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D∞ ∈ [0, 1). This is a new phenomenon appearing in the theory of fractal strings.
The main result is stated in Theorem 2.12.

The first example of a fractal string L, the geometric zeta function ζL of which
possesses essential singularities, has been constructed in [12, Example 3.3.7 on
p. 215] (see also [17]), starting from the classical Cantor string. In this paper,
we first extend this construction to a class of generalized Cantor strings depending
on two real parameters.

1.2. Notation. Following [12], we introduce some basic notation that we shall need
in the sequel.

A bounded fractal string L = (ℓj)j∈N, is defined as being either a nonincreasing
infinite sequence of positive real numbers such that

∑∞
j=1 ℓj < ∞ or else a finite

sequence of positive real numbers. Its length is

(1.1) |L|1 :=
∞∑
j=1

ℓj .

For any two bounded fractal strings L1 = (ℓ1j)j∈N and L2 = (ℓ2k)k∈N, we define
their tensor product,

(1.2) L1 ⊗ L2 := (ℓ1jℓ2j)j,k∈N,

as the fractal string consisting of all possible products ℓ1jℓ2j , where i, j ∈ N, count-
ing the multiplicities. It is also bounded, since |L1 ⊗ L2|1 = |L1|1 · |L2|1 < ∞. We
can also define their disjoint union L1 ⊔ L2 as the union of multisets; that is, each
element of L1 ⊔ L2 has a multiplicity equal to the sum of its multiplicities in L1

and L2. It is possible to define the disjoint union ⊔∞
i=1Li of an infinite sequence

Li = (ℓij)j∈N of bounded fractal strings, where i ∈ N, provided
∑

i,j ℓij < ∞. For

any positive real number λ and a bounded fractal string L = (ℓj)j∈N, we can define
a new fractal string λL := (λℓj)j∈N.

The geometric zeta function ζL of a given bounded fractal string L = (ℓj)j∈N is
defined by

(1.3) ζL(s) :=

∞∑
j=1

ℓsj ,

where s is a complex number with Re s > 1. Clearly, ζL(1) = |L|1 < ∞. The
abscissa of absolute convergence of ζL is denoted by D(ζL), while the abscissa of
meromorphic continuation of ζL is denoted by Dmer(ζL). It can be easily verified
that −∞ ≤ Dmer(ζL) ≤ D(ζL) ≤ 1, where D(ζL) := inf{α ∈ R :

∑∞
j=1 ℓ

α
j < ∞}

coincides with the Minkowski dimension, dimL, of the fractal string whenever the
fractal string L is infinite, i.e., whenever (ℓj)j∈N is an infinite sequence of positive

numbers tending to zero.1 The notions of abscissa of absolute convergence and
of meromorphic continuation can be extended to general Dirichlet-type integrals;
see [12, esp., Appendix A] for details.

1Since L is bounded, we then always have that 0 ≤ dimL ≤ 1 and hence, similarly for D(ζL) =
dimL.
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It is easy to verify that ζλL(s) = λsζL(s) and ζL1⊗L2(s) = ζL1(s)·ζL1(s), for all s ∈
C with Re s > 1; see [12, Lemma 3.3.2]. Furthermore, ζL1⊔L2(s) = ζL1(s) + ζL2(s),
for all s ∈ C with Re s > 1.

For any given real number α, we define the corresponding vertical line {Re s =
α} := {s ∈ C : Re s = α} in the complex plane, while the corresponding open right
half-plane {s ∈ C : Re s > α} is denoted by {Re s > α}. For any two real numbers
α and β, we define α + βiZ := {α + βij ∈ C : j ∈ Z}, which is an arithmetic set
contained in the vertical line {Re s = α} of the complex plane. Here and thereafter,
we let i :=

√
−1 denote “the” complex square root of −1.

Remark 1.1 (Geometric realization of bounded fractal strings). A natural way in
which bounded fractal strings arise is as follows (see [15] and the earlier references).
Consider an open set Ω of R, with boundary denoted by ∂Ω and with finite length
(i.e., one-dimensional Lebesgue measure) |Ω|1.2 Then, Ω =

∪
j≥1 Ij , where the

(finite or countable) family (Ij)j≥1 consists of bounded open intervals Ij of lengths
ℓj . These intervals are simply the connected components of the open set Ω. Without
loss of generality and since |Ω|1 =

∑
j≥1 ℓj < ∞ (because the fractal string L :=

(ℓj)j∈N is bounded), one may assume that (ℓj)j∈N is nonincreasing and (when the
sequence is infinite) ℓj → 0 as j → ∞. (In the sequel, we will not always assume
that (ℓj)j∈N has been written in nonincreasing order.) We note that any choice of
open set Ω ⊆ R satisfying the above properties is called a geometric realization of
L.

