VreX}
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and
of (@) :={2" € X*: f(x) > f(T) + (z*,x —T), Vre X}
We point out the relation between the subdifferential and the conjugate function
Of (@) = {2" € X f*(2") + f(@) = (" T)}.
For a nonempty subset C' C X, its topological interior is denoted by int C and its
indicator function ¢ : X — R is

0, ifz € C,
do(x) =

400, otherwise.
The normal cone N¢(Z) of C at T € C is defined as the subdifferential of ¢ at =,
i.e.
Ne(@) ={z" e X" : (a*, 2 —T) <0, VxeC}.

Let Z be another Hausdorff locally convex space partially ordered by the convex
cone (Q C Z and Z* its topological dual space endowed with the weak-star topology
w(Z*,Z). For a given vector mapping g : Y — Z U {+o0z}, g is called proper if its
effective domain domg := {y € Y : g(y) € Z} # 0, and Q-epi closed if its epigraph

epig :={(y,2) €Y x Z: g(y) Sq =}
is a closed subset of Y x Z. The mapping ¢ is said to be Q-convex if

91 + (1= Nya) S Agy) + (1 — Ng(y2),
for all y1,y2 € Y and all A € [0, 1]. Furthermore, the mapping g : Y — Z U {400z}
is called (K, @)-nondecreasing on domyg if for all y;,y2 € domg
Y1 Sk Y2 = 9(y1) =@ 9(y2)-
Let h : X — Y U {+ooy} be a given mapping, then the composed mapping
goh: X — ZU{+ooz} is defined by
g(h(z)), if z € dombh,

400z, otherwise.

(goh)(z):= {

It is easy to see that if g : Y — Z U {400z} is (K, Q)-nondecreasing on domg and
Q-convex, and h is K-convex with h(domh) C domg, then g o h is Q-convex.

The following version of the Brgnsted-Rockafellar Theorem was proved in [10]
and will be used for computing the subdifferential of the sums of m (m > 2) proper,
convex and lower semicontinuous functions, without any qualification condition.

Theorem 2.1 ([10]). Let (X,].||x) be a Banach space and f : X — R be a proper,
convexr and lower semicontinuous function. Assume that T € domf, then for any
real number € > 0 and any z* € 0. f(T), there exists (v, xk) € X x X* such that

xr € Of (o), |l — T x < Ve, [Jal — 2" x. < Ve
and
|f(ze) = f(Z) — (2,2 — T)| < 2e.
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3. SEQUENTIAL SUBDIFFERENTIAL CALCULUS FOR THE SUMS OF m FUNCTIONS
(m > 2)

Let (X, |.||x) be a Banach space and (X*, w(X™*, X)) its topological dual space

paired in duality by (.,.). We write z; & 0 (resp. —Q 0) for the case
jeJ

when the net {z;};e; converges to 0 in (X, ||| x) (resp. {z] }]E] converges to 0 in
(X7, w(X™, X))).

The aim of this section is to give sequential formula for the subdifferential of the
sums of m (m > 2) proper, convex and lower semicontinuous functions fi, ..., fi, :

X — R. To this end, we use a result due to Fitzpatrick and Simons stated in the
setting of locally convex space.

Lemma 3.1 ([3]). Let fi : X — R, i = 1,...,m, be a proper, convex and lower
semicontinuous function. If T € N~ domf;, then

Ofr+ fat o+ fm)(@) = [ Opf1(T) + Opfo(T) + ... + Oy fin(T)

n>0

w(X*,X)

Theorem 3.2. Let (X,].|x) be a Banach space and f; : X — R, i = 1,....,m, be
a proper, convex and lower semicontinuous function. Assume that T € N~ 1domfZ
Then the following statements are equivalent

(a) z* € I(fr + fot . + fin) (@):
(b) there exist nets {x;;j}jes C domf; and {z} ;}jes € X*, i € {1,...,m} such that

L€ Ofi(miy) (G € ), mi f—>f Z W),

and

fi(zig) — fi(®) — (2], 705 — ) o 0.

Proof. (a)=(b) Suppose that * € d(f1 + fo + ... + fm)(T) and let N the set of all
weak-star neighbourhoods of zero in X*. Clearly, The order D on N is directed.
By Lemma 3.1

e ﬂ81f1 + 01 fz()—i— +81fm()

neN*
and hence for each n € N* and V € N there exist Yinv € 01 fi(x), i =1,....,m,
such that

m
(3.1) Zy;n,v ex*+ V.
i1

w(X™,X)

By using Theorem 2.1, there exist x;, y € domf; and xzn,‘/ € X* such that
(3:2) Tinyv € 0fi(Tinv),

1
(3.3) Hxi,n,V - EHX < —

NG
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% X 1
(34) H‘Ti,n,V - yi,n,VHX* < %
and
2
(3.5) | fi(@iny) = [i(®) = (&} v Timy —T)| < -

with i € {1,...,m}, V € N and n € N*. Now, we consider the product partial
ordering on J := N* x N that we denote by < and defined as follows: for any
(n,U) € Jand (¢,V) € J

(n,U) <(q,V) <= n<gandV CU.
From (3.1), one can see easily that for each W € N, there exists (ng, Vo) = (1, W) €
J such that for any (n,V) € J

m
(no, Vo) < (n,V) = > yi,y €a"+V Ca"+ W
i=1
which means that

(36) Zyznv w(X*

From (3.4) it follows that

m

gk ) —x g
;(*xz,n,V yz,n,V) (n,V)eJ
and thus
- (X*.X)
3.7 22 2h0.
( ) ; znV yznV) (n,V)eJ
Therefore, from (3.6) and (3.7) we deduce that
m
* w(X*,X) *
3.8 WX X) .
( ) ;:Bz,n,v (n,V)eJ T
By setting z}; := @}, and z;; 1= @i,y With j = (n,V) € J, we can see from
(3.2), (3.3), (3.5) and (3.8) that
m
N . [l x o wXTX)
x;; € 0fi(wij) (€ J), zij ? T, 7 —]G—J> T

i=1
and
fi(zig) — fi(®) — (@] j, i 5 — ) = 0,
with i € {1,...,m}.
(b)=(a) Assume that for any ¢ € {1,...,m} there exist nets {z;;};c; C domf;
and {x};}jes € X* such that

6 8f7,(332,]) (] S J) QQ‘Z,J |—> f Z w(X* $*



1004 M. LAGHDIR, I. DALI, AND M. B. MOUSTAID

and

fi(zig) — fi(®) — (27,705 — ) JE—J> 0.

