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tangent h′(0) at x instead of using linear increments f(x + ∆x) or f(x + tv) for
∆x or t small. A function f is differentiable at x if and only if there exists a
linear function Df(x) such that for all such trajectories (f ◦ h)′(0) = Df(x)h′(0).
For instance, this suggests to define the differential of a function defined on an
embedded submanifold M via trajectories in M .

The analytical generalization of the notion of differential to functions defined on a
normed vector space was given by Fréchet [14] in 1925. In 1937 Fréchet [15] extends
the geometrical definition of Hadamard to functions of functions and points out
that Hadamard’s approach is more general than his own since it works in a TVS
that is not a normed space. A nice compact account of and comparison between the
numerous notions of differentials in a TVS that followed can be found in Averbuh-
Smoljanov [2], but we concentrate on what is directly pertinent to this paper. In
1938 and 1939 Michal [21, 22] introduced his M-differentiability that relaxes Fréchet
to functions defined on a Hausdorff TVS (an analytic notion stronger than the one
of Hadamard-Fréchet).

It was known in the early moments of the Calculus of variations by Volterra [36]
and Gateaux [17, 18] in 1913 that the directional derivative of a function is not
necessarily a linear mapping with respect to the direction. It is less known that,
in his 1937 paper, Fréchet [15] suggested to relax the condition that the differential
be linear and gave an example of such a function. It seems that it is only in 1978
that Penot [29] introduced the notion of M-semidifferential1 (one sided directional
derivative) for a TVS, which does not require the linearity while preserving all the
operations of the classical differential calculus including the chain rule. However,
his use of the term M-differentiability is misleading since his definition is definitely
original compared to Michal’s complicated notion. His M-semidifferentiability im-
plies the Hadamard semidifferentiability, which also preserves all the operations of
the classical differential calculus including the chain rule. It will be shown that
Hadamard semidifferentiability is equivalent to the weaker notion of sequential M-
semidifferentiability. In a Fréchet space all those notions coincide. A large class of
nondifferentiable functions are Hadamard semidifferentiable such as, for instance, all
continuous convex functions in a locally convex TVS and all norms both important
in Optimization.

The M-semidifferentiability does not readily extend to functions defined on em-
bedded submanifolds of the Euclidean space or, more generally, on an unstructured
subset of a TVS, but, in view of its geometric nature, the Hadamard semidifferen-
tiability does without introducing local bases or coordinate spaces while preserving
all the rules of the finite dimensional differential calculus. In this context, the nat-
ural set of semitangents is the intermediary or adjacent tangent cone as defined by
Aubin-Frankowska [1].

1In order to avoid a potential confusion between a one-sided directional derivative and a directional
derivative at x in the direction v

lim
t↘0

f(x + tv) − f(x)

t
and lim

t→0

f(x + tv) − f(x)

t
,

we adopt the terminology semidifferential for a one-sided directional derivative and directional
derivative for the second one. The term differential will be used for a one-sided directional derivative
which is linear with respect to the direction (see, for instance, [8]).
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Section 2 revisits the notion of differential in TVS. Section 3 revisits and expands
the notion of semidifferential in TVS. Section 4 develops the Hadamard semidif-
ferential for an unstructured subset of a TVS. Section 5 illustrates the application
of this work to the groups of diffeomorphisms of Micheletti [26] associated with
the shape derivative and the group of Lebesgue measurable characteristic functions
[5, 6] associated with the topological derivative.

1.1. Some Notation and Properties for TVS. Recall that in a topological vec-
tor space there is a fundamental system R of neighborhoods of the origin for which
(i) every V in R is absorbing and balanced, and (ii) for every V ∈ R, there exists
U ∈ R such that U + U ⊂ V . In this paper we always assume that the neigh-
borhoods are elements of R. A set A is bounded if, for all V ∈ R, there exists
α > 0 such that A ⊂ λV for all λ ≥ α ([20, Dfn. 1, p. 108]). A Fréchet space is
a complete, metrizable, locally convex space and its metric is translation invariant
(cf., for instance, [20, Dfn. pp. 79–80, Thm. 1, p. 81, Dfn. 4, p, 136]).

2. Differentials in vector spaces

2.1. Differentials in the Euclidean Space. The right definition of the differen-
tial for functions of several variables can be found in O. Stolz [32, p. 133]2 in 1893,
J. Pierpont [31, p. 268]3 in 1905, W. H. Young [37, p. 157] in 1909 and [38, p.
21]4 in 1910, and M. Fréchet [12] in 1911 and [13] in 1912. But, according to V.
M. Tihomirov [35], K. Weierstrass is most likely the first to have given a correct
definition of the differential of a function of several variables:

“Fréchet wrote, that it was the “différentielle à mon sens”. But
this was not quite right, because the correct definitions of derivative
and differential of a function of many variables were given by K.
Weierstrass in his lectures in the eighties of the 19th century. These
lectures were published in the thirties of our century (20th).”

Indeed, Stolz, Pierpont, and Young through his wife Grace Chisholm had had direct
or close contacts with Karl Weierstrass (1815–1897) or his work.

2.2. Differentials in Topological Vector Spaces. The proofs are omitted since
they will be given in section 3 for the general semidifferential case.

2.2.1. Hadamard, Fréchet, and Michal. An equivalent definition of a geometric na-
ture was introduced by Hadamard [19] in 1923 using trajectories in the Euclidean
space. His definition was extended from the Euclidean space to function spaces by
Fréchet [15] in 1937.

2Otto Stolz (1842–1905).
3James Pierpont (1866–1938).
4William Henry Young (1863–1942).
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Definition 2.1 (Admissible trajectory). An admissible trajectory5 at x in a topo-
logical vector space X is a function h : (−τ, τ) → X, for some τ > 0, such that

h(0) = x and h′(0)
def
= lim

t→0

h(t) − h(0)

t
exists,(2.1)

where h′(0) is the tangent to the trajectory at h(0) = x.

Definition 2.2 (Hadamard [19] in 1923, Fréchet [15, p. 244] in 1937). Let X and Y
be topological vector spaces. The function f : X → Y is Hadamard differentiable at
x ∈ X if there exists a linear mapping6 Df(x) : X → Y such that for all admissible
trajectories at x

(f ◦ h)′(0)
def
= lim

t→0

f(h(t)) − f(h(0))

t
exists and (f ◦ h)′(0) = Df(x)h′(0).

The mapping v 7→ Df(x)v : X → Y is the differential of f at x.

Michal [21, pp. 341–342] in 1938 and [22, pp. 534–535] in 1939 introduced
a slightly different notion that he called HM-differentiabilty where the function
h : (−τ,τ) → X is differentiable everywhere instead of just at 0. That notion is
equivalent to the above Hadamard-Fréchet definition (cf. [2, p. 80]).

In 1925 Fréchet extended his 1911 definition in [12] for functions of several vari-
ables to functions of functions.

Definition 2.3 (Fréchet [14] in 1925). Let X be a normed space and Y a topological
vector space. The function f : X → Y is Fréchet differentiable at x ∈ X if there
exists a continuous linear mapping Df(x) : X → Y such that

lim
∥v∥→0

f(x + v) − f(x) −Df(x)v

∥v∥
= 0 in Y.(2.2)

The linear mapping v 7→ Df(x)v : X → Y is the differential of f at x.

Following the extension of the Hadamard differentiability to function spaces by
Fréchet [15, p. 244] in 1937, Michal in a note [21, pp. 340–341] in 1938 followed by
a paper [22, pp. 532–533] in 1939 introduced a notion of topological differential for
functions f : X → Y between two Hausdorff topological vector spaces and showed
that it enjoys all the nice properties of the finite dimensional differential calculus
[21, Thms. 1, 2, 3, p. 341].

Definition 2.4 (Michal [21, pp. 340–341], [22, p. 532]). Let X and Y be Hausdorff
TVS. The function f : X → Y is M-differentiable at x ∈ X if there exists a
continuous linear mapping Df(x) : X → Y and a function (x1,x2) 7→ ε(x;x1,x2) :
X ×X → Y such that

(i) for all x2 ∈ X, ε(x; 0, x2) = 0,
(ii) there exists a neighborhood V (0) of 0 such that for all λ > 0, x2 ∈ X, and

x1 ∈ V (0), ε(x;x1, λx2) = λ ε(x;x1, x2),
(iii) the function (x1,x2) 7→ ε(x;x1,x2) : X ×X → Y is continuous at (0,x2) for

all x2 ∈ X,

5Since the term path is often understood as a continuous function, the term trajectory will be
preferred for a function that can undergo jumps.
6It is not a priori assumed that Df(x) be continuous as for Fréchet and Michal below.
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(iv) there exists some neighborhood V (0) of 0 in X such that

∀w ∈ V (0), f(x + w) − f(x) −Df(x)w = ε(x;w,w).(2.3)

This is a generalization of Fréchet without using a norm.

Both Fréchet and M-differentiability lead to a simpler and weaker notion that
will be introduced under the same name of M-differentiability by Penot [29] in 1978
(Definition 3.4 (iii)). Let t > 0 going to 0 and w → v for some v ∈ X. By replacing
w by tw in Definition 2.4, we get tw → 0 and

f(x + tw) − f(x)

t
−Df(x)v = ε(x,tw,w) −Df(x)(w − v) → ε(x,0,v) = 0

⇒ lim
w→v
t↘0

f(x + tw) − f(x)

t
= Df(x)v,

since Df(x) is continuous. Similarly, for the Definition 2.3 of Fréchet,

f(x + tw) − f(x)

t
−Df(x)v

= ∥w∥


f(x + tw) − f(x) −Df(x)tw

∥tw∥
, w ̸= 0

0, w = 0

 + Df(x)(w − v)

⇒ lim
w→v
t↘0

f(x + tw) − f(x)

t
= Df(x)v,(2.4)

by continuity of Df(x). Since Michal’s definition is a little complicated and not
really fundamental, we introduce the following weaker and simpler definition that
will coincide with the Hadamard differentiability.

Definition 2.5. Let X and Y be topological vector spaces. The function f : X → Y
is MS-differentiable at x ∈ X if there exists a linear mapping Df(x) : X → Y such
that for all v ∈ X and all sequences {vn} converging to v,

lim
vn→v
t↘0

f(x + tvn) − f(x)

t
= Df(x)v.(2.5)

Again v 7→ Df(x)v : X → Y is the differential of f at x.