Conversely, given a bounded fractal string (ℓj)j∈N, there are many different ways
to associate to it an open set Ω of finite length and such that |Ω|1 =

∑
j≥1 ℓj . There

is, however, a canonical way to do so; see [12, pp. 88–89].
We close this remark by recalling that if L is an infinite sequence of positive

numbers, then D(ζL) coincides with the (upper) Minkowski dimension of L (i.e., of
∂Ω, for any choice of geometric realization of L, in the above sense; see [15, Theorem
1.10]).

Example 1.2 (The Cantor string). A typical example of a bounded fractal string is
the Cantor string; see [15, Chapter 1]. In the sense of Remark 1.1 just above, it
is associated with the bounded open subset of R given by ΩCS := [0, 1] \ C, the
complement in [0, 1] of the ternary Cantor set C, and consists of the “middle-thirds”
(that is, of all the deleted intervals in the standard construction of the Cantor set
C). Then, L = LCS := (ℓj)j≥1 consists of the following infinite sequence

(1.4)
1

3
,
1

9
,
1

9
,
1

27
,
1

27
,
1

27
,
1

27
, . . . ,

where 3−j appears with the multiplicity 2j−1 (for j = 1, 2, . . .).
Observe that the boundary of the Cantor string is the classic Cantor set C:

∂ΩCS = C.
Finally, a simple computation (based on (1.3) and (1.4) and followed by an ap-

plication of the principle of analytic continuation), shows that ζL = ζL(s) (also

2The boundary ∂Ω ⊆ R is always compact and, in the applications, is often a “fractal” subset
of R; see, e.g., Example 1.2, where ∂Ω is the classic (ternary) Cantor set.
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denoted by ζCS(s)) is meromorphic in all of C and is given by

(1.5) ζL(s) =
1

3s − 2
=

3−s

1− 2 · 3−s
,

for all s ∈ C; see [15, Subsection 1.2.2].

2. Paramorphic functions and their paramorphic continuations

It has been noticed that there are (nontrivial) bounded fractal strings without
any complex dimensions in the classical sense (viewed as poles of a meromorphic
extension of the associated geometric zeta function). As an example, see the fractal
string L∞ constructed in [12, Example 3.3.7 on p. 215] or in [17]. In this case, the
geometric zeta function ζL does not have any poles but has essential singularities.
Therefore, there is a natural need to extend the notion of complex dimensions in
order to include essential singularities as well. To achieve this, we need a more
general definition of an extension (of a geometric zeta function) than just a mero-
morphic extension to an open right half-plane (or some more general domain) of the
complex plane. This leads in a natural way to the notions of paramorphic exten-
sions and paramorphic functions. An additional justification is provided by the fact
that singularities which are not poles (of a fractal zeta function) also have a natural
geometric meaning in our context because like the poles, they often contribute to
the corresponding fractal tube formula; see [14].

Definition 2.1. Let U be a nonempty connected open subset of the complex plane,
and let S := {sk : k ∈ J} be a subset (possibly empty) of isolated points of U .3 Let
f : U \ S → C be a holomorphic function. Then, we say in short that the function
f is paramorphic in U .

Remark 2.2. The set S appearing in Definition 2.1 is clearly at most countable,
and the set of (possible) accumulation points of S is contained in the topological
boundary ∂U of U . Indeed, since we assume the function f : U \ S → C to be
holomorphic, then the set U \ S must a priori be open. In other words, the set S is
closed with respect to the relative topology of U .

Obviously, all meromorphic functions are automatically paramorphic but the
converse is, of course, not true.

Example 2.3. The function f(z) = e1/(z−z0) is paramorphic in C. Here, z0 ∈ C is
the only singularity of f , and it is essential.