Since z; € 0fi(z;,;), we have for all x € X
fl(x) > fl(mld) + <‘/L‘;'k,j7x - $i,j>,
and hence
filz) = fi(@) + [fi(ziy) — fi(@) = (@7 iy — D)) + (25,2 — T).
Thus by summing over ¢, we have

m m

S filx) =D L@ + D filwig) — fi(®) — (@), w0, — T)]
i=1

i=1 =1

and since

we obtain

i.e.
e d(fi+ fot+ ...+ fm)(@).
O

As a consequence, we recapture the formula for the case of two proper, convex
and lower semicontinuous functions established in [9].

Corollary 3.3. Let (X,].|x) be a Banach space and fi, fo : X — R be two proper,
convex and lower semicontinuous functions. Assume that T € dom foNdomfo. Then,
z* € (fi + f2)(T) if and only if there exist nets {x1 }jes C domfi, {x2,}jes C
domfz, {27 ;}jes € X* and {3 ;}jes C X* such that

€ 0f2(x2;) (4 € J),
w(X*,X)

),

)
z; € 0fi(z1y), 25 ;
lx -l x

T1j — T, Loj — T, 1]+ x5, ——— 17,
JjeJ JjeJ i k JjeJ
i _
fi(z;) = fil T ;1 — T) = 0,

fi(@) —
fo(w25) = fo(T) — (25 5, 2 — T) = 0.
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4. SEQUENTIAL SUBDIFFERENTIAL FORMULA FOR MULTI-COMPOSED CONVEX
FUNCTIONS IN BANACH SPACES

In what follows (X, |||l x), (Yi, |l-lly;),i = 0,...,p (p > 2) are Banach spaces paired
in duality by (.,.) where their topological dual spaces X*, Y;* are endowed respec-
tively with the weak-star topology w(X*, X), w(Y;*,Y;), i = 0,...,p. Further, we
assume that Y; is partially ordered by the nonempty convex cone K; C Y;, for

t=0,...,p. On X x ¥y x Y7 x ... x Y}, we use the norm

12590, 515 -5 Up) | X xvo xvi . x v, = \/HxH?x +lyoll3; + lnlls; + -+ llwll5, -

We recall that the topological dual space (X x Yy x Y] x ... x Y,)* is identical to the
product Banach space X* x Y X Y7* x ... X Y7 endowed with the product topology
denoted by 7.

The aim of this section is to give a sequential formula for the subdifferential of
the multi-composed function f + ¢ o1+ gohjohgo...oh, where
e f: X — R is proper, convex and lower semicontinuous,
e ©: Yy — R is proper, convex, Ko-nondecreasing on dome and lower semicontin-
uous,
o) : X — YoU{+ooy,} is proper, Ky-convex, Kop-epi closed and (dom)) C dome,
e g:Y; — R is proper, convex, K;-nondecreasing on domg and lower semicontinu-
ous,
o hy:Ys — Y1 U {400y, } is proper, Ki-convex, (K2, Kj)-nondecreasing on domh,
K;-epi closed and hj(domh,) C domyg,
o h; : Yiy1 — Y;U{+ooy, } is proper, K;-convex, (K;+1, K;)-nondecreasing on domh,,
K;-epi closed and h;(domh;) C domh;_1,i=2,...,p— 1,
e hy: X — Y,U{+ooy,} is proper, K)-convex, K,-epi closed and h,(domh,) C
domhy_1,
e domf N4~ (domep) Ndomy N (k' o h}:_ll o...0hy1)(domg) N domh, # 0,
e p(400y,) = 400, g(+00y;) = +00, and h;(+o0y,,,) = +ooy;,i = 1,...,p — 1.

Let us consider the following auxiliary functions

F: Xx[[',¥: — R

(x7y07y17 "‘7yp) — F('r)y(]vyla yp) = f(il?),
o: Xx[[F,% — R

(J’IayO)ylv"'vyp) — @(x)y(]vyla"'yp) = So(yO)a

(U X x Hi:OYk — @
(xay07y17 -"7yp) = \I/($7y0,y1,-~-yp) = 5epi’¢'($7y0)7
G: X X HZ:O Yk — R
(@90, Y15 Yp) > G(Z,90, Y1, --Yp) = g(y1),
fori=1,....,p—1
Hi: Xx[E_ Vi — R
(xay()vyla"‘ayp) — Hi(x7y07y17"'yp) = 5epihi(yi+17yi)7
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and
H,: XxIE_ Vi — R
(, 90, Y1, - Yp) — Hp(x,y0,y1,...Yp) == 5epihp(a:,yp).
Remark 4.1. Let us note that
o domF =domf x [[{_, Vi,
e dom® = X x domey x [[7_, Yz,

o domV = {(z,y0,y1,.-yp) € X X [[8_o Vi : (x,90) € epip},

e domG = X x Yy x domg x [[7_, ¥y,

o domH; = {(x,y0,y1,---Yp) € X X [[1_o Y : (Wis1,4:) € epihs} (i=1,...,p—1),

o domH, = {(z,y0,y1,--Yp) € X X [[1—q Y : (x,yp) € epihy},

o ® W G and H;,i =1,...,p, are proper, convex and lower semicontinuous func-
tions.

Before stating the main result of this section, we need the following results.