Remark 2.6. 1) Fréchet and Michal both assume that Df(x) is continuous (addi-
tive and continuous), but, for the MS-differentiability, the continuity is not necessary
since the sequential continuity will directly follow from Definition 2.5 by Theorems
2.7 and 2.8. This subtlety does not occur in finite dimension.
2) Condition (2.5) in Definition 2.5 implies the equivalent condition

lim
vn→v
t→0

f(x + tvn) − f(x)

t
= Df(x)v,(2.6)

since {−vn} converges to −v and, by linearity of Df(x),

lim
vn→v
t↗0

f(x + tvn) − f(x)

t
= lim

vn→v
−t↘0

−f(x + (−t)(−vn)) − f(x)

−t

= −Df(x)(−v) = Df(x)v.
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The MS-differentiability and the Hadamard differentiability coincide.

Theorem 2.7. Let X and Y be topological vector spaces, f : X → Y a function,
and x ∈ X.

(i) f is MS-differentiable at x if and only if it is Hadamard differentiable at x.
(ii) In a normed space X, if f : X-strong → Y is Fréchet differentiable at x,

then f : X-strong → Y is MS-differentiable at x.

The Hadamard differentiability enjoys all the nice properties of the classical finite
dimensional differential calculus including the chain rule.

Theorem 2.8. Let X and Y be topological vector spaces and f : X → Y .

(i) If f is Hadamard differentiable at x ∈ X, then the linear mapping v 7→
Df(x)v : X → Y is sequentially continuous.

(ii) If f1 and f2 are Hadamard differentiable at x ∈ X, then for all α and β in
R, αf1 + βf2 is Hadamard differentiable at x.

(iii) (Chain rule) Let X, Y , Z be topological vector spaces, g : X → Y and
f : Y → Z be functions such as g is Hadamard differentiable at x and f is
Hadamard differentiable at g(x). Then f ◦ g is Hadamard differentiable at
x and

∀v ∈ X, D(f ◦ g)(x)v = Df(g(x))Dg(x)v.(2.7)

The above theorem is quite general since the topologies are not specified. For in-
stance, in a normed space X, Definition 2.5 can be given for the strong (norm) topol-
ogy or the weak topology. Since all strongly convergent sequences are weakly con-
vergent, the weak Hadamard differentiability is stronger than the strong Hadamard
differentiability of Definition 2.5. There are further simplifications when Y = Rn.

Theorem 2.9. Let X and Y be normed vector spaces, f : X → Y a function, and
x ∈ X.

(i) If f : X-strong → Y -strong is Fréchet differentiable at x, then f : X-weak →
Y -weak is MS-differentiable at x.

(ii) Let X be a reflexive Banach space. Then, if f : X-weak → Y -strong is MS-
differentiable at x, then f : X-strong → Y -strong is Fréchet differentiable at
x.

(iii) Let X be a reflexive Banach space and Y = Rn. Then f : X-strong →
Rn is Fréchet differentiable at x if and only if f : X-weak → Rn is MS-
differentiable at x.

Remark 2.10. 1) In finite dimension Fréchet, Hadamard, and MS-differentiabili-
ties coincide. In infinite dimension, the Hadamard and MS-differentiabilities do not
require X to be a normed space.
2) Part (iii) was given in [9, Chapter 9, sec. 2.2, p. 461, Thm. 2.1, p. 462–463]
in 2011. It is interesting to observe that the widely used Fréchet differentiability
f : X-strong → Y seems to be strictly stronger than the Hadamard differentiability
of f : X-strong → Y for which Df(x) : X-strong → Y is continuous.

Proof. (i) Let f be Fréchet differentiable at x. Given v ∈ X, pick arbitrary sequences
{vn} in X and {tn > 0} such that vn → v in X-weak and tn → 0. Then {vn} in X
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is bounded in norm and tnvn → 0 in X-strong. Consider the differential quotient

f(x + tnvn) − f(x)

tn
−Df(x) v

= ∥vn∥


f(x + tnvn) − f(x) −Df(x) tnvn

∥tn vn∥
, vn ̸= 0

0, vn = 0

 + Df(x) (vn − v).

The first term goes to zero in Y -strong and hence in Y -weak. The second term also
goes to zero since the continuous linear mapping Df(x) : X-strong → Y -strong is
also weakly continuous Df(x) : X-weak → Y -weak. Therefore, for all v

lim
w→v
t↘0

f(x + tw) − f(x)

t
= Df(x) v in Y -weak(2.8)

and, since the right-hand side is linear, f : X-weak → Y -weak is MS-differentiable.
(ii) Since f : X-weak → Y -strong is MS-differentiable, we have the sequential

continuity of Df(x) : X-weak → Y -strong by Theorem 2.8 (i). By contradiction,
assume that Df(x) : X-strong → Y -strong is not continuous. Then, for ε > 0, there
exists a sequence vn → v in X-strong such that ∥Df(x)vn∥ ≥ ε. But the sequence
vn → v is also weakly convergent, then Df(x)vn → Df(x)v in Y -strong and we get
a contradiction.

Let {vn} be a sequence in X such that ∥vn∥ → 0 and consider the differential
quotient

qn
def
=

f(x + vn) − f(x) −Df(x)vn
∥vn∥

.

The sequence wn = vn/∥vn∥ on the unit sphere has a subsequence, still denoted
{wn}, that converges to some w in X-weak. Then

qn =

[
f(x + tnwn) − f(x)

tn
−Df(x)w

]
+ Df(x)(wn − w).

The first term converges to 0 in Y -strong. Since Df(x) : X-weak → Y -strong
is sequentially continuous, by Theorem 2.8 (i) the second term also sequentially
converges to 0 in Y -strong. So given a sequence {vn} in X such that ∥vn∥ → 0,
there exists a subsequence {vnk

} such as qnk
→ 0 and, hence, the whole sequence

{qn} converges to 0 in Y -strong. Hence, f : X-strong → Y -strong is Fréchet
différentiable.

(iii) From part (ii) since X is reflexive and from part (i) since for Y = Rn the
strong and weak topologies coincide. □

2.2.2. Continuity of Differentiable Functions. The next question is the continuity
of a Hadamard differentiable function.

Theorem 2.11. Let X and Y be topological vector spaces, f : X → Y a function.
Assume that f is Hadamard differentiable at x ∈ X.

(i) If there exists a bounded neighborhood U(0) ∈ R in X, then f is sequentially
continuous at x.
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(ii) If X and Y are Fréchet spaces, then f is continuous at x and Df(x) : X →
Y is linear and continuous.

The proof of a more general version of this theorem will be given in Theorem 3.8.
There are topological vector spaces that are not metrizable, nor first countable

in which continuity and sequential continuity are equivalent and in which there are
bounded neighborhoods of the origin.

Example 2.12 (Horváth [20, Example 12.5, p. 164, Example 4.9, p. 90]). Given
an open set Ω ⊂ Rn, denote by K (Ω) the space of continuous functions in Ω
with compact support in Ω. Given a compact K in Ω, let K (K) be the space
of continuous functions with support in K endowed with the sup norm ∥f∥K,∞ =
maxx∈K |f(x)|. So the support of each function f is contained in some compact
subset K of Ω. The space K (Ω) is the union of the linear subspaces K (K) over
all compact K ⊂ Ω

K (Ω) = ∪ K⊂Ω
K compact

K (K), K (K) ↪→ K (Ω) injective.(2.9)

This space endowed with the finest locally convex topology making all injections
K (K) ↪→ K (Ω) continuous is a locally convex topological space which is Hausdorff
and complete.

A sequence converges in K (Ω) if and only if it is included in a space K (K)
and converges there; a function f : K (Ω) → R is continuous if and only if it
is continuous on every K (K) where there is equivalence between continuity and
sequential continuity. The space K (Ω) is not metrizable, nor first countable, but
being an inductive limit of the metric TVS K (K), sequential continuity of f :
K (Ω) → R is equivalent to continuity.

Another remark is that K (Ω) has bounded neighborhoods of the origin: a set
B is bounded in K (Ω) if and only if there exists a compact subset K of Ω and a
number µ > 0 such that all f ∈ B have their support in K and |f(x)| ≤ µ for all
x ∈ Ω and f ∈ B (cf. Horváth [20, p. 165]).

3. Semidifferentials in topological vector spaces

3.1. Fréchet Drops the Linearity of the Differential. Volterra [36] was the
first to have the idea to extend the field of application of the Differential Calculus
to Functional Analysis.7 In the early moments of the Calculus of variations, it was
already known to him and Gateaux ([17] in 1913 and [18] in his posthumous paper
of 1919 after his death in 1914) that some functions have directional derivatives in
all directions without being differentiable.

Definition 3.1. Let X and Y be topological vector spaces and f : X → Y a
function.

(i) f is Gateaux semidifferentiable at x ∈ X in the direction v ∈ X if

df(x; v)
def
= lim

t↘0

f(x + tv) − f(x)

t
exists in Y.(3.1)

7C’est Volterra qui eut le premier l’idée d’étendre le champ d’application du Calcul différentiel à
l’Analyse fonctionnelle. (quoted from Fréchet [15, p, 241]).



HADAMARD SEMIDIFFERENTIAL 1047

(ii) f is Gateaux semidifferentiable at x ∈ X if it is Gateaux semidifferentiable
at x ∈ X in all directions v ∈ X.

(iii) f is Gateaux differentiable at x ∈ X if f is Gateaux semidifferentiable at

x ∈ X and v 7→ Df(x)v
def
= df(x; v) : X → Y is linear.

In his 1937 paper Fréchet [15, p. 239] proposed to drop the condition that
v 7→ Df(x)v : Rn → Rm be linear in Definition 2.2 and to replace it by the
existence of a function v 7→ g(x; v) : Rn → Rm and he gives as an example ([15, p.
239]) the following homogeneous function f : R2 → R

f(x,y)
def
=

x

√
x2

x2 + y2
, (x,y) ̸= (0,0)

0, (x,y) = (0,0)

 , g((0,0),(v,w)) = f(v,w).