Lemma 2.4. Assume that a complex-valued function f is paramorphic (in the sense
of Definition 2.1) on a nonempty connected open subset U of the complex plane.
Then the set S = S(f) of its nonremovable isolated singularities contained in U
(i.e., the set of poles and essential singularities of f contained in U) is closed with
respect to the relative topology of U .

3In particular, the set S does not have an accumulation point in U . Here, the set J denotes an
arbitrary index set.
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Proof. Assume, contrary to the claim, that the set S is not closed. Then there exists
s0 ∈ (ClS \ S) ∩ U . On the one hand, f is holomorphic at s0, since s0 ∈ U \ S.
On the other hand, there is a sequence (sk)k≥1 of nonremovable singularities of f
converging to s0 as k → ∞, which is impossible. This proves the lemma. □

As we can see, by saying that a complex-valued function f is paramorphic on
U , we mean that f : U → C is differentiable (i.e., holomorphic) at all points of U
except on a subset S of isolated singularities of f . Each s0 ∈ S is either a removable
singularity, or a pole, or an isolated essential singularity. If we exclude removable
singularities from the set S, then S is uniquely determined by f , consisting of its
poles and isolated essential singularities contained in U .

For a fixed nonempty connected open subset U of the complex plane, the vector
space of all functions paramorphic on U is denoted by Par(U).

Remark 2.5. We point out that the notion of a paramorphic function is closely
related to the class S of functions introduced by A. Bolsch in [3, 4] (see also the
class K from [2, 7]) for studying iterations of complex maps (from the dynamical
perspective) which are meromorphic except in a “small” set. Namely, a function
f : C → C is said to be in the class S if there exists a closed countable set A(f) ⊆ C
such that f is meromorphic in C \A(f) but in no proper superset.4

The above definition is more general than the definition of a paramorphic func-
tion since the set A(f) may also contain non-isolated singularities that arise as
accumulation points of isolated singularities of f . On the other hand, a paramor-
phic function f : U → C cannot have any non-isolated singularities in the open
domain U ⊆ C. In the general theory of complex dimensions, we conjecture that
only isolated singularities of fractal zeta functions should be considered as “proper”
complex dimensions of the associated fractal set. A strong indication of this is the
fact that they have a direct geometric meaning since these complex dimensions ap-
pear as co-exponents in the asymptotics of the fractal tube formula of the given
set, whereas the non-isolated singularities are a kind of a byproduct of the isolated
ones, i.e., of the “proper” complex dimensions.

Definition 2.6. Assume that U and V are connected open subsets of the complex
plane, and f ∈ Par(U), g ∈ Par(V ). If U ⊆ V and g|U = f (except for the set of
isolated singularities of f), we say that g is a paramorphic extension of f .

Remark 2.7. In Definition 2.6, by writing g|U = f , we mean that in fact g|U\S = f ,
where S = S(f) is the set of isolated singularities of f . As in Remark 2.2 and
Lemma 2.4, the set S(f) is closed in the relative topology of U , since f |U\S(f) is
holomorphic.

Remark 2.8. If by Hol(U) and Mer(U) we denote the vector spaces of functions
which are, respectively, holomorphic and meromorphic on a nonempty connected
open subset U of C, then Hol(U) ⊆ Mer(U) ⊆ Par(U).

The following result shows that a paramorphic extension g ∈ Par(V ) of f ∈
Par(U) in Definition 2.6 is uniquely determined by f .

4Here, C denotes the Riemann sphere, i.e., the one-point compactification of C: C := C ∪ {∞}.
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Theorem 2.9 (Unique paramorphic continuation principle). Let U and V be non-
empty connected open subsets of the complex plane C and U ⊆ V . If g1, g2 ∈ Par(V )
and g1|U = g2|U , then g1 = g2. In other words, the sets of nonremovable isolated
singularities of g1 and g2 coincide, and g1 = g2 on the complement of their common
set of singularities in V .

Proof. Let S = S(g1) be the set of nonremovable isolated singularities of g1. Then,
according to Definition 2.1 (and Remark 2.2 along with Lemma 2.4), U \ S is an
open set and g1 is holomorpohic in all of V \ S. Therefore, since g2 coincides with
g1 on U \ S, and since V \ S is open and connected, it follows from the principle
of analytic continuation that g2 coincides with g1 on all of V \ S. As a result, g2 is
holomorphic in all of V \ S and hence, S(g2) is contained in S(g1) = S.