Lemma 4.2. For any x € X, one has

f(@) + (po)(z) +(gohiohyo..ohy)(z)

= inf » {F(x7y07y17"‘7yp)+¢(xay07yl)"'7yp)+\Il(xay07y17"'7yp)
(y07y17"'7yp)61_4[i:0)/i

p

+ G(‘/L‘)y()ayl? "'7yp) + Z Hl(xa Yo, Y1, 7yp)}
i=1

Proof. If x ¢ dom N domh,, the equality is obvious, since
f(@)+ (povp)(x)+ (gohiohgo...ohy)(x) =+o0

and

F(x7y07y17 "'7yp) + (I)(J?, Yo, Y1, "'7yp) + \IJ(J,‘, Yo, Y1, "')yp)

p
+ G($7y07y1’ EEE) yp) + ZHi(xay(]’ylv ceey yp) = 00,
1=1

for any (yo,y1,-..,up) € [[7_, Yi.- Suppose that z € domt N domh,. By setting

p
-Aw = {(y07y17"'7yp) € HY; : (mayﬂ) € epiw7 (xvyp) € epihpv
=0
and (yi+17yi) € eplhlaz = 17 P = 1}7
we have for any (yo,y1, ..., yp) ¢ Az

F(%?JOJJL ey yp) + (I)(.I', Yo, Y1, "'7yp) + \Ij(xv Yo, Y1, "'7yp)
p

=+ G($7y07y1a ey yp) + ZHi(xay(]:ylv S) yp) = +00,
i=1
and hence we get

(41) inf p {F(w7y07y17”')yp)+(p(m)y07yl7"‘7yp)+\Ij($7y07y17"‘7yp)
(Yo,y1,-yp)El Ty Yi
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p

+ G(x7y07y17 "'7yp) + Z Hl(xa Yo, Y1, 7yp)}
i=1

= inf {F(x7y07y17"'7yp)+q)(m7y07y17"'7yp)+\Il<x7y07y17"'7yp)
(Yo,y1,--yp)EA

p

+ G(x>y07y17 ceey yp) + EHi(x7y0>yla 7yp)}
i=1

Let (y[)ayla"’ayp) S ACEa we have hp(x) éKp ypa hl(yl+l) §Kl Yiy 1= 1)"'7p - ]-a
Y(z) <k, yo and by monotonicity of ¢, g and h;, ¢ = 1,...,p — 1, it follows that

(pov)(z) < w(yo) and (g o hyohgo...ohy)(z) < g(y),
which yields
f(@)+ (por)(x)+ (gohiohgo..ohy)(z)
< f(@) +¢(yo) + 9(y1)
= F(x,90, Y1, -, Yp) + @(z, 90, Y1, -, Yp) + U (x, %0, Y1, -, Up)

p
+ G(xaym Yi, "'7yp) + Z'Hi(‘rvyoayla ”'7yp)7

=1
and hence
(4.2) f(z)+ (potp)(x)+ (gohiohgo..ohy)(z)
< inf {F(:Evy())yla“-ayp)+q)(may07yla-“7yp)+\Il(may0ay17---7yp)
(Y0,Y15-Yp) €Az
p
+G(gj7y07ylu'“ayp) +ZHi($)y07y17"'ayp)}'
i=1

By setting z, := hyp(z), 2p—1 := hp—1(2p), ..., 21 := h1(22) and 2y := ¢(x), we have
(x, 20, 21, ...y 2p) € Az, and thus we obtain that

(4.3) f(z)+ (pot)(x)+(gohiohgo..ohy)(z)

> inf {F(x7y07y17"'7yp)+(I)(x7y07y17"'7yp)+\I’(x7y07y17"')yp)
(40:Y1,-,Yp) EAz

p

+ G(@UZ/OvZJIa ceey yp) + ZHi(x7y07y17 ceey yp)}7
=1

and according to (4.1), (4.2) and (4.3) we get

f(@)+ (poy)(z) +(gohiohgo..ohy)(z)

= inf ) {F(z,y0,y1, -, Yp) + (2,90, Y1, -, Yp) + (2,50, Y1, ---Yp)
(Yo,y1,-yp) €l Yi

p

+ G('x:y()v Y1, yp) + ZHi(x7y0>y17 7yp)}
=1

g
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Remark 4.3. Let us mention that the above lemma extends some earlier results
due to Wanka and Wilfer. Indeed, if C is a nonempty subset of X, f := d¢ and
¢ = d_k,, then we can apply Lemma 4.2 to obtain Theorem 2 in [12].

Lemma 4.4. Assume that T € domf N~ (domy) N domy N (hy,* o h;_ll 0...0

hit)(domg) N domhy, ¥, = hp(T), Yp_1 = hp—1(Fp), - U1 = h1(Fa) and Ty :=
Y(T). Then

e d(f+pop+gohiohgo..ohy)(T)

—
p

(I*a 07 07 a3 0) € 8(F +Q+V+G+ ZHi)(fvyO’yh '-')yp)'
i=1

Proof. (=) Let 2* € O(f + oy +gohiohgo...oh,)(T). Then, for any z € X we
have

f@)+ (pov)(x)+ (gohiohgo..ohy)(x)
> f(T)+ (poth)(T)+ (gohiohyo...ohy)(T) + (z*, 2 — T)

p
=(F+®+V+G+ Y H)T,Go. 1, Tp) + (25,2 — ).
=1

According to Lemma 4.2, we have for any (z,v0,y1,....yp) € X X [[7_, YV

p
(F+®+U+G+Y H)@,y0,y1,p) > f(2) + (pov)(x)
i=1
+(gohiohgo..ohy)(x)

and hence we get

p
(F+ S+ U+ G‘I‘ ZHi)(xaymyl, ~--,yp)

i=1
P
>(F+Q+U+G+ > H) T Ui Tp) + (%0 — F)
i=1
i.e.
P
(2%,0,0,..,0) €OF + >+ U+ G+ > H)(@ o, 1, - Up)-
i=1
(<) It is immediate by using Lemma 4.2. O
Lemma 4.5. (1) Let i € {1,...,p — 1} and (z,y0,v1,-...Yp) € domH;. Then
(@, Y05 Y1+ - Yp) € OHi(2,90, Y1, - Yp)
if and only if
(a) 2*=0andy; =0 for ke {0,...,p}\{i,i + 1},
(b) —y; € K} and (—y;,yi — hi(yi+1)) =0,
() w1 € O(=y o hi)(yit1)-
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(2) Let (z,Y0,Y1, ..., Yp) € domH,. Then

(T, Y0, Y15 -+ Up) € OHp(T, 90, Y1, -+ Yp)

if and only if

(a) y;=0 forked{0,...,p—1},

(b) —yp € K and (—yp, yp — hp(2)) =0,
(c) z* € d(~y,ohy)(z).
. Yp) € domF. Then
OF(x, 90,1, ..., yp) = Of () x {0} x {0} x ... x {0}.
(4) Let (z,y0,v1, ..., Yp) € domG. Then

0G(x, Y0, Y1, .-, Yp) = {0} x {0} x Dg(y1) x ... x {0}.

(5) Let (z,y0,Y1, .-, Yp) € domW. Then

(3) Let (x,y0,y1, .