It is readily seen that such a function v 7→ g(x; v) must be homogeneous. If h is
an admissible trajectory, then, for all α ̸= 0, t 7→ hα(t) = h(αt) is also admissible
since hα(0) = x and h′α(0) = αh′(0): by definition

(f ◦ h)′ = g(x;h′(0)), (f ◦ hα)′ = g(x;h′α(0)) = g(x;αh′(0))

(f ◦ hα)′(0) = lim
t→0

f(h(αt)) − f(h(α0)

t
= α lim

t→0

f(h(αt)) − f(h(0))

αt

⇒ ∀v ∈ X, ∀α ∈ R, g(x;αh′(0)) = α g(x;h′(0)).

Since h′(0) ranges over all X, v 7→ g(x; v) : Rn → Rm is homogeneous.
Unfortunately, he does not pursue but he was very close to catch the Euclidean

norm n(x) = ∥x∥ in Rn which is not differentiable at the origin x = 0 and all the
continuous convex functions as we shall see later!

In spite of this, his new definition fails for the Euclidean norm n(x) at the origin:
given a trajectory h through 0 such that h′(0) exists and t ̸= 0

n(h(t)) − n(h(0))

t
=

∥h(t)∥ − ∥h(0)∥)

t
=

∥h(t) − h(0)∥
t

=
|t|
t

∥∥∥∥h(t) − h(0)

t

∥∥∥∥︸ ︷︷ ︸
→∥h′(0)∥

since |t|/t does not converge as t goes to 0. But, the idea of relaxing the linearity
was the right one. If, instead of using an admissible trajectory, he had used a
semitrajectory h : [0,τ) → Rn such that

h(0) = x and h′(0+)
def
= lim

t↘0

h(t) − h(0)

t
exists,

then, since h(0) = 0 and t > 0, the differential quotient becomes

n(h(t)) − n(h(0))

t
=

∥h(t)∥ − ∥h(0)∥
t

=
∥h(t) − h(0)∥

t
=

∥∥∥∥h(t) − h(0)

t

∥∥∥∥ ,
that goes to ∥h′(0+)∥ as t ↘ 0. So, the linear mapping Df(0) is replaced by the
positively homogeneous continuous mapping v 7→ g(0; v) = ∥v∥.
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3.2. From Differentials to Semidifferentials. In that spirit, we introduce the
following notion of Hadamard semidifferentiabilty that was missing to Fréchet in
1937. All the theorems of the previous section extend from differentiabilty to semid-
ifferentiability.

Definition 3.2. An admissible semitrajectory8 at x in a topological vector space
X is a function h : [0,τ) → X, for some τ > 0, such that

h(0) = x and h′(0+)
def
= lim

t↘0

h(t) − h(0)

t
exists in X,(3.2)

where h′(0+) is the semitangent to the trajectory h at h(0) = x.

Definition 3.3. Let X and Y be topological vector spaces and f : X → Y a
function.

(i) f is Hadamard semidifferentiable at x ∈ X in the direction v ∈ X if there
exists dHf(x; v) ∈ Y such that for all admissible semitrajectories h in X at
x such that h′(0+) = v, we have

(f ◦ h)′(0+)
def
= lim

t↘0

(f ◦ h)(t) − (f ◦ h)(0)

t
= dHf(x; v).(3.3)

(ii) f is Hadamard semidifferentiable at x ∈ X if there exists a function

v 7→ dHf(x; v) : X → Y(3.4)

such that for each admissible semitrajectory h in X at x,

(f ◦ h)′(0+) exists and (f ◦ h)′(0+) = dHf(x;h′(0+)).

(iii) f is Hadamard differentiable at x ∈ X if f is Hadamard semidifferentiable

at x and the function v 7→ Df(x)v
def
= dHf(x; v) : X → Y is linear.

Coming back to the Euclidean norm f(x) = ∥x∥

(f ◦ h)′(0+)
def
= lim

t↘0

∥h(t)∥ − ∥h(0)∥
t

=


x

∥x∥
· h′(0+)), x ̸= 0

∥h′(0+)∥, x = 0

 = g(x;h′(0+)),

where x · y denotes the inner product in Rn. The linear mapping is replaced by the
positively homogeneous and continuous function

v 7→ g(x; v)
def
=


x

∥x∥
· v, x ̸= 0,

∥v∥, x = 0.
(3.5)

In 1978 Penot [29] introduces the following definition which generalizes the notion
obtained in (2.4) to the semidifferential case for functions f : X → Z between
topological vector spaces X and Z, where Z is completely ordered.

Definition 3.4 (Penot [29, p. 250], 1978). Let X and Y be topological vector
spaces and f : X → Y a function.

8In 1973 Durdil [10] uses semitrajectories in his definition of Hadamard differentiability in normed
vector spaces, that is, he does not drop the linearity.
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(i) f is M-semidifferentiable9 at x ∈ X in the direction v ∈ X if

dMf(x; v)
def
= lim

w→v
t↘0

f(x + tw) − f(x)

t
exists in Y.(3.6)

(ii) f is M-semidifferentiable at x ∈ X if it is M-semidifferentiable at x ∈ X in
all directions v ∈ X.

(iii) f is M-differentiable at x ∈ X if f is M-semidifferentiable at x ∈ X and the

function v 7→ Df(x)v
def
= dMf(x; v) : X → Y is linear.

As in the differentiable case, we introduce the weaker sequential version.

Definition 3.5. Let X and Y be topological vector spaces, f : X → Y , and x ∈ X.

(i) f is MS-semidifferentiable at x in the direction v ∈ X if there exists
dsMf(x; v) ∈ Y such that for each sequence {vn} converging to v,

lim
vn→v
t↘0

f(x + tvn) − f(x)

t
= dsMf(x; v)(3.7)

(ii) f is MS-semidifferentiable at x if it is MS-semidifferentiable at x ∈ X in all
directions v ∈ X.

(iii) f is MS-differentiable at x if f is MS-semidifferentiable at x and the function

v 7→ Df(x)v
def
= dsMf(x; v) : X → Y is linear.

Theorem 3.6. Let X and Y be topological vector spaces, f : X → Y a function,
and x ∈ X.

(i) The function f is MS-semidifferentiable at x in the direction v if and only
if it is Hadamard semidifferentiable at x in the direction v. In particular,
dHf(x; v) = dsMf(x; v).

(ii) If, in addition, X is a Fréchet space, then the notions of Hadamard, MS-,
and M-semidifferentiability coincide.

Proof. (i) (⇒) Let h be an arbitrary admissible semitrajectory at x in the direction
h′(0+) = v. We want to prove that for any sequence {tn > 0} converging to 0

f(h(tn)) − f(h(0))

tn
→ dsMf(x;h′(0+)) = dsMf(x; v).

Associate with {tn} the sequence

vn
def
=

h(tn) − h(0)

tn
→ h′(0+) = v.

Since f is M-semidifferentiable at x, then

f(h(tn)) − f(h(0))

tn
=

f(x + tnvn) − f(x)

tn
→ dsMf(x; v),

f is Hadamard semidifferentiable at x, and dHf(x; v) = dsMf(x; v).

9He uses the terms M-semi-dérivable and M-dérivable in [29]. However, in his book [30, Chapter
2] in 2013 he uses the terms directional derivative at x in the direction v ∈ X and directionally
differentiable at x if it has a directional derivative at x in all directions v ∈ X for a function
f : X → Y between two normed spaces.
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Conversely, let {vn} be a sequence converging to v and {tn > 0} a strictly de-
creasing sequence converging to 0. Define the admissible semitrajectory

h(t)
def
= x + tvn, tn+1 < t ≤ tn, h(0) = x

⇒ h(t) − h(0)

t
= vn, tn+1 < t ≤ tn ⇒ h′(0+) = v.

Then for tn+1 < t ≤ tn

f(x + tnvn) − f(x)

t
=

f(h(tn)) − f(h(0))

t
→ dHf(x; v)

and f is MS-semidifferentiable at x in the direction v.
(ii) By contradiction. If f is not M-semidifferentiable, there exists W (0) ∈ R

such that for each n ≥ 1, there exist tn, 0 < tn < 1/n, and vn, ρ(vn,v) < 1/n, such
that

f(x + tnvn) − f(x)

tn
− dMf(x; v) /∈ W (0),

where ρ is the metric in X. Since the sequences {tn} and {vn} are convergent to 0
and v, this contradicts the MS-differentiability. □

The Hadamard semidifferentiability enjoys all the nice properties of the classical
finite dimensional differential calculus including the chain rule.

Theorem 3.7. Let X and Y be topological vector spaces and f : X → Y a function.

(i) If f is Hadamard semidifferentiable at x, then v 7→ dHf(x; v) : X → Y is
positively homogeneous and sequentially continuous.

(ii) If f1 and f2 are Hadamard semidifferentiable at x ∈ X in the direction
v ∈ X, then for all α and β in R,

dH(αf1 + βf2)(x; v) = αdHf1(x; v) + β dHf2(x; v).(3.8)

(iii) (Chain rule) Let X, Y , Z be topological vector spaces, g : X → Y and
f : Y → Z be functions such as g is Hadamard semidifferentiable at x in
the direction v ∈ X and f is Hadamard semidifferentiable at g(x) in the
direction dHg(x; v). Then f ◦ g is Hadamard semidifferentiable at x in the
direction v ∈ X and

dH(f ◦ g)(x; v) = dHf(g(x); dHg(x; v)).(3.9)

Proof. (i) By definition of dHf(x; v), we have the positive homogeneity. As for the
sequential continuity, we use the equivalence between dHf and dsMf from Theorem
3.6(i). Let W (0) ∈ R in Y . There exists a closed neighbourhood F (0) ∈ R
contained in W (0) (cf. [20, Prop. 3, p. 84]). Let {vn} be a sequence converging to
v. By definition of dsMf(x; v), there exists δ > 0 and N such that

∀t, 0 < t < δ, ∀n > N,
f(x + tvn) − f(x)

t
∈ dsMf(x; v) + F (0).

Letting t go to zero

∀n > N, dsMf(x; vn) ∈ dsMf(x; v) + F (0) ⊂ dsMf(x; v) + W (0).(3.10)

This proves the sequential continuity of v 7→ dsMf(x; v) : X → Y .
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(ii) Let h be an admissible semitrajectory such that h′(0+) = v. For any neigh-
borhood W (0) ∈ R in Y , there exists a neighbourhood U(0) ∈ R such that
U(0) + U(0) ⊂ W (0). If f1 and f2 are Hadamard semidifferentiable at x, there
exists δ > 0 such that

∀t, 0 < t < δ,
fi(h(t)) − fi(h(0))

t
∈ dHfi(x; v) + U(0), i = 1, 2.