Now, by the symmetry of the hypotheses on g1 and g2 (in the statement of
Theorem 2.9), we could apply the same reasoning by interchanging the roles of g1
and g2 and conclude that S(g1) is also contained in S(g2). Hence, g1 and g2 have a
common set of nonremovable singularities S, and g1 and g2 coincide on V \ S; that
is, g1 = g2. □

We also provide the following result, which shows that the set Par(U) of paramor-
phic functions on a given connected open subset U ⊆ C is closed under multiplica-
tions; i.e., it is an algebra.

Theorem 2.10. Let U be a given connected open subset of the complex plane.
Then, the set of paramorphic functions Par(U) is a unital algebra (with respect to
pointwise multiplication).

Proof. The unit element in this algebra is, of course, the function 1 ∈ Par(U)
defined by 1(s) = 1, for all s ∈ U . For f1, f2 ∈ Par(U), it is easy to see that
also, f1 · f2 ∈ Par(U). Namely, if fj : U \ Sj → C, j = 1, 2, are two holomorphic
functions, where Sj are the corresponding sets of isolated singularities of fj , for
j = 1, 2, then the product f1 · f2 is well defined and holomorphic on U \ (S1 ∪ S2).
(Here, some elements of S1 ∪ S2 may be removable singularities of f1 · f2, due to
possible cancellations.) Hence, according to Definition 2.1, the product f1 · f2 is
paramorphic on U . □

In the following definition, we introduce the notion of the ‘abscissa of paramorphic
continuation’ of a given paramorphic function, which is analogous to that of the
‘abscissa of meromorphic continutation’ of a given meromorphic function.

Definition 2.11. Let α be a real number and let {Re s > α} be the corresponding
open right half-plane in C. Assume that f : {Re s > α} → C is a Dirichlet-
type function (or, in short, DTI; see, e.g., [12], esp., Appendix A), such that f
is paramorphic on {Re s > α}, for some α ∈ R.5 The abscissa of paramorphic
continuation Dpar(f) of f is defined as the infimum of all real numbers β, with β ≤ α,
such that f can be paramorphically extended from {Re s > α} to {Re s > β}.6

5Otherwise, we let Dpar(f) = +∞, which means that f cannot be paramorphically extended to
any (nonempty) right half-plane.

6We also allow for Dpar(f) = −∞, which means that f can be paramorphically extended to all
of C.
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Equivalently, {Re s > Dpar(f)} is the largest open right half-plane, to which f can
be paramorphically extended. (It is easy to deduce from Theorem 2.9 that this
notion is well defined.)7 Clearly,

−∞ ≤ Dpar(f) ≤ Dmer(f) ≤ D(f) ≤ +∞.

Furtermore, given D∞ ∈ R, the vertical line {Re s = D∞} is said to be a paramor-
phic barrier of f if f cannot be paramorphically continued to a connected open set
V containing the open right half-plane {Re s > D∞} as a proper subset.

If f is a DTI of the form of a geometric zeta function, i.e., f = ζL for some
bounded fractal string L, then clearly, 0 ≤ Dpar(f) ≤ Dmer(f) ≤ D(f) ≤ 1. It is
also clear that the notion of a paramorphic barrier, introduced in Definition 2.11
above, can be extended to a much more general setting.

We are now ready to state the main result of this paper.

Theorem 2.12. Let D∞, D1 and D be three prescribed real numbers belonging to
the interval [0, 1] and such that D∞ < D1 ≤ D. Then, there exists an explicit
(i.e., explicitly constructible) bounded fractal string L such that the corresponding
geometric zeta function ζL can be paramorphically extended to the open right half-
plane {Re s > D∞} and

(2.1) Dpar(ζL) = D∞, Dmer(ζL) = D1, D(ζL) = dimL = D.

In addition to this, it can be achieved that the line {Re s = D∞} coincides with the
paramorphic barrier of ζL (in the sense of Definition 2.11 above), while the vertical
open strip {D∞ < Re s < D1} contains infinitely many essential singularities of ζL,
and such that the paramorphic barrier coincides with the set of accumulation points
of the set of essential singularities of ζL.

We postpone the proof of Theorem 2.12 until Section 4 (more precisely, until
Subsection 4.1).