)
(", Y0, Y15 -+ Up) € OV(T, Y0, Y1, -+ Yp)
if and only if

(a) y; =0 forke{l,..,p},

(b) —y5 € K¢ and (—yg,y0 — ¥(x)) =0,

(c) a* € d(—y;ov)(z).
(6) Let (z,Y0,Y1, .-, Yp) € dom®. Then

00 (z,y0, Y1, -, Yp) = {0} x (o) x {0} x ... x {0}.

Proof. (1) Let i € {1,...,p—1} and (x,yo,y1, ..., yp) € domH;. It is easy to see that
for any (z*, 45, yi, .- yp) € X* x [[}_o Yy, we have

P
Hi (2%, 95,55, up) = 6101 (") + D Sqop(u) + 05, (7)) + (=95 o ha)* (yih)-
st
Now,
(T, Y0, Y15 - Yp) € OHi (2,90, Y1, -5 Yp)
if and only if

(44) Hz*(w*7y87y1<77y;)+H(w y()ayla"'?yp)

P
Z (W yk) — (Wi vi) — (Wivrs vir) =0
k=0
kg{i,i+1}
which implies
z*=0and y; =0 for k € {0,...,p}\{7,i + 1}.
As (yit1,vi) € epih;, the equality (4.4) becomes equivalent to

(0%, (W) + 0k, (yi — hi(yiv1)) — Wi vi — hi(yiv1))]
+ [(=y; o hi)* (Y1) + (=y; 0 hi)(Wit1) — (Yis1, Yi+1)] = 0.
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According to the Fenchel-Young inequality and the fact that K is a convex cone,
(4.4) is equivalent to

(a) a*=0and y; =0 for k € {0,...,p}\{s,7 + 1},
(b) —y; € K and (—y;, yi — hi(yi+1)) =0,
(©) wipa € O(=y; o hi)(yit1)-

The proof of (2) — (6) is similar to (1). O

Now we state our main result.

Theorem 4.6. Suppose that T € domf N 1 ~!(domep) N domy N (h];1 o h;jlo

ohfl)(domg) N dOthp, yp = hp(f)’ yp,1 = hpfl(gp)’ ey gl = hl(@Q) and ?0 =
(T). Then x* € O(f +@op+gohiohgo...ohy)(T) if and only if there exist nets
{x]}]EJ C domf, {yo,}jes C domgp, {(25,20,4)}jes C epiy, {u1;}jes C domg,

{( Vit1 g7 zg)}]EJ - eplhl? i = 1 - 1 {( f? g])}jEJ - epihzﬂ {xf}jEJ - X*7
{yOJ}]EJ < }/0 ’ {(Z]7z0])}]€=] < X* X YE) ’ {ulj}]ej < Yl ’ {( Ui H»l,])}jGJ -
YixYr i=1,...,p—1, and {(v J*, p])}]ej C X* x Y, satisfying

(.73; € 8f($]), yaj € 3¢(y07j), u){,j S ag(uLj)v
—zf)‘j € K§, (=20, 20 — (%)) =0 and 27 € (=2 ; 0 ) (%),

Z* € K; and< j,vZ‘] hi(vfﬂd)) =0(i=1,...,p—1),
z+1] €0(—v i ° hi)(viﬂ,j) (i=1,..,p-1),
[~y € Ky, ( g*j,vgj — hp(v%)) = 0 and vj" € d(—vp; 0 hy)(vh),
23 Il x z. 2 H-IIX\E’ P H-IIX\@
=Y =Y T jes
[l ||y0 Il Hyo [l ||y1

Yo,j — } Yo, 20,5 — ) Yo, U1,j — } Y1,

pnm , My A HMH

Up j ]€—J> Yps Vij —> Uis Vig1, —> Ui (i=1,..,p—1),

(Fla) = §(@) = (&2, = 7) —>0,

©(yo.5) — o) — (¥5,5> Y05 — Yo) el
g(ur;) — 9(¥1) — (Ui j,u1,; — Yr) prrdl

(—27,2; —T) + (25, 20,5 — y)?o
(—vj i l',_] Vi) + <—Ufi1,ja i1, — Yit1) ]E—J> 0(=1,..,p—1),
(=0 vj = 2) + (v 05 = Tp) — 0,

\ b jeJ
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and
" * pr WXEX) L «  w(Yo™,Yo)
i+ 24+, ——5«x C 4z 0
J J J jeJ » Y0, 0,5 jeJ )
w(Y1*,Y1) i—1)% w(Y;*,Y;) .
upy ol S 0, o el S 0 (1= 2,0p).
» 5 jeJ jed

Proof. By using Lemma 4.4, 2* € O(f +pot¢+gohiohgo...oh,)(Z) is equivalent
o (2*,0,0,..,0) € I(F + @ +V + G+ 3" | Hi)(Z, Yo, Y1, Jp)- So by virtue of
Theorem 3.2 and by taking into account Remark 4.1, there exist nets {(x;, o,
T1jy s Tpj) Yies © domF = domf x [[}_o Vi, {(25, 25 j, 27 j, -2 ) Fjes © X* X

om0 Y (W55 90,55 Y1gs s Ypj) Hies © dom® = X x dome x [[7_; Vi, {(¥], 5
Yi g Up)ties © XX Ilimo Vi {25, 20,5 2155 s 2p3) bies © dom¥ (ie. {2} ey
C X and {24 }jes C Y, k=0,...,p, with {(zj, 20,5) }jes € epivh), {(2], 20,27, -
Z;J')}jEJ C X*x szo Yk*’ {(uj,u()’j, Uui,j, ...,upyj)}jeJ C domG = X x Yo x domg X
[5_s Y, {(uf, u j, uf gy ey up ;) Fieg © XX | Yk*, {(v§,067j,v§7j, ....,Ulij)}jet] -
domH;, i =1,...,p—1 (le. fori=1,...,p—1, {'U;-}jej C X and {v}€ Yies C Yy,
k=0,..,p, with {(v§+17j,vf7j)}jg C epihy), {(v;:*,véfj,vifj,. . pj)}]ej C X* x

b oY i=1,.,p—1, {(’U?,Ug],?ﬂl)], " gj)}jej C domH, (i.e. {v bies € X
and {Ugyj}jeJ C Yy, k= 0,..,p, with {(v% v, pj)}Jej C epihy), {(v f*,vg?,v}f?,...,