So, adding the two, for all t, 0 < t < δ,

(f1 + f2)(h(t)) − (f1 + f2)(h(0))

t
∈ dHf1(x; v) + dHf2(x; v) + W (0)

⇒ dH(f1 + f2)(x; v) = dHf1(x; v) + dHf2(x; v).

For α ̸= 0,

(αf)(h(t)) − (αf)(h(0))

t
= α

f(h(t)) − f(h(0))

t
⇒ dH(αf)(x; v) = αdHf(x; v).

Finally, the mapping f 7→ dHf(x; v) is linear.
(iii) Let h be an admissible semitrajectory in X such that h′(0+) = v. Since

dHg(x; v) exists,

lim
t↘0

g(h(t)) − g(h(0))

t
= dHg(x; v)(3.11)

and g ◦ h is an admissible semitrajectory in Y at g(x) such that (g ◦ h)′(0+) =
dHg(x; v). By repeating the same argument, since dHf(g(x); dHg(x; v)) exists

lim
t↘0

(f ◦ g)(h(t)) − (f ◦ g)(h(0))

t

= lim
t↘0

f((g ◦ h)(t))) − f((g ◦ h)(0))

t
= dHf(g(x); dHg(x; v))

(3.12)

and dH(f ◦ g)(x; v) = dHf(g(x); dHg(x; v)). □

The next question is the continuity of a Hadamard semidifferentiable function.

Theorem 3.8. Let X and Y be topological vector spaces, f : X → Y a function.
Assume that f is Hadamard semidifferentiable at x ∈ X.

(i) If there exists a bounded neighborhood U(0) ∈ R in X, then f is sequentially
continuous at x.

(ii) If X is a Fréchet space, then v 7→ dHf(x; v) : X → Y is positively homoge-
neous and continuous. If X and Y are Fréchet spaces, then f is continuous
at x.

Proof. (i) Let U ∈ R be the bounded neighborhood of 0. We proceed by contra-
diction. Assume that there is a convergent sequence xn → x in X such that f(xn)
does not converge to f(x) in Y . So, there exists a neighborhood W of 0 in Y such
that for each k ≥ 1 there exists nk > max{k, nk−1} such that

xnk
− x ∈ 1

k2
U and f(xnk

) − f(x) /∈ W.(3.13)
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Consider the sequence

vk
def
=

xnk
− x

1/k
∈ 1

k
U.

This sequence converges to 0. Since U is bounded, for each V ∈ R, there exists
αV > 0 such that U ⊂ kV for all k ≥ αV . Therefore, for each V ,

∃αV > 0, ∀k > αV , vk =
xnk

− x

1/k
∈ V ⇒ vk → 0.

Since f is MS-semidifferentiable at x, for the above neighborhood W , there exists
δ, 0 < δ < 1, and K ≥ 1 such that

∀t, 0 < t < δ, ∀k > K,
f(x + tvk) − f(x)

t
− dHf(x; 0) ∈ W.

Since dHf(x; 0) = 0, for K̄ > max{K, 1/δ},

∀k > K̄,
f(xnk

) − f(x)

1/k
=

f
(
x + 1

kvk
)
− f(x)

1/k
∈ W

⇒ ∀k > K̄, f(xnk
) − f(x) ∈ 1

k
W ⊂ W

and this contradicts our initial conjecture.
(ii) In a Fréchet space, continuity and sequential continuity coincide and there is

a bounded neighborhood of the origin. So, the continuity of v 7→ dMf(x; v) follows
from its sequentially continuity of Theorem 3.7 (i) and the continuity of f at x
follows from part (i). □

3.3. Lipschitz Functions and Gateaux Semidifferentiability. Lipschitz con-
tinuous functions enjoy the nice property that, if they are Gateaux semidifferen-
tiable, they are M-semidifferentiable.

Definition 3.9. Let X and Y be normed spaces. A function f : X → Y is Lipschitz
continuous at x ∈ X if there exists a constant c(x) > 0 and a ball Br(x) such that

∀y,z ∈ Br(x), ∥f(y) − f(z)∥Y ≤ c(x) ∥y − z∥X .(3.14)

A function f : X → Y is Lipschitz continuous in a subset U of X if there exists a
constant c(U) > 0 such that

∀y,z ∈ U, ∥f(y) − f(z)∥Y ≤ c(U) ∥y − z∥X .(3.15)

Theorem 3.10. Let X and Y be normed spaces, f : X → Y be a function which
is Lipschitz continuous at x ∈ X. If f is Gateaux semidifferentiable at x in the
direction v (that is, df(x; v) exists), then f is M-semidifferentiable10 at x in the
direction v and dMf(x; v) = df(x; v).

Proof. Let c(x) be the Lipschitz constant of f at x for the ball Br(x) of radius r.
For w → v and t ↘ 0, tw → 0, that is, there exists δ > 0 such that

∀t, 0 < t < δ, ∀w ∈ Bδ(v), x + tw ∈ Br(x).

10Hence, Hadamard semidifferentiable at x in the direction v and dHf(x; v) = df(x; v).
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Therefore,

f(x + tw) − f(x)

t
− df(x; v)

=
f(x + tv) − f(x)

t
− df(x; v) +

f(x + tw) − f(x + tv)

t

⇒
∥∥∥∥f(x + tw) − f(x)

t
− df(x; v)

∥∥∥∥
≤

∥∥∥∥f(x + tv) − f(x)

t
− df(x; v)

∥∥∥∥ + c(x) ∥w − v∥.

As w → v and t ↘ 0, we get dMf(x; v) = df(x; v). □

3.4. Convex Functions. In this section we show that, in a locally convex topo-
logical vector space, all convex functions continous (resp. sequentially continuous)
at x are M- (resp. Hadamard) semidifferentiable at x. In particular, the norm is
M-semidifferentiable.

Definition 3.11. Let U be a convex subset of a locally convex topological vector
space X. A function f : U → R is convex if

∀x,y ∈ U, ∀λ ∈ (0,1), f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).(3.16)

Theorem 3.12. Let X be a locally convex topological vector space and U a convex
open subset of X. A function f : U → R is convex if and only if

(i) for all y ∈ U , f is Gateaux semidifferentiable at y, that is, df(y; v) exists in
all directions v ∈ X at all points y ∈ U ,

∀y ∈ U, ∀v ∈ X, df(y; v) + df(y;−v) ≥ 0,(3.17)

∀x,y ∈ U, f(y) ≥ f(x) + df(x; y − x),(3.18)

(ii) and for each y ∈ U , the function

v 7→ df(y; v) : X → R(3.19)

is positively homogeneous, convex, and subadditive, that is,

∀v,w ∈ X, df(y; v + w) ≤ df(y; v) + df(y;w).(3.20)

Corollary 3.13. In a normed space, the norm is M-semidifferentiable.

Proof. (⇒) (i) U is a convex neighbourhood of each point x ∈ U .
(a) Existence. Given v ∈ U , there exists α0, 0 < α0 < 1, such that x − αv ∈ U ,
0 < α ≤ α0, and there exists θ0, 0 < θ0 < 1, such that x + θv ∈ U , 0 < θ ≤ θ0. Fix
α, 0 < α ≤ α0. We first show that

∀θ, 0 < θ < θ0,
f(x) − f(x− αv)

α
≤ f(x + θv) − f(x)

θ
.(3.21)

Indeed, x can be written as

x =
α

α + θ
(x + θv) +

θ

α + θ
(x− αv)

and, by convexity,

f(x) ≤ α

α + θ
f(x + θv) +

θ

α + θ
f(x− αv)
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or, by rearranging,

θ

θ + α
[f(x) − f(x− αv)] ≤ α

θ + α
[f(x + θv) − f(x)],

and hence we get (3.21). Define

φ(θ)
def
=

f(x + θv) − f(x)

θ
, 0 < θ < θ0,

and show that φ is monotone increasing. For all θ1 and θ2, 0 < θ1 < θ2 < θ0,

f(x + θ1v) − f(x) = f

(
θ1
θ2

(x + θ2v) +

(
1 − θ1

θ2

)
x

)
− f(x)

≤ θ1
θ2

f(x + θ2v) +

(
1 − θ1

θ2

)
f(x) − f(x) ≤ θ1

θ2
[f(x + θ2v) − f(x)]

⇒ φ(θ1) ≤ φ(θ2).

Since the function φ(θ) is decreasing with θ and bounded below for θ ∈ (0, θ0),
the limit as θ goes to 0 exists. By definition, it coincides with the semidifferential
df(x; v).
(b) Given v ∈ X, there exists α0, 0 < α0 < 1, such that

f(x) − f(x− αv)

α
≤ df(x; v), 0 < α ≤ α0.

From part (i) for all v ∈ X, df(x; v) and df(x;−v) exist. Letting α go to 0, we get

−df(x;−v) = − lim
α↘0

f(x− αv) − f(x)

α
≤ df(x; v)

and the inequality df(x;−v) + df(x; v) ≥ 0.
As f is convex on U , for x, y ∈ U and θ ∈ (0,1]

f(θy + (1 − θ)x) ≤ θf(y) + (1 − θ)f(x)

⇒ f(x + θ(y − x)) − f(x) ≤ θ [f(y) − f(x)].

By dividing by θ and going to the limit as θ goes to 0, we get

df(x; y − x) ≤ f(y) − f(x).

(ii) By definition, v 7→ df(x; v) is clearly positively homogeneous. We next show
that it is convex:, that is, for all α, 0 ≤ α ≤ 1, and v,w ∈ Rn,

df(x;αv + (1 − α)w) ≤ αdf(x; v) + (1 − α)df(x;w).