For general references on complex analysis and the singularities of complex-valued
functions, we refer, e.g., to [1], [5, 6], [8], [20] and [12, esp., Subsection 1.3.2.].

3. Generalized Cantor strings of finite and infinite orders and their
geometric zeta functions

3.1. Generalized Cantor strings of finite order. Let rj , with j = 1, . . . ,m,
be positive real numbers such that r1 + · · · + rm < 1. Let L(r1, . . . , rm) be the
self-similar fractal string defined as the nonincreasing sequence of all monomial
terms of the form rα1

1 . . . rαm
m , with (α1, . . . , αm) ∈ (N ∪ {0})m. It can be shown

(see [15, Chapters 2 and 3]) that the corresponding geometric zeta function is given
by

(3.1) ζL(r1,...,rm)(s) =
1

1−
∑m

j=1 r
s
j

,

7Indeed, if f is paramorphic on each element of a family of right half-planes, {Re s > αi}i∈I ,
then (by Theorem 2.9) it is paramorphic on the union of these right-half planes, namely, on the
right-half plane {Re s > α}, where α := infi∈I αi.
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for all s ∈ C. This is established by first verifying Eq. (3.1) via a direct computa-
tion, valid for all s ∈ C with Re s sufficiently large,8 and then upon meromorphic
continuation, by deducing that (3.1) holds, in fact, for all s ∈ C.

For example, by choosing m = 2 and r1 = r2 = 1/3, we obtain the Cantor string

L(1/3, 1/3) = (ℓj)j∈N.

It corresponds to the nonincreasing sequence of lengths of deleted open intervals
obtained during the construction of the usual Cantor ternary set C(2,1/3) scaled
by the factor 3, i.e., starting with the interval [0, 3] instead of [0, 1]; see [15, ibid]
or [12, Definition 3.3.1 and Theorem 3.3.3]. Furthermore, in light of Eq. (3.1) and in
keeping with the above explanations, we see that ζL(1/3,1/3)(s) = 1/(1−2·3−s) for all
s ∈ C such that Re s > log3 2. As was explained above in the case of a general self-
similar string, the geometric zeta function ζL(1/3,1/3) can then be meromorphically

extended to the whole complex plane by letting ζL(1/3,1/3)(s) = 1/(1 − 2 · 3−s) for
all s ∈ C.

Let m be a positive integer such that m ≥ 2, and let a ∈ (0, 1/m). Let us define
the generalized Cantor string

(3.2) L(m,a) = L(a, . . . , a︸ ︷︷ ︸
m times

).

Here, by using Eq. (3.1), we obtain that

(3.3) ζL(m,a)(s) =
1

1−
∑m

j=1 a
s
=

1

1−m · as
,

for all s ∈ C with Re s > log1/am. This geometric zeta function can then be

meromorphically extended to the whole complex plane, so that (3.3) holds for all s ∈
C.

For any fixed integer n ≥ 1, we introduce the generalized Cantor string of n-th

order, L(m,a)
n , defined inductively by

(3.4) L(m,a)
1 := L(m,a) and L(m,a)

n := L(m,a)
n−1 ⊗ L(m,a) for n ≥ 2.

In other words, we iterate multiplying L(m,a) by itself, using the tensor product of
fractal strings; that is, for every integer n ≥ 1,

(3.5) L(m,a)
n :=

n⊗
j=1

L(m,a).

The geometric zeta function of L(m,a)
n can be explicitly computed (initially, for all

s ∈ C with Re s large enough) and then meromorphically extended to the whole
complex plane. We first have

(3.6) ζL(m,a)
2

(s) = ζL(m,a)
1

(s) · ζL(m,a)(s) =
1

1−m · as
· 1

1−m · as
=

1

(1−m · as)2
.

8Namely, for all s ∈ C with Re s > DL, where DL is the Minkowski (or box) dimension of
L = L(r1, . . . , rm), which, in the present case, coincides with the similarity dimension of L, i.e.,
the unique real solution of the Moran equation [16] (see also, e.g., [9])

∑m
j=1 r

s
j = 1.
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and then by induction, for each n ≥ 1 and all s ∈ C,

(3.7) ζL(m,a)
n

(s) =
1

(1−m · as)n
.