vp ) Yies © X* x [Th_y Yy such that

(4.5a) (25, 0,5, T1 j» s T j) € OF (25, 0,5, T1 5, o Tp ),
(4‘5b) (yj*’ yé,j,?/iy Y ,g) € 8(I)(yj7y07j’y17]" "'7yp7j)7
(4.5¢) (z zOJ, zlj, vy 2 ’J) € 0V (2, 20,5, 21,55 -1 Zp,j )
(4.5d) (u;f,uaj,uij, ey Upy ) € 0G(uj,ug j,u1 s Up ),
(4.5e) (v;*,vf)*j,vlj,. . pj) € OH; (U],’UO],’Ulj,. ,vpﬂ) (i=1,...,p—1),
(4.5f) (vf*,vgz, f?,. ., p]) € OHy(V5,vg 4507 s s U ),
H'||X><Y XY7] X...XY; S —
(4.6a) (@5, 20,55 T15, - Tp,j) Oje; > (T, 0, U1+ p),
||'HX><Y XY X...XY], . —_
(46b) (yjayo,jayl,jv"'7yp,j) 0]6; ('ray(]ayla'--ayp)7
||'||X><Y XY] X...xXY; — —
(460) (Zjazo,jazl,ja'“azp,j) OjeJl - ($7y07y17“'7yp)a
H'||X><Y XY71 X...XY; S —
(4.6d) (s 0,5, U1 ,gs -y Up,7) OJGJI (%, 90, Y15+ Up)s

||-HX><YO><Y1><...><Yp

(4.6¢) (v;:,vé’j,vij,...,v;j) (T, Y0, Y15 0p) (i =1,..,p = 1),

jeJ
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||~HX><Y0><Y1><.H><YP

(4.6f) (v?,vgyj,vf’j,... P )

» Up,g jed > (jvy(]’?la""gp)?

(4.7&) F(xj,x()’j,ml,j, ...,I‘p,j) — F(T, Yo, Y1, ...,yp) - <.Z‘;,xj — f>

p
- Z xkjvxk,] Up) — o/ 0,
k=0 I

(47b) (I)(yja Yo,5, Y155 -~-7yp,j) - ®(E7y07y17 ---ayp> - <y;<7y] - E>

p
- Z<yz,]7 yk,] k‘> jed 07
k=0

(4.7C) \I’(Zj,ZOJ,Zl,j,...,Zp’]‘) — \I’(f,go,gl, ...,yp) < j,Z] — IL’>

—Z (2kg> 2k — Up) — = 0,
k=0 I

(4.7d)  G(uj,ugj,ut g, Upj) — G(T, Yo, Y1y - Up) — <],uj—x>

- Z<uz,jvuk,j - gk> — 0,

jeJ
(476) Hi(U;"?’Ué,j?’Ui,j? "'71);;7,]') - Hi(f7y07y17 "'7?1)) - <’U;*,'U§ - §>
p
=Y Wl - —0(i=1,...,p—1),
k:0< k,j> Yk,j yk) jed ( p )
AT0) Hyfoh 8o th) — HyE T y) — (08 =)
p
D* D
- kz()@k]v”k,] k) ]E—J> 0,

and

(4.8) (:1: +y; + 2+ +ZU] 7$0]+y0j+Z0]+u0]+zvoj’x1]+yld
=1

+21J+U1J+ZU1J’ Tpj F Yps+ 2 +“pj+zv ) — (2%,0,0,...,0).
=1
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By Lemma 4.5, the relations in (4.5a)-(4.5f) become

zj € 0f(x5), yo; € Op(yo,5), ui ; € Og(uay),
sy € i (5 203 V() =0 5 €00 2105,
z* € K} and < ],UZ‘] hi(“§+1,j)> =00G=1,..,p—1),
1,+1j € 0(—v;j 0 hi)(viJrl,j) (i=1..,p-1),

[ — p* €Ky, < g‘;, zlij — hy( ])) = (0 and vp* € 0(—v p] ohp)(vg),
with
.Ia] = 0, .’Ei] == 0, ey (E;,J == O,
y; =0and gy ; =0, 45, =0, ..., y,; =0,
ZT,] = O, Z;J == O, ceey Z;,] == O7
(4.9) wi =0, uy,=0and ub . =0, ut. =0 u: . =0
J T P05 T 2,5 7 T 3 T T o pg T
v =0and vpf; =0, k € {0,...,p}\{¢,i + 1} (i =1,...,p— 1),
’UOJ_O vp*—() . 5*17].20.
We see from (4.6a)-(4.6f) that
(
lx — Dlix I-llv;, [l
Tj —— T, Yj —— T, T —) Uk> Yej —— Y (k=0,...,p),
jeJ jeJ jeJ
Ilx -1l x Il “Yk Iy,

2j f'eJ T, uj %]EJ T, 2k —> Uk Uk,j —> U (k=0,...,p),

ol “”y% — .
Y Ses T Yk oy Uk (0= 1) (R =0, p),

and by (4.9), the conditions (4.7a)-(4.7f) can be expressed as

flay) = §(@) = (a2 = 7) —> 0,

e (yo,;) — o) — (¥5.j> Y05 — Yo) vy 0,
9(uj) — 9(H1) — (i j,ur; — Y1) el
(=2z},2; —T) + (—25.4,20,j — Yo) ? 0,
(—vj i {,g U;) + (‘”fil,jvvf‘ﬂ,j Vit1) ]€—J> 0(=1,...,p—1),
(=

U] =)+ (0 vy~ ) o O

jedJ

1013
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On the other hand, it is clear that (4.8) is nothing else than

% w(X*,X) *
xl Yl 2l +Z D2 0,
Jje€J
=1
- (Yo" Yo)
* * * * i wWlXo ,To
T+ Yo+ gty T UG o O
i=1 J
w(Y1*,Y1)
R R PR R B H e
i=1 I
- (%" ¥p)
* * * * s Wp ,Xp
Tpj T Ypg T 2pg T Upj T Z Ypi T 0,
; JjeJ
=1
and hence, by taking into account (4.9), we get
w(X*,X w(Yo™, Yo
m—l—z—i—p* ( ):E yaﬁ'_‘_zg‘ (Yo 0)0,
) 1 3 w )/:L*yYZ .
i+ ol “—Jl)>o and o " ol 2B 0 (= 2, p)
’ ; . ]E

O

Remark 4.7. Let us observe in the above proof that for k € {1,...,p}, ¥’ € {2, ..., p},
i€{l,..,p—1} and g € {0,...,p}\{i,i+ 1} the nets {xOJ}Jv {xk,J}Jv {yi}is {yr,itss
{z5}5, {usts, {woyts, {uw j}s, {vi_ 1]}J, {v }; and {qu}j are superfluous.