Since U is open and convex, for each x ∈ U

∃θ0, 0 < θ0 < 1, such that ∀θ, 0 < θ ≤ θ0, x + θv ∈ U and x + θw ∈ U

⇒ ∀0 ≤ α ≤ 1, x + θ(αv + (1 − α)w) = α(x + θv) + (1 − α)(x + θw) ∈ U,

and by convexity of f ,

f(x + θ(αv + (1 − α)w)) = f(α[x + θv] + (1 − α)[x + θw])

≤ αf(x + θv) + (1 − α)f(x + θw)

⇒ [f(x + θ(αv + (1 − α)w)) − f(x)]

≤ α [f(x + θv) − f(x)] + (1 − α) [f(x + θw) − f(x)] .
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Dividing by θ and going to the limit as θ goes to 0, we get the convexity

df(x;αv + (1 − α)w) ≤ αdf(x; v) + (1 − α)df(x;w).

Combining the positive homogeneity and the convexity,

df(x; v + w) = df

(
x;

1

2
2v +

1

2
2w

)
≤ 1

2
df(x; 2v) +

1

2
df(x; 2w) = df(x; v) + df(x;w),

we get the subadditivity.
(⇐) Conversely, for λ ∈ (0,1) and x,y ∈ U

f(x) − f(λx + (1 − λ)y) ≥ df(λx + (1 − λ)y; (1 − λ)(y − x))

= (1 − λ)df(λx + (1 − λ)y; y − x)

f(y) − f(λx + (1 − λ)y) ≥ df(λx + (1 − λ)y;λ(x− y))

= λdf(λx + (1 − λ)y;x− y).

Multiply the first inequality by λ and the second by 1 − λ and sum up:

λf(x) + (1 − λ)f(y) − f(λx + (1 − λ)y)

≥ λ (1 − λ) [df(λx + (1 − λ)y;x− y) + df(λx + (1 − λ)y; y − x)] ≥ 0

and f is convex. □
Proof of Corollary 3.13. By using the triangle inequality,

|∥y∥ − ∥x∥| ≤ ∥y − x∥,
the norm n(x) = ∥x∥ is uniformly Lipschitz continuous in X with constant one. It
is also convex since, for λ ∈ (0,1),

∥λx + (1 − λ)y∥ ≤ ∥λx∥ + ∥(1 − λ)y∥ = λ∥x|| + (1 − λ)∥y∥.
So, by Theorem 3.12, dn(x; v) exists for all x and v and, by Theorem 3.10, it is
M-semidifferentiable. □

The next theorem connects continuity and semidifferentiability.

Theorem 3.14. Let X be a locally convex topological vector space, x ∈ X, and
f : V (x) → R a convex function in a convex neighborhood V (x) of x ∈ X.

(i) If f is continuous at x, then f is M-semidifferentiable at x.
(ii) If f is sequentially continuous at x, then f is Hadamard semidifferentiable

at x.
(iii) If X is a Fréchet space, then f is continuous at x if and only if f is

Hadamard semidifferentiable at x.

Proof. (i) Since, f is continuous at x, for each ε > 0, there exists a convex neigh-
borhood V (x) of x such that

∀y ∈ V (x), |f(y) − f(x)| < ε/2.

Let V (0) = V (x)−x be the corresponding neighborhood of 0 in R. The symmetric
W (0) = V (0)∩ (−V (0)) is also a neighborhood and there exists a symmetric convex
neighborhood U(0) such that U(0) + U(0) ⊂ W (0).
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From Theorem 3.12, for all v ∈ U(0) and y ∈ x + U(0)

df(y; v) ≤ f(y + v) − f(y) ≤ |f(y + v) − f(x)| + |f(y) − f(x)|
− df(y; v) ≤ df(y;−v) ≤ f(y − v) − f(y) ≤ |f(y − v) − f(x)| + |f(y) − f(x)|.

Since y ± v − x = y − x± v ∈ U(0) + U(0) ⊂ W (0)

|df(y; v)| < ε/2 + ε/2 < ε

⇒ ∀y ∈ x + U(0), ∀v ∈ U(0), |df(y; v)| < ε
(3.22)

and (y,v) 7→ df(x; v) : (x + W (0)) ×X → R is continuous at (y,v) = (x,0).
Given v ∈ X, for all w ∈ v + U(0)

f(x + tw) − f(x)

t
− df(x; v) ≥ df(x;w) − df(x; v)

≥ df(x;w) − (df(x;w) + df(x; v − w))

≥ −|df(x; v − w)|.

Therefore, since df(x; 0) = 0, by continuity of v 7→ df(x; v) at v = 0,

lim inf
w→v
t↘0

f(x + tw) − f(x)

t
− df(x; v) ≥ lim

w→v
−df(x; v − w) = 0.

In the other direction,

f(x + tw) − f(x)

t
− df(x; v)

=
f(x + tv) − f(x)

t
− df(x; v) +

f(x + tw) − f(x + tv)

t

≤
[
f(x + tv) − f(x)

t
− df(x; v)

]
− df(x + tw; v − w).

So, there exists δ, 0 < δ < 1, such that

∀t, 0 < t < δ,

∣∣∣∣f(x + tv) − f(x)

t
− df(x; v)

∣∣∣∣ < ε/2.

For the second term, use the continuity (3.22) at (x,0) and choose N(0) ∈ R such
that N(0)+N(0) ⊂ U(0). For w−v ∈ N(0) and 0 < t < δ < 1, tw = tv+t(w−v) ∈
tv + δN(0) ⊂ tv +N(0) and, since N(0) is absorbing, there exists δ̄, 0 < δ̄ < δ such
that for all 0 < t < δ̄, tv ∈ N(0). Therefore for t < δ̄ and w ∈ v + N(0), tw ∈ U(0)
and

f(x + tw) − f(x)

t
− df(x; v) ≤ ε

2
+ ε =

3

2
ε

⇒ lim sup
w→v
t↘0

f(x + tw) − f(x)

t
− df(x; v) ≤ 3

2
ε.

Finally,

df(x; v) ≤ lim inf
w→v
t↘0

f(x + tw) − f(x)

t
≤ lim sup

w→v
t↘0

f(x + tw) − f(x)

t
≤ df(x; v),

dHf(x; v) = df(x; v), and f is M-semidifferentiable at x.
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(ii) Same proof as in part (i) with a sequence {vn} converging to v. Then use the
equivalence of sequential M-differentiability and Hadamard semidifferentiability.

(iii) In a Fréchet space all the previous notions of semidifferentiability coincide.
From Theorem 3.8 (ii), if f is Hadamard semidifferentiable, then f is continuous at
x. □

4. Semidifferentials for functions on unstructured sets

For functions defined on a smooth embedded submanifold of Rn of dimension
d < n or an unstructured subset A of a TVS X, the Hadamard semidifferential
is the natural choice over the M-semidifferential since it uses semitrajectories that
do not require some algebraic structure on A. For a subset A of X, the tangent
space at interior points of A is the whole space X, but at the boundary ∂A the
tangent space will generally be only a cone. For instance, for a smooth embedded
submanifold of dimension d < n, A = ∂A and all points of A are boundary points
where the tangent space is Rd.

The following extension of the notion of Hadamard semidifferentiability to un-
structured subsets of an ambiant topological vector space without introducing local
bases or coordinate spaces is different from the approach of Michal ([22, 1939], [23,
1940], [24, 1945], [25, 1947]) and Fréchet [16, 1948] who independently extended
their notions to functions defined on topological Abelian groups.

Definition 4.1. Let A be a non-empty subset of a topological vector space X. An
admissible semitrajectory at x ∈ A in A is a function h : [0,τ) → A such that

h(0) = x and h′(0+)
def
= lim

t↘0

h(t) − h(0)

t
exists in X,(4.1)

where h′(0+) is the semitangent to the trajectory h in A at h(0) = x.

For x ∈ intA and t small, h(t) = x + tv is an admissible semitrajectory such
that h′(0+) = v and all directions in X are admissible. For x ∈ ∂A, the tangent
space to A might not be the whole space X. Several tangent cones are available
in the literature such as the following one associated with the Viability Theorem of
Nagumo [27] in 1942.

Definition 4.2 (Bouligand [3], 1930). Let A be a non-empty subset of a Fréchet
space X. The Bouligand contingent cone to A at x ∈ A is defined as

TA(x)
def
=

{
v ∈ X : ∃{tn ↘ 0}, ∃{xn} ⊂ A such that lim

n→∞

xn − x

tn
= v

}
.

TA(x) is a closed cone11 at 0, TA(x) = TA(x), and

TA(x) =

{
v ∈ X : lim inf

t↘0

dA(x + tv)

t
= 0

}
.

TX(x) = X. If A is convex, TA(x) = {λ(A− x) : λ ≥ 0} is a closed convex cone at
0.

For a closed sufficiently smooth embedded submanifold A of X = Rn of dimension
d < n, Rn\A = Rn, A = ∂A, and the smoothness insures that, at each point of

11A cone C at 0 in X is a subset of X such that for all λ > 0 and all x ∈ C, λx ∈ C.
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A, the tangent space is a d-dimensional linear subspace. This is illustrated below
in Figure 1 for a smooth curve A in R2. But, the linearity of TA(x) puts a severe

Figure 1. Tangent h′(0) to the trajectory h in A at the point h(0) = x.

restriction on the choice of sets A. For instance, the requirement that TA(x) be
linear rules out a curve in R2 with a kink at x as shown in the Figure 2.

Figure 2. Half-tangent h′(0+) to the semitrajectory h in A at the
point h(0) = x.

It turns out that the following tangent cone is more relevant than the Bouligand
contingent cone TA(a) for the Hadamard semidifferentiability.

Definition 4.3. Let A be a non-empty subset of a topological vector space X. The
adjacent or intermediary tangent cone12 to A at x ∈ A is defined as

T ♭
A(x)

def
=

{
v ∈ X : ∀{tn ↘ 0}, ∃{xn} ⊂ A such that lim

n→∞

xn − x

tn
= v

}
.

T ♭
X(x) = X. If A is convex, TA(x) = T ♭

A(x) = {λ(A− x) : λ ≥ 0}.13 If X is a

Fréchet space, T ♭
A(x) is closed, T ♭

A
(x) = T ♭

A(x), and

T ♭
A(x) =

{
v ∈ X : lim

t↘0

dA(x + tv)

t
= 0

}
;

T ♭
A(x) is directly related to the notion of admissible semitrajectories in A.

Theorem 4.4. Let A be a subset of a topological vector space X. For x ∈ A,

T ♭
A(x) =

{
h′(0+) : h an admissible semitrajectory in A at x

}
.(4.2)

12We use the terminology of Aubin and Frankowska [1, Definition 4.1.5, pp. 126–129]. See [1,

Figure 4.4, p. 161] for an example in dimension two where TA(x) ̸= T ♭
A(x).