Here, we have used the multiplicative property of the geometric zeta function with
respect to the tensor products of fractal strings; see [12, Lemma 3.3.2]. The total

length of the generalized Cantor string of n-th order L(m,a)
n is given by

(3.8) |L(m,a)
n |1 = ζL(m,a)

n
(1) =

1

(1−m · a)n
.

Note that |L(m,a)
n |1 → +∞ as n → ∞, exponentially fast as a function of n.

The set of complex dimensions of the fractal string L(m,a)
n , denoted by dimC L(m,a)

n ,
is defined as the set of poles (in C) of the associated geometric zeta function ζL(m,a)

n
.

In this case, the poles of L(m,a)
n are all of order n (i.e., the complex dimensions of

L(m,a)
n are of multiplicity n), and they form an arithmetic sequence contained in the

vertical line {Re s = log1/am} of the complex plane:

(3.9) dimC L(m,a)
n = log1/am+

2π

log(1/a)
iZ.

The above construction of the fractal string L(m,a)
n , as well as the computation of its

geometric zeta function, are a natural extension of the ones provided in [12, Example
3.3.7 on p. 215] in the case when m = 2 and r1 = r2 = 1/3. For the general theory
of the complex dimensions of fractal strings, see [15] and [12].

It is easy to explicitly compute the coefficients cjl , with j ≥ 1, appearing in the
Laurent expansion

(3.10) ζL(m,a)
n

(s) =
∞∑

l=−n

cjl (s−Dj)
l

of the geometric zeta function ζL(m,a)
n

near any of the poles sj := log(1/a)m+ 2π
log(1/a)ij

of ζL(m,a)
n

, for a fixed value of j ∈ Z and for a prescribed integer n ≥ 1. For example,

we have that

(3.11)

cj−n := lim
s→sj

(s− sj)
nζL(m,a)

n
(s) =

(
lim
s→sj

s− sj
1−m · as

)n

=
( 1

asj log(1/a)

)n
=

( m

log(1/a)

)n
.

It is interesting to note that the value of cj−n is, in fact, independent of j ∈ Z.
Other coefficients of the form cl = c−n+r, with r ≥ 1, can be easily computed as

well, since c−n+r = lims→sj
dr

dsr

∣∣∣
s=sj

[(s− sj)
nζL(m,a)

n
(s)].

3.2. Generalized Cantor strings of infinite order. Now, we can define the
generalized Cantor string of infinite order as the following infinite disjoint union of
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scaled generalized Cantor strings of finite orders:

(3.12) L(m,a)
∞ :=

∞⊔
n=1

(n!)−1L(m,a)
n .

Its geometric zeta function is then given by

(3.13)

ζL(m,a)
∞

(s) =

∞∑
n=1

ζ
(n!)−1L(m,a)

n
(s)

=
∞∑
n=1

(n!)−sζL(m,a)
n

(s) =
∞∑
n=1

(1−m · as)−n

(n!)s
.

Using the Weierstrass M -test, it is easy to see that L(m,a)
∞ can be paramorphically

extended to the open right half-plane {Re s > 0}; that is, ζL(m,a)
∞

∈ Par({Re s > 0}).
Here, the set log1/am+ 2π

log(1/a)iZ consists of essential singularities of the geometric

zeta function ζL(m,a)
∞

, and there are no other isolated singularities. (For m = 2 and

r = 1/2, this construction has been described in [12, Example 3.3.7]; see also [17]

and [18].) In light of Eq. (3.13), we see that the total length of the string L(m,a)
∞ is

given by

(3.14) |L(m,a)
∞ |1 = ζL(m,a)

∞
(1) =

∞∑
n=1

(1−m · a)−n

n!
= exp

( 1

1−m · a

)
− 1.

In particular, L(m,a)
∞ is a bounded fractal string and we always have that |L(m,a)

∞ |1 >
e− 1 > 0.

Remark 3.1. We do not know whether ζL(m,a)
∞

can be paramorphically extended to

an open right half-plane {Re s > β}, for some β < 0.

3.3. Power series of bounded fractal strings. Let X be the set of all bounded
fractal strings. In Subsection 1.2, we have introduced two binary operations, which
can be viewed as the operations of addition and multiplication on X, defined as the
disjoint union ⊔ of fractal strings and the tensor product ⊗, respectively. It is easy
to check that (L1⊔L2)⊗L3 = (L1⊗L3)⊔ (L2⊗L3), for any Ln ∈ X, n = 1, 2, 3. In
this manner, we have obtained a commutative unital semiring (X,⊔,⊗) (without
the zero element).9 The unit element in this semiring is E := (1). This structure is
not a ring, since the elements of X do not possess additive inverses with respect to
the binary operation ⊔.