Remark 4.8. If we assume that X, Yy, ..., Y}, are reflexive Banach spaces, then we
can establish Theorem 4.6 in terms of sequences and strong limits.

By taking g =0, h; =0and K; =Y, 1 =1, ...,p, we get the following corollary.

Corollary 4.9. Suppose that T € domfNy~!(domp)Ndom) and 5, = (T). Then,
x* € O(f + po)(T) if and only if there exist nets {x;}jes € domf, {yo}jes C
dome, {(2,20,4)}jes € epivy, {27}jes C© X*, {yg}jes C Yy and {(2], 25 ;) }jes C
X* x Yy satisfying

x; € 0f(x;), y5; € 0v(yo,),

—205 € K¢, (=25, 205 —¥(2)) =0, zj € O(—z5; 0 ¥)(%),

M, e,
Toert T et

Iy, I-lyy
0 —— Yo, 205 —— 7
Yo,j jeJ Yo, J ieJ Yo,

f(zy) = f(@) — (2}, 2; — ) = 0,
©(Yo,5) — o) — (Y55 Y0.; — Yo) %

T —28 5,205 — Yog) — 0,
(- z5, 25 — ) + ( 20,52 70,j Yo) e
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and
* * w(X*,X) *
ritz ———— a7,
J J jeJ
* «  w(Yo™,Yo)
; , 0.
yO:] + ZOJ jeJ
Remark 4.10. Some results given in [1] and [10] can also be derived from Corollary
4.9 when we suppose that X and Yy are reflexive Banach spaces.

5. APPLICATIONS

In this section, we apply the main result obtained in the previous section to two
broad classes of optimization problems. The first is a general multi-composed prob-
lem with geometric and cone constraints and the second is a constrained location
problem without set-up costs.

5.1. Sequential optimality conditions for a general multi-composed opti-
mization problem. Let us consider the following multi-composed problem with
geometric and cone constraints

(Pm) ing (gohiohgo..ohy)(z)
w(fE*KO

where

e (' is nonempty closed convex subset of X and Ky is supposed to be closed,

o ) : X — YU {400y, } is proper, Ko-convex, Ko-epi closed and ¢ (dom)) C —Ky,
e g :Y; — R is proper, convex, K;-nondecreasing on domg and lower semicontinu-
ous,

e hy:Ys — Yy U{+o0y, } is proper, Ki-convex, (Ko, K)-nondecreasing on domh,
K-epi closed and hj(domh;) C domyg,

o h; : Yiy1 — Y;U{+ooy, } is proper, K;-convex, (K;11, K;)-nondecreasing on dombh;,
Ki-epi closed and h;(domh;) C domh;_1,i=2,...,p— 1,

e hy: X — Y, U{+ooy,} is proper, Kp-convex, K,-epi closed and h,(domh,) C
domh,_1,

o C N~ (—Ko) Ndomep N (b, o bty o ..o hit)(domg) N domhy, # 0,

® g(+ooy;) = +o0, and hi(+ooy;,,) = +ooy, fori=1,....,p — 1.

We mention that the problem (Py) has been investigated by Wanka et al. ([4, 12,
14]) by using the Lagrange duality approach.

In order to give sequential optimality conditions for the problem (Pyy), let us
note that (Pprq) can be written equivalently as

(Pm) l}g)f({&j(m) + (0_k, 0)(x) + (gohiohgyo...ohy)(x)}.

Theorem 5.1. Suppose that T € C N~ (—Ky) N domy N (h;1 o h;_ll 0..o0

hl—l)(domg) N domhp; gp = hp(f% yp—l = pfl(gp)v'“vyl = hl(y2) and @0 =
Y(Z). Then, T is an optimal solution of the problem (Ppq) if and only if there exist
nets {x;}jes © C, {wotjes © —Ko, {(z),20,)}jes € epith, {u1;}jes C domg,

{(i1 01 ) ies C epihii = 1,..,p — 1, {(v],v) )} jes C epihy, {z}}jes C X7,
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{Z/E)k]}jeJ C Yy, {(Z;azé,j)}je] C X* x Yy, {Uf,j}jeJ C Yy, {(v Ui 7,'+17])}j€J -

Y xYi,,i=1,..,p—1, and {(U§*,U£3)}jej C X* XY, satisfying

wj € No(zj), yg; € K, (45,5 v0,5) = 0 and ui ; € g(un ),
25 € KG (~2 50 70y — b(z)) =0 and 2} € D(—z5 ;0 ¥)(2,),
z* EK* and< ]’Uz'] hi(v§+1,j)> :0(i:1,...,p—1),
’H—lj Ea( Ohi)(fvrzq_l’j) (221,,]?—1),

p* EK* < Zp;?? £7J7hp( ])>_0 andvp*Ea( pjohp)(v]?)a

;

Ix _ [l Ilx —
T; —— T, zj —> T, V) — T,
jeJ jeJ Yj jeJ
lI-ly, Iy, ll-1ly,

Yo,j —>. Yo 20,5 —>4 Yo, U1,j —>. Y1,

|| Hy . H ||y ‘ || ||y
D P i+1
yz’ ’L—‘rlj R yz+l (Z_ 1 7p_1)7

v .
Y2 jeJ P’ Zv] jeJ

(<x;f,:13j T) JG—J> 0,

(6.5> %05 = To) —— 0;

9(U1,j) —9(1) — (Ui j,ur; — 1) = 0,
(=27, 25 = @) + (=20, 20,; — Vo) =%

(—vj ) ;,j U;) + <_v£il,j’0§+1,j — Tit1) ]e—J> 0(=1,...,p—1),
(v,

] Up,jo pj_yp

JJ>+< p* p >j€_J>O’

and

z; + 25 + p*ﬂ(—)>0 yOJ+zoj¥>

ulj—i-v 4“ : )O (Z DAy o —>w(,“ )0( =2,..,D).
k eJ jeJ

Proof. 1t is clear that T is an optimal solution of (Py) if and only if 0 € 9(d¢ +
d_k,o+gohyohgo..oh,)(Z). Since C and —K( are nonempty, closed and
convex, it follows that dc and §_g, are proper, convex and lower semicontinuous
functions, with 0_g, is Kop-nondecreasing (for more details see [2]). So, as f := d¢,