13Aubin and Frankowska [1, Thm. 4.2.1, p. 138].
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Proof. Let h be an admissible semitrajectory at x in A such that h′(0+) = v. For
any sequence {tn ↘ 0}, choose xn = h(tn) ∈ A. Then

xn − x

tn
=

h(tn) − h(0)

tn
→ v

and v ∈ T ♭
A(x). Conversely, by definition of an element v ∈ T ♭

A(x), for the sequence
tn = 1/n, n ≥ 1, there exists a sequence {xn} ⊂ A such that

lim
n→∞

xn − x

tn
= v.

Define the semitrajectory h : [0,1] → A as follows:

h(t)
def
= xn, tn+1 < t ≤ tn, n ≥ 1, h(0)

def
= x.(4.3)

As t ↘ 0, n → ∞, xn → x, and h(t) → x. For tn+1 < t ≤ tn

h(t) − x

t
− v =

xn − x

t
− v =

tn
t

[
xn − x

tn
− v

]
+

(
tn
t
− 1

)
v,

where

1 ≤ tn
t

< 1 +
1

n
, 0 < n

(
tn
t
− 1

)
< 1.

For any V (0) ∈ R, there exists U(0) ∈ R such that U(0) + U(0) + U(0) ⊂ V (0).
There exists N such that for all n > N

xn − x

tn
− v ∈ U(0).

Since U(0) is absorbing, there exists α > 0 such that λv ∈ U(0) for all |λ| ≥ α. So,
for N̄ ≥ max{α,N}, n ≥ N̄ , tn+1 < t ≤ tn,

tn
t

[
xn − x

tn
− v

]
∈
(

1 +
1

n

)
U(0),

(
tn
t
− 1

)
v ∈

(
tn
t
− 1

)
nU(0) ⊂ U(0)

⇒ ∀t, 0 < t ≤ tN̄ ,
h(t) − x

t
− v ∈ U(0) + U(0) + U(0) ⊂ V (0).

Hence, h is an admissible semitrajectory in A at x such that h′(0+) = v. □
In that context it is natural to introduce the following notions.

Definition 4.5. (i) A subset A of X is tangentially semiregular14 at a point

x ∈ A if TA(x) = T ♭
A(x) ̸= {0}.

(ii) A subset A of X is tangentially regular at a point x ∈ A if it is tangentially

semiregular at x and T ♭
A(x) is a linear subspace of X.

Remark 4.6. Any nonempty convex subset of Rn is tangentially semiregular. An
open set A with a boundary ∂A of class C(1) is tangentially regular. Similarly,
a closed sufficiently smooth embedded submanifold A of Rn of dimension d < n
is tangentially regular. Indeed, Rn\A = Rn, A = ∂A only contains boundary
points, and the smoothness insures that, at each point of A, the tangent space is a
d-dimensional linear subspace of Rn.

14For an example where the two cones are different see [1, Figure 4.4, p. 161].
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We now have all the elements to extend the definition of the Hadamard semidif-
ferential to a subset of a TVS.

Definition 4.7. Let X and Y be topological vector spaces, A, ∅ ̸= A ⊂ X, and
f : A → Y .

(i) The function f is Hadamard semidifferentiable at x ∈ A in the direction v ∈
T ♭
A(x) if there exists g(x,v) ∈ Y such that, for all admissible semitrajectories

h in A at x such that h′(0+) = v,

(f ◦ h)′(0+)
def
= lim

t↘0

f(h(t)) − f(h(0))

t
= g(x,v).(4.4)

The element g(x,v) will be denoted dHf(x; v).
(ii) f is Hadamard semidifferentiable at x ∈ A if f is Hadamard semidifferen-

tiable at x in all directions v ∈ T ♭
A(x).

(iii) f is Hadamard differentiable at x ∈ A if T ♭
A(x) is a linear subspace, f is

Hadamard semidifferentiable at x ∈ A, and the function v 7→ dHf(x; v) :

T ♭
A(x) → Y is linear in which case it will be denoted Df(x).

The Hadamard semidifferentiability enjoys all the nice properties of the classical
finite dimensional differential calculus.

Theorem 4.8. Let X and Y be topological vector spaces and A, ∅ ̸= A ⊂ X.

(i) If f : A → Y is Hadamard semidifferentiable at x ∈ A in the direction v ∈
T ♭
A(x), then for all admissible semitrajectory h in A such that h′(0+) = v,

f ◦h is an admissible trajectory in f(A) such that (f ◦h)′(0+) = dHf(x; v) ∈
T ♭
f(A)(f(x)). The mapping

v 7→ dHf(x; v) : T ♭
A(x) → T ♭

f(A)(f(x)) ⊂ Y(4.5)

is sequentially continuous for the induced topologies.
(ii) If f1 : A → Y and f2 : A → Y are Hadamard semidifferentiable at x ∈ A in

the direction v ∈ T ♭
A(x), then for all α and β in R,

dH(αf1 + βf2)(x; v) = αdHf1(x; v) + (1 − α) dHf2(x; v),(4.6)

and αf1 + βf2 is Hadamard semidifferentiable at x in the direction v.
(iii) (Chain rule) Let X, Y , Z be topological vector spaces, A ⊂ X, g : A → Y ,

and f : g(A) → Z be functions such as g is Hadamard semidifferentiable

at x in the direction v ∈ T ♭
A(x) and f is Hadamard semidifferentiable at

g(x) in g(A) in the direction dHg(x; v). Then dHg(x; v) ∈ T ♭
g(A)(x), f ◦ g is

Hadamard semidifferentiable at x in the direction v ∈ T ♭
A(x), and

dH(f ◦ g)(x; v) = dHf(g(x); dHg(x; v)).(4.7)

Remark 4.9. It is remarkable to obtain properties from classical differential geom-
etry without introducing coordinate spaces in the terminology of Michal [22], charts,
local bases, or Christoffel symbols. X and Y play the role of ambiant spaces where
the cones of semitangents live.
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Proof. (i) We cannot reproduce the proof of Theorem 3.7 (i) since there is no
structure on A. We must work with semitrajectories. For h : [0,τ ] → A, then

f ◦ h : [0,τ ] → f(A) and, by definition, v 7→ dHf(x; v) : T ♭
A(x) → T ♭

f(A)(x). Let

W0 ∈ R and V0 ∈ R in X be neighborhoods of the origin in Y and X. There exists
W ∈ R and V ∈ R such that W + W ⊂ W0 and V + V ⊂ V0. Let vn → v be a
converging sequence in T ♭

A(x). Associate with each vn the admissible trajectories
hn in A at x such that h′n(0+) = vn.

In a first step, we construct a sequence tn → 0 such that 0 < tn+1 < tn:
-∃t1 > 0 such that for all 0 < t ≤ t1

h1(t) − h1(0)

t
− h′1(0

+) ∈ V,
f(h1(t)) − f(h1(0))

t
− dHf(x; v1) ∈ W ;

-∃tn > 0, tn < min{tn−1, 1/n} such that for all 0 < t ≤ tn

hn(t) − hn(0)

t
− h′n(0+) ∈ V,

f(hn(t)) − f(hn(0))

t
− dHf(x; vn) ∈ W.

In a second step, we construct an admissible trajectory h : [0, t1] → A at x such
that h′(0+) = v as follows:

h(t)
def
= hn(t), tn+1 < t ≤ tn, h(0) = x.

There exists N such that for all n > N , vn − v ∈ V and, hence,

tn < t ≤ tn−1,
h(t) − h(0)

t
− v =

hn(t) − hn(0)

t
− vn + vn − v ∈ V + V ⊂ V0.

Therefore, for each V0, there exists tN > 0 such that

0 < t ≤ tN ,
h(t) − h(0)

t
− v ∈ V0 ⇒ h′(0+) = v.

Since h is an admissible trajectory in A at x, there exists δ such that

∀t, 0 < t < δ,
f(h(t)) − f(h(0))

t
− dHf(x; v) ∈ W.

There exists N > 1 such that tN < δ and for all n > N , tn < δ. But, by construction,
for each n > N ,

f(hn(tn)) − f(hn(0))

tn
− dHf(x; vn) ∈ W

and, for each W0, there exists N such that for all n > N

dHf(x; vn) − dHf(x; v) ∈ W + W ⊂ W0.

This proves the sequential continuity of the semidifferential.
(ii) Let h be an admissible trajectory in A such that h′(0+) = v ∈ T ♭

A(x). For
any neighborhood W (0) ∈ R in Y , there exists a neighbourhood U(0) ∈ R such
that U(0) +U(0) ⊂ W (0). If f1 and f2 are Hadamard semidifferentiable at x, there
exists δ > 0 such that

∀t, 0 < t < δ,
fi(h(t)) − fi(h(0))

t
∈ dHfi(x; v) + U(0).
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So, adding the two, for all t, 0 < t < δ,

(f1 + f2)(h(t)) − (f1 + f2)(h(0))

t
∈ dHf1(x; v) + dHf2(x; v) + W (0)

⇒ dH(f1 + f2)(x; v) = dHf1(x; v) + dHf2(x; v).

For α ̸= 0,

(αf)(h(t)) − (αf)(h(0))

t
= α

f(h(t)) − f(h(0))

t
⇒ dH(αf)(xv) = αdHf(x; v).

Finally, the mapping f 7→ dHf(x; v) is linear.

(iii) Let h be an admissible semitrajectory in A such that h′(0+) = v ∈ T ♭
A(x).

Since dHg(x; v) exists,

lim
t↘0

g(h(t)) − g(h(0))

t
= dHg(x; v)(4.8)

and g ◦ h is an admissible semitrajectory in g(A) at g(x) such that (g ◦ h)′(0+) =

dHg(x; v) ∈ T ♭
g(A)(g(x)). By repeating the same argument, since dHf(g(x); dHg(x; v))

exists

lim
t↘0

(f ◦ g)(h(t)) − (f ◦ g)(h(0))

t

= lim
t↘0

f((g ◦ h)(t))) − f((g ◦ h)(0))

t
= dHf(g(x); dHg(x; v))

(4.9)

and dH(f ◦ g)(x; v) = dHf(g(x); dHg(x; v)). □
The next question is the continuity from the semidifferentiability.