We also have the operation of scalar multiplication of bounded fractal strings
L := (ℓj)j≥1 with positive real numbers c, where the resulting fractal string is
cL := (cℓj)j≥1. The set X, viewed with respect to ⊔ as addition and with respect
to scalar multiplication, is clearly a positive convex cone, since for any positive real
numbers c and d and any two fractal strings L1,L2 ∈ X, we have that cL1⊔dL2 ∈ X.

9If zero in X were defined as the one element sequence (0), then X should contain (0) ⊗ L =
(0, 0, , . . .), which is an infinite sequence of zeros. This means that this string contains the real
number 0 with infinite multiplicity, which we cannot permit. Otherwise, the disjoint union of
a nonzero string L and 0 in X is not well defined (i.e, it cannot be ordered as a nonincreasing
sequence of reals).
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We are now ready to introduce the notion of a power series of bounded fractal
strings inX, as follows. Let F (z) :=

∑∞
n=0 cnz

n be the usual power series of complex
numbers z, where we assume that the coefficients cn are nonnegative real numbers
for all integers n ≥ 0 and cn > 0 for at least one n ≥ 0, such that the radius of
convergence R of the series F is positive (or infinite). For any fixed fractal string
L := (ℓj)j≥1 ∈ X such that |L|1 :=

∑
j≥1 ℓj < R (i.e., of total length less than R),

we can define the corresponding bounded fractal string F (L) by

(3.15) F (L) :=
∞⊔
n=0

cnLn,

where Ln is the tensor product of n copies of L for n ≥ 1, while L0 := E . It is easy
to verify that the fractal string F (L) is bounded: |F (L)|1 =

∑∞
n=1 cn|L|n1 < ∞; that

is, F (L) ∈ X. In this way, we have obtained the mapping

F : {L ∈ X : |L|1 < R} → X.

In particular, if R = +∞, we have the mapping F : X → X.
As an example, if we consider the function F (z) := exp(z), then cn = (n!)−1 for

all n ≥ 0 and R = +∞. We see that for any bounded fractal string L ∈ X, the
exponential fractal string of L, that is,

(3.16) exp(L) =
∞⊔
n=0

(n!)−1Ln,

is well defined, i.e., it belongs to X. Hence,

(3.17) ζexp(L)(s) =
∞∑
n=0

(n!)−sζL(s)
n,

for all s in the open right half-plane {Re s > D(ζL)}.
In particular, if we take L = L(m,a) (the generalized Cantor string defined in

Eq. (3.2)) and if L(m,a)
∞ is the generalized Cantor string of infinite order (introduced

in Eq. (3.12)), then

(3.18) exp(L(m,a)) = L(m,a)
∞ ⊔ {E}

and

(3.19) ζexp(L(m,a))(s) = ζL(m,a)
∞

(s) + 1,

for all complex numbers s in the open right half-plane {Re s > log1/am}. In other

words, the geometric zeta functions of the fractal strings exp(L(m,a)) and L(m,a)
∞

coincide, up to the additive constant 1. Of course, if we take G(z) := exp(z)− 1 =∑
n≥1

zn

n! , then we precisely have equality in the counterpart of Eq. (3.19); i.e.,

ζG(L(m,a))(s) = ζL(m,a)
∞

(s).

In a similar way, for any fractal string L ∈ X of total length less than 1, we
can define the fractal string F (L) = (1 − L)−1, generated by the power series
F (z) := (1 − z)−1 =

∑
n≥0 z

n, as well as G(L) = − log(1 − L), generated by the

function G(z) := − log(1 − z) =
∑

n≥1
zn

n . For any L ∈ X, we can analogously
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define the bounded fractal strings coshL (generated by F (z) :=
∑

n≥0
z2n

(2n)!) and

sinhL (generated by F (z) :=
∑

n≥0
z2n+1

(2n+1)!), etc.

The following result connects the geometric zeta functions of the fractal strings
F (L) and L.

Proposition 3.2. Let