= 0_K,, ¥, g and h;, ¢ = 1,...,p, satisfy all the assumptions of Theorem 4.6,
1t follows that there exist nets {.’L'J}]GJ C C, {yo,j}jes C KO, {(z],zo,])}]ej C
epiy, {u].]}jEJ C domg, {(v; Vit1,5 z])}JEJ C epih;,i=1,. -1, {( Vs p])}]EJ =
eplhpa {l’ }]GJ c X {yOJ}jEJ - Yz)v {( j?ZOJ)}]EJ - X X }/E)? {ul ]}jEJ C Yl )

{(vw, Z+17])}]€JCY x Y ,i=1,...,p—1,and {(v ]*, p])}jGJCX x Y}, such
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that

* * *
—z5; € K¢, (=255, 20,

7’* € K/ and< ”,vZ‘]
r%lj € a(

p* * oPE P
EK < Yp,j» Up,j

\

I-llx, — I-llx, —
z, vt T

(2% € No(x)), Y5 € Nk, (yo;) and v ; € dg(ur ),
—¥(2;)) =0 and 2} € (=27 ; 0 ¥)(z)),
hz‘(vf+1,j)> =
e hi)(viﬂ’j) (i=1,..,p
— hp(v¥)) = 0 and v" € (v

e,
T e T ogest T I

I ||Y0 I HYO

) Huyp . IIHY

( *
oy — 0,
<x]71b > jeJ

0. Y0.j — — 0,
<y0,j’y0a] o) e

g(uw) —9(1) — (Ui j,ur; —
(—z — ) + (—23 j» 20,
(- v,]v ;,J y;) + (—v
(—

—T) + (~vp,vp

J ’ J

and

% )
1,50 Vit 1,5

jeg
I ||y1

Yo,j — 5 yOa 20,5 ; yO? Ut,j — 5 Y1,

y>—>€J0

— Yy, — 0,
Yo) jeJ

We end up the proof by observing that

~Yip1) —> 0 (i =
je

=Y, —=0
pi ~ Up) jes

Vi Ups Vi j —>j€J Yis Vi1, —>j Yi1 (=1,

Yo; € Noko(y0j) <= o, € Kj, and (yg ;5 Yo,5)

s — 1),

J hp)(”?)v
9 7p'_'1%
1,...,p—1),

=0.
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5.2. Sequential optimality conditions to constrained location problems
without set-up costs. In this subsection we consider the following single minimax
location problem without set-up costs, treated by Wanka and Wilfer [13],

LP) inf (z— e
(LP)  inf max {yc,(z — €},

where
e (' and (1, ...,
space X with 0 € intC;, i =1,...,q,

Cy are nonempty, closed and convex subsets of a reflexive Banach
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®cy,...,eq € X are distinct points,
e v¢, : X — R is the Minkowski gauge of the subset C;, defined by

{inf{A>0:x€)\Ci}, if {A\>0:2€\C;}#0,
VCi ) =
400, otherwise,
Let us note that the defined gauges y¢, ..., V¢, are convex and continuous functions
(see Theorem 1 and Remark 2 in [13]), which implies that the problem (LP) is a
convex optimization problem.

For obtaining sequential optimality conditions for the problem (LP), we set
Y1 =Y, :=R? and K7 = Ky := R‘i. To write (LP) as a convex multi-composed

optimization problem, we introduce the following functions
e |1 :R? — R defined by

I3 (21, ) = loo (a7, ...,x;), (x1,...,2q) € RY

where

loo(21, .00y q) = lrilgié(q{\xﬁ}, zf = max{0,z;},i=1,..,q,

and
17 (+0oRe) = +00,

e 1y : RY — R7U {+4o00gq} defined by

(acl, ...,xq), if (:El, ...,:Bq) € R? ,
,Tq) =

+o0oRre, otherwise,

hl(l‘l,

® hy : X — RY defined by

ha(z) := (ve, (z —e1), ..., ve, (x —eg)), € X.

These definitions yield the following equivalent representation for the considered
problem

(LP) (I o hy o ho)(z)

inf
zeC
Remark 5.2. Let us note that

e [T : RY — R is proper, convex, lower semicontinuous and ]Ri—nondecreasing on
domlt = RY (see [11]),

e hy : RYT — R?U {+oope} is proper, RY-convex, (RL,R%)-nondecreasing on
domh; = RY%, R%-epi closed and hy(domh;) C RY,

e hy : X — R7 is proper, R -convex, RY -epi closed, domhy = X and hg(domhs) C
RY.

Lemma 5.3. Let (x1,...,24) € R?, then

q q
oL (21, .y zq) = {(m”{, nxy) €RY z;xf <1 and max {zf} = Z;azjxl}
7 1=
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Proof. From Proposition 4.2 in [11], it follows that for all (7, ...,z}) € RY

q
N 0, if (2}, ..,z3) € R} and > |af| <1,
(ZOO> (1'1’...71'(]) = i=1

400, otherwise.

Therefore, the proof is straightforward since

oL (21, .yzq) = {(af{, o Ty) € RY: (l;) (@], .y 2y) + 13 (w1, s )

q
z : *
1=1

O
Lemma 5.4. Let (x1,...,xz4) € RL and (y1,...,y4) € RL, then
(x], . xy) € 8((y1,...,yq) o h1>(x1, way) = x; € Qyi, i), Vie{l,...,q}
where
Qg r) = { € J=00,u (@ = y)ar =0} (k= 1,....0).
Proof. Let (21, ...,z4) € RL and (y1,...,y4) € R, then
(@], . 70) € 8((y1, s ¥q) © h1>(x1, oy Ty)
<~
(Y121 + ... + Yg2q] > Y121 + ... + Ygq]
+ [z](z1 —x1) + ... + xZ(zq —xq)], V(21,...,29) € Ri
<
vizi > yiti + 7 (z —xi), Vz € Ry, Vie{l,.. q}
<
x; —y; € Nr(z;), Vie{l, .., q}
<~
z; <y, and (z] —y)x; =0, Vie{l,..,q}
i.e.
Therefore, the proof is complete. O

Lemma 5.5. Let x € X, (y1,...,yq) € RY and I := {z e{l,...,q}: yi> 0}. Then

a((yl, ey 1g) © h2>(x) - F((yl, ...,yq),a:>
where

1“((3/17 ...,yq),x> = {:z:* € X*: 3oy, ., xy € XF 2] + .. +ay =27, with

x; € 0(yive,)(x —e;) forie Il and xj =0 fori ¢ I}.
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Proof. Let € X, (y1,....,yq) € RL and I := {i € {1,...,q} : y > 0}. Since the
functions y¢y, ..., ¢, : X — R are convex and continuous, it follows that

01y w0) 0 h2) (@) = 0170, (- = €1) + w70, (- — €9) ) @)
- a(mcl(. - 61)) (z) + ... + 5(yq70q(. - eq)) ().