Theorem 4.10. Let X and Y be topological vector spaces, A a non-empty subset
of X, and f : A → Y a function. Assume that f is Hadamard semidifferentiable at
x ∈ A.

(i) If there exists a bounded neighborhood U(0) ∈ R in X, then f is sequentially
continuous15 at x in A for the induced topology on A.

(ii) If X is a Fréchet space, then v 7→ dHf(x; v) : T ♭
A(x) → T ♭

f(A)(f(x)) is

positively homogeneous and continuous for the induced topologies. If X and
Y are Fréchet spaces, then f is continuous at x.

Proof. (i) Let U ∈ R be the bounded neighborhood of 0. By contradiction. Assume
that there is a convergent sequence xn → x in A such that f(xn) does not converge
to f(x) in Y . So, there exists a neighborhood W of 0 in Y such that for each k ≥ 1
there exists nk > max{k, nk−1} such that

xnk
− x ∈ 1

k2
U and f(xnk

) − f(x) /∈ W.(4.11)

15Note the following natural equivalence for the semicontinuity in terms of semitrajectories. Let X
and Y be topological spaces and A a subset of X. A function f : A → Y is sequentially continuous
at a ∈ A if and only if for all semitrajectories h : [0,τ) → A

lim
t↘0

h(t) = a ⇒ lim
t↘0

f(h(t)) = f(a),(4.10)

where A is endowed with the topology induced by X.
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Consider the sequence
xnk

− x

1/k
∈ 1

k
U.

To simplify the notation, relabel {xn} the sequence {xnk
} and set tn = 1/n.

We can now construct a semitrajectory as in the second part of the proof of
Theorem 4.4. Define the semitrajectory h : [0,1] → A as follows:

h(t)
def
= xn, tn+1 < t ≤ tn, n ≥ 1, h(0)

def
= x.(4.12)

As t ↘ 0, n → ∞, xn → x, and h(t) → x. For tn+1 < t ≤ tn

h(t) − x

t
=

xn − x

t
=

xn − x

tn
+ tn

[
1

t
− 1

tn

]
xn − x

tn
,

where for tn+1 < t ≤ tn

0 ≤ tn

[
1

t
− 1

tn

]
=

tn − t

t
≤ tn − tn+1

tn+1
=

1

n

⇒ h(t) − x

t
=

xn − x

t
∈ 1

n
U +

1

n

1

n
U ⊂ 1

n
U +

1

n
U

⇒ ∀t, 0 < t ≤ tn,
h(t) − x

t
∈ 1

n
U +

1

n
U.

For each V0 ∈ R, there exists V ∈ R such that V + V ⊂ V0. Since U is bounded,
there exists αV > 0 such that for all n ≥ αV , U ⊂ nV and

∀t, 0 < t ≤ tn,
h(t) − x

t
∈ 1

n
U +

1

n
U ⊂ V + V ⊂ V0.

Therefore, for each V0, there exists N such that N ≥ αV ≥ 1 and

∀t, 0 < t ≤ tN ,
h(t) − h(0)

t
∈ V0 ⇒ h′(0+) = 0.

Since f is MS-semidifferentiable at x, for the neighborhood W , there exists δ,
0 < δ < 1, such that

∀t, 0 < t < δ,
f(h(t)) − f(h(0))

t
− dHf(x; 0) ∈ W.

Since dHf(x; 0) = 0, for N > 1/δ,

∀n > N,
f(xn) − f(x)

1/n
=

f(h(1/n)) − f(h(0))

1/n
∈ W

⇒ ∀n > N, f(xn) − f(x) ∈ 1

n
W ⊂ W

and this contradicts our initial conjecture.
(ii) In a Fréchet space X, continuity and sequential continuity coincide. So v 7→

dHf(x; v) : T ♭
A(x) → T ♭

f(A)(f(x)) is continuous from Theorem 4.8 (ii). Also, there

is a bounded neighborhood of the origin and from part (i) we have the continuity
of f at x ∈ A for the induced topology on A. □
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5. Applications

5.1. Shape Derivative. When a diffeomorphism T of Rn is applied to a subset Ω
of Rn, the image T (Ω) is a set topologically similar to Ω: it changes its shape but it
cannot create holes or new connected components. One way to obtain a notion of
Shape Derivative is to use the images of a set Ω by a family of diffeomorphisms that
tend to the identity mapping I on Rn. Such families can be conveniently generated
from the solutions of an ordinary differential equation (dx/dt)(t) = V (t, x(t)) where
the right-hand side is interpreted as a time-dependent velocity V (t,x) at each point
x of the space Rn as if the points were particules in a moving fluid medium. This
is the idea behind the Velocity Method of Zolésio [39] in 1979.

Example 5.1. Denote by L (Rn) the vector space of linear functions M : Rn → Rn

(n×n matrices) and by GLn the group of invertible linear functions (n×n invertible
matrices) which can be endowed with a complete metric topology. Moreover,

∀F ∈ GLn, T ♭
GLn

(F ) = TGLn(F ) = L (Rn),(5.1)

where T ♭
GLn

(F ) denotes the tangent space to GLn at the point F . If J : GLn → R
is a real valued function, we can expect a semidifferential or a differential in the
directions contained in the tangent space L (Rn) at F since it is a linear vector
space.

In 1972 Micheletti [26] introduced what may be one of the first complete metric
topologies on a family of domains of class Ck that are the images of a fixed open
Ck domain Ω0 through a family of Ck-diffeomorphisms of Rn. There, the natural
underlying algebraic structure is the group structure of the composition of transfor-
mations with the identity as the neutral element. Her analysis culminates with the
construction of a complete metric on the quotient of the group by a closed subgroup
of diffeomorphisms F reshuffling the points but keeping F (Ω0) = Ω0. She called it
the Courant metric because it is proved in the book of Courant and Hilbert [4, p.
420] that the n-th eigenvalue of the Laplace operator depends continuously on the
domain Ω, where Ω = (I + f)Ω0 is the image of a fixed domain Ω0 by I + f and
f ∈ Ck

0 (Rn,Rn). But there is no notion of a metric in that book. Her constructions
naturally extend to other families of transformations of Rn or of fixed hold-alls D.

Specifically, her group of invertible functions F : Rn → Rn is

F (Ck
0 (Rn,Rn))

def
=

{
F : Rn → Rn

∣∣∣∣∣F bijective,
F − I ∈ Ck

0 (Rn,Rn)

F−1 − I ∈ Ck
0 (Rn,Rn)

}
a subset of the ambiant Fréchet space Ck(Rn,Rn) of k-times continuously differen-
tiable functions. Her construction of the Courant metric is generic and extends to
several Banach spaces Θ of functions θ : Rn → Rn:

F (Θ)
def
=

{
F : Rn → Rn |F bijective, F − I ∈ Θ, F−1 − I ∈ Θ

}
,(5.2)

where Θ is the tangent space at each point as for invertible matrices

∀F ∈ F (Θ), TF (Θ)(F ) = Θ.(5.3)

The group F (Θ) is an example of an infinite dimensional Finsler manifold.
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It is now well-established that the Velocity Method developed in the thesis of
Zolésio [39] in 1979 is naturally associated with the construction of the special
groups of Ck or Ck,1-diffeomorphisms,16 where the velocities belong to the tangent
space at each point of that group.

Example 5.2. Given a family of velocities V (t)(x)
def
= V (t,x) : Rn → Rn, 0 ≤ t ≤ τ ,

in Ck
0 (Rn;Rn) such that V (t) → V (0), consider the family of diffeomorphisms {Tt}

of Rn, t ≥ 0, generated by the solutions of the differential equation

dx

dt
(t;X) = V (t,x(t;X)), x(0;X) = X, Tt(X)

def
= x(t;X), t ≥ 0, X ∈ Rn,

⇒ dTt

dt
= V (t) ◦ Tt, T0 = I.

Assuming that V (t) → V (0) in Ck
0 (Rn,Rn),

t 7→ h(t)
def
= Tt : [0,τ ] → F (Ck

0 (Rn,Rn))(5.4)

is a trajectory in the group and

h′(0+) =
dTt

dt

∣∣∣∣
t=0+

= V (0) ∈ Ck
0 (Rn;Rn).(5.5)

Given a bounded C1 domain Ω with compact boundary Γ and a function f ∈
C1
0 (Rn), consider the functionals for t ≥ 0

J(Ω)
def
=

∫
Ω
f dx and for t ≥ 0, J(Tt(Ω)) =

∫
Tt(Ω)

f dx(5.6)

We want to compute

dJ(Ω;V (0)) = lim
t↘0

J(Tt(Ω)) − J(Ω)

t
= lim

t↘0

1

t

[∫
Tt(Ω)

f dx−
∫
Ω
f dx

]
.

Make a change of variable using Tt

J(Tt(Ω)) − J(Ω)

t
=

1

t

[∫
Tt(Ω)

f dx−
∫
Ω
f dx

]

=
1

t

[∫
Ω

[f ◦ Tt detDTt − f ] dx

]
dJ(Ω;V (0)) = lim

t↘0

J(Tt(Ω)) − J(Ω)

t
=

∫
Ω
∇f · V (0) + f div V (0) dx

=

∫
Ω

div (f V (0)) dx

=

∫
∂Ω

f V (0) · nΩ dΓ

dJ(Ω;V (0)) =

∫
Ω

div (f V (0)) dx =

∫
∂Ω

f V (0) · nΩ dΓ.

16Delfour-Zolesio [9, Chapter 3].
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5.2. Topological Derivative. The rigorous introduction of the topological deriv-
ative in 1999 by Soko lowski and Zȯchowski [33])17 provided a broader spectrum of
notions of derivatives with respect to a set. Initially, topological perturbations were
induced by creating a hole corresponding to removing a small closed ball of radius
r and center e ∈ Ω from an open domain Ω.

The following approach via the Minkowski content has been initiated by Delfour
[5, 2017] and [6, 2018]. Identify the set of equivalence classes of Lebesgue measurable
subsets Ω of Rn with the set of their characteristic functions χΩ : Rn → {0,1}:

X(Rn)
def
= {χΩ : Ω ⊂ Rn Lebesgue measurable} ⊂ L∞(Rn).