Further, it is easy to check that
Iyive,)(x —e;i), it i eI, ‘
8<y¢’yci(. — ez)>(x) = . (i=1,...q).
{0}, otherwise,
Therefore, the proof is complete. O

Let us introduce the following sets

E, := {(xl,...,xq,rl, wnTq) EREXRY ;< Vie{l, ...,q}}
and
Eg := {(m,rl, wnTq) €EX XRY: yo(x—e) <1y, Vie {1,...,q}}.

It is clear that E; and Es represent the epigraphs of h1 and hg, respectively.

Now, we give sequential optimality conditions for the problem (LP).

Theorem 5.6. Let T € C. Then, T is an optimal solution of the problem (LP) if

and only if there exist sequences {xy}tnen € C, {(Y1,ns - Ygn) nen € R, {(210, ...,

Zgns Xln, - aqn)}nEN C Eq, {(anBlnv ooy /Bq,n)}neN C Ko, {x;kL}nGN c X~, {(yina
- Yq, n)}nGN c ]R-H with Z i=1 yl n <1,

{(Zl,nﬂ‘ " q,nv al,nv q,n)}nEN CR7x Rz— and {(Z;kwﬁik,n’ ""/Bg,n)}neN C X*x Rz—

satisfying

x;kz E NC(xTL) ma‘X{ zn} Zyz nyz 7y

a;n(a@n - Zi,n) =0, Z n € Q( znvzl n) (Z =1, .-,(]),
Bin(Bin — 10, (n — €0)) = 0, 2 €T ((Bis s B 2n) (i = 1,.,0),

( I-lx -l x
T, z

=
n y N r X,
n—-+o00 n—-+00

ll-Ilra

(P00 V) =2 (304 (T = 1), 796, (T — ),

(H _ _
(Zl,n’ X qu) n—)—]iio (701 (l’ - 61)7 ""’)/Cq(a’: - efI))v

Il _ _
(0517”7 ) O‘q,n) ﬁ (’701 (l‘ - 61), "'7'70q(33 - eq))»

| B s Ban) =2 (30 (T = 1), 070, (7 — €4),

n—-+o0o
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N p—

*
T, Tn
< n n—+oo

q
Z yZn'yCi(
Za (i —v0,(T —€;)) — ZZZn(Zi,n — ¢, (T
i=1

e T o he@ -k,

q

Zﬁin(ﬁi,n —16:(T =€) = (2, 20 = T) —— 0,

n—-+oo
\ i=1
and
ll-1] x « ll-llza
* * k * *
zy + 2z ———0 «o 0,...,0
n " too 7(1n 1,n° 7yq,n q,n) n——+00 (’ ’ )a
Il
* *
(Zln 1,n° 7an q,n) (Oa aO)

Proof. By taking into consideration Remark 5.2, it follows that the functions f :=

dc, ¢

=0,¢%=0,g:=1%

, h1 and ho satisfy all the assumptions of Theorem 5.1.

Therefore, by applying Theorem 5.1 and also Lemma 5.3, Lemma 5.4 and Lemmab.5,
it follows that T is an optimal solution of (LP) if and only if there exist sequences

{Zn}nen C C, {(yin,---

7yq,n)}n€N - qu {(21,n7"‘7Zq,’n7a1,n7'”7 aq,n)}neN C Ela

{(zns Brns s Ban)tnen € Ea, {zh}tnen © X*, {(Wf 0 Ui n)tnen € RY, with
4 oy <1
=1 yz,n —
{(Z 0+ 240> OF s s Qg ) Inen © R X RE, {(25, 85 s s B ) tnen © X* x RY
such that

+ 1
l‘;kl € NC(CUn)a 112?%((1{%’”} -

q
*
E yi,nyi,n,
=1

n € Qa Zn,zm) (i=1,..,q9),

M=

oz;;,n(akm — 2kn) =0, 2]

b
Il
—

Bin (B = 100z = 1)) = 0, 25 € (B0 By) 20 )

M=

b
Il

1

(. ll-llx ll-1l x

(yl,nv '--qu,n) % (ve, (T — e1), ---aVCq(f - 6(1))7
(s o 2am) ~0 (10, (F = 1), 070, (F — €4),
(@)~ (16, (T = 1), 070, (T = ¢))
(Brins s Ban) — (04 (7 — 1), 70, (7 — €4),
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(<x;‘l,xn —T) —— 0,

n—-+00
112?<Xq{ } - 1r£1a<x {70 } Z yz n yz n — YC; (l‘ - 61)) m 0,
q
Za (@1 =20 = ) = D il = 20F = ) 200
1=

S BaBin —10,(F — ) — (52020 —7) ——
i=1

n—-+00
and
ll-1l x = lI-lpa
Ty + 2 n_:ioo —— 0, (Y1 — s Yy — Ygn) ﬁ (0,...,0),
ll-llga
(Z)lk’n — 51(7”’ ey 2 6% ) m (0, ,0)
Since max {y; } = Zgzl Y¥ . Yin, we have
1<i<q 7 ’
maX{ym}*maX{VC @ —e)} — Zymym v0,(T =€) ——— 0

1<i<q

is equivalent to

* e .
D vine,(E —e) T max (16, (7 i)}
Asaf, >0, ajp —2in 20, B, > 0and Bin —v¢,(2n —€) > 0,7 =1,...,q, we
conclude that
q

Z V(e — 260) =0 = af (Qin —2in) =0,i=1,...,q,
k=1

q
> BinBrn — V0 (20 — ) =0 =

Zn(ﬁz,n — YC; (Zn - 61)) =0,
1=1,...,q,

and hence the proof is complete. O
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