The symmetric difference operation induces an Abelian group structure:

Ω2∆Ω1
def
= (Ω2\Ω1) ∪ (Ω1\Ω2) ⇒ χΩ2∆Ω1(x) = |χΩ2(x) − χΩ1(x)|,

where χ∅ = 0 is the neutral element and χΩ is its own inverse.
The group X(Rn) is a closed subset without interior of the Banach space L∞(Rn)

with the associated metric on equivalence classes of measurable susbsets of Rn:

ρ([Ω2], [Ω1])
def
= ∥χΩ2 − χΩ1∥L∞(Rn) = ∥χΩ2∆Ω1∥L∞(Rn),

where the operation ∆ is continuous. It is also a closed subset without interior of
the Fréchet spaces Lp

loc(R
n), 1 ≤ p < ∞, endowed with the family of seminorms on

bounded open subsets D ⊂ Rn

ρD([Ω2], [Ω1])
def
= ∥χΩ2∆Ω1∥Lp(D) = ∥χΩ2 − χΩ1∥Lp(D).

Notation. For a closed subset E of Rn and r ≥ 0, define

distance function from x to E : dE(x)
def
= inf

y∈E
∥x− y∥,

r-dilatation of E : Er
def
= {x ∈ Rn : dE(x) ≤ r} .

(5.7)

Example 5.3. Let Ω be an open subset of Rn and e ∈ Ω. The closed ball Er = Br(e)

is an r-dilatation of the set E = {e}, dimE = 0. Consider the family of perturbed
sets {Ω\Er : 0 ≤ r ≤ R}. This generates a trajectory in X(Rn):

r 7→ χΩ\Er
: [0,τ ] → X(Rn), χΩ\Er

→ χΩ as r → 0.(5.8)

17See also the book by Novotny-Soko lowski [28] and its bibliography for a review of past contribu-
tions.
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By the Lebesgue differentiation theorem, for all ϕ ∈ C0
c (Rn) we get

1

|Br(e)|

∫
Br(e)

[
χΩ\Er

− χΩ

]
ϕdx

= − 1

|Br(e)|

∫
Br(e)

χΩ ϕdx → −χΩ(e)ϕ(e) = −ϕ(e)

and the delta function −δ{e} at e.

Definition 5.4. (i) Given an open subset V of Rn, the space

C0(V )
def
= {f : V → R : f continuous and bounded on V }

endowed with the norm

∥f∥C0
def
= sup

x∈V
|f(x)]}(5.9)

is a Banach space. Denote by M0(V ) its topological dual which is also called
the space of Radon measures.

(ii) Given an open subset V of Rn, a function f ∈ L1(V ) has bounded variation
if

∥∇f∥M0(V )
def
= sup

{∫
V
f div ϕdx : ϕ ∈ C1

c (V ;Rn), ∥ϕ(x)∥ ≤ 1

}
< ∞.(5.10)

As we shall see in the following examples, the space

BV(V )
def
= {f ∈ L1(V ) : ∥∇f∥M0(V ) < ∞}

is a Banach space endowed with the norm

∥f∥BV(V )
def
= ∥f∥L1(V ) + ∥∇f∥M0(V ).(5.11)

(ii) Given an open subset U of Rn, the space

BVloc(U)
def
= {f : U → R : f |V ∈ BV(V ) for all bounded open V ⊂ U}

endowed with the seminorms ∥f∥BV(V ) is a Fréchet space.

What should play the role of t in the definition of our admissible trajectories is
the variable t = αn r

n

Ωt
def
= Ω\E(t/αn)1/n

, t 7→ χΩt = χΩ\E
(t/αn)1/n

: [0,τ ] → X(Rn).(5.12)

The trajectory t 7→ χΩt is continuous in X(Rn). Given ϕ ∈ C0
c (Rn), the weak limit

of the differential quotient (χΩt − χΩ)/t is∫
Rn

χΩt − χΩ

t
ϕ dx =

1

t

[∫
Ωt

ϕdx−
∫
Ω
ϕdx

]
= − 1

|B(t/αn)1/n
(e)|

∫
B

(t/αn)1/n
(e)

χΩ ϕdx = − 1

αnrn

∫
Br(e)

χΩ ϕdx → −ϕ(e).
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The function ϕ 7→ − < δ{e},ϕ >= −ϕ(e) : C0
c (Rn) → R is a Radon measure. It

generates a semitangent since for all ρ > 0

1

t

[∫
Ωρt

ϕdx−
∫
Ω
ϕdx

]
→ −ρϕ(e),

in the adjacent tangent cone T ♭
X(Rn)(χΩ), but not a full tangent. We can also

introduce points b ∈ Rn\Ω and the perturbed sets Ωt = Ω ∪ B(t/αn)1/n
(b) to get

+ϕ(b). Here, the ambiant space seems to be M0(D) for some sufficiently large
bounded open subset of Rn. It is the space where the semitangents “live.”

As we shall see in the following examples, the semitangent that we have con-
structed is directly related to the notion of d-dimensional Minkowski content [11]
for E ⊂ Rn compact, 0 ≤ d < n,

Md(E)
def
= lim

r↘0

mn(Er)

αn−d rn−d
, αn−d = volume of the unit ball in Rn−d,

for general topological perturbations obtained by dilation of smooth submanifolds
E of dimension d in Rn. The case of E = {e} corresponds to d = 0, while d = 1
corresponds to a curve and d = 2 to a surface.

It turns out that Md(E) is equal to Hd(E), the d-dimensional Hausdorff measure
in Rn, for compact d-rectifiable subsets E of Rn. For details and other motivating
examples the reader is referred to the recent papers of Delfour [5, 6].

Definition 5.5 (Federer [11, pp. 251–252]). Let E be a subset of a metric space X.
E ⊂ X is d-rectifiable if it is the image of a compact subset K of Rd by a Lipschitz
continuous function f : Rd → X.

Theorem 5.6 ([11, p. 275]). If E ⊂ Rn is compact and d-rectifiable, then Md(E) =
Hd(E).

Example 5.7. Let E be a compact non-intersecting C2-curve in R3 such that
H1(E) is finite. Consider the r-dilatation of the curve E (a circle) where

ϕ 7→
∫
E
ϕdH1 : C1

c (R3) → R is a Radon measure.

Consider the trajectory

t 7→ Ωt : [0,τ ] → X(Rn), Ωt
def
= Ω\Er = Ω\E(t/α2)1/2
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The weak limit of the differential quotient (χΩt − χΩ)/t is: for ϕ ∈ C1
c (R3),

1

t

[∫
Ωt

ϕdx−
∫
Ω
ϕdx

]
= −1

t

∫
E

(t/α2)
1/2

χΩ ϕdx

= − 1

α2 r2

∫
Er

χΩ ϕdx → −
∫
E
ϕdH1.

This Radon measure is a semitangent in T ♭
X(Rn)(χΩ) since for all ρ > 0

1

t

[∫
Ωρt

ϕdx−
∫
Ω
ϕdx

]
→ −ρ

∫
E
ϕdH1.

Example 5.8. When n = 2 and A is a ball, we can create a new connected com-
ponent by dilating the boundary E = ∂A of A.

So the adjacent tangent cone T ♭
X(Rn)(χΩ) to X(Rn) at χΩ contains the negative

of all Radon measures associated with d-dimensional rectifiable subsets E of Ω.
Given a bounded open subset Ω of Rn, a function f ∈ C0(Ω), a d-rectifiable

subset E of Ω with Hd(E) < ∞, t > 0, the dilatation r = (t/αn−d)1/(n−d) of E, and
the functional

J(Ω) =

∫
Ω
f dx, J(Ω\E(t/αn−d)1/(n−d)) =

∫
Ω\E

(t/αn−d)
1/(n−d)

f dx, t ≥ 0.

In term of characteristic functions, with the notation Ωt = Ω\E(t/αn−d)1/(n−d)

J(χΩ) =

∫
Rn

χΩf dx, J(χΩt) =

∫
Rn

χΩt f dx, t ≥ 0.

Since E(t/αn−d)1/(n−d) ⊂ Ω for t small, we have for the differential quotient

J(Ωt) − J(Ω)

t
=

1

t

[ ∫
Ω\E

(t/αn−d)
1/(n−d)

f dx−
∫
Ω
f dx

]

= −1

t

∫
E

(t/αn−d)
1/(n−d)

χΩ f dx = − 1

αn−drn−d

∫
Er

χΩ f dx

⇒ dJ(χΩ; δE) = −
∫
E
f dHd, E ⊂ Ω,



1070 M. C. DELFOUR

where

ϕ 7→< δE ,ϕ >
def
=

∫
E
ϕdHd : Cc(Rn) → R(5.13)

is a Radon measure.

Example 5.9. The tangent space also contains tangents generated by the velocity
method. Go back to the diffeomorphisms {Tt : t ≥ 0} generated by C1 velocities
{V (t) : t ≥ 0}. For Ωt = Tt(Ω) and ϕ ∈ C1

0 (Rn)∫
Rn

[
χΩt − χΩ

t

]
ϕdx =

1

t

[∫
Ωt

ϕdx−
∫
Ω
ϕdx

]
=

1

t

∫
Ω

[ϕ ◦ Tt detDTt − ϕ] dx

lim
t↘0

∫
Rn

[
χΩt − χΩ

t

]
ϕdx =

∫
Ω
∇ϕ · V (0) + div V (0)ϕdx

=

∫
Ω

div (V (0)ϕ) dx =

∫
Γ
ϕV (0) · nΩ dΓ.

If Ω is a Caccioppoli set, that is χΩ ∈ BVloc(Rn)n, and ϕ and V (0) are also bounded
continuous, then

ϕ 7→
∫
Ω

div (V (0)ϕ) dx =

∫
Rn

χΩ div (V (0)ϕ) dx = − < ∇χΩ, ϕ V (0) >

is linear and continuous with respect to the sup norm of ϕ. Therefore, ∇χΩ · V (0)
defined as the normal component of the velocity:

ϕ 7→ (∇χΩ · V (0))(ϕ)
def
=< ∇χΩ, ϕ V (0) >

is a Radon measure which is a tangent in T ♭
X(Rn)(χΩ). So, it extends to bounded

continuous velocities V (0).

Open problem: can the adjacent tangent cone to X(D) at χΩ be completely
characterized?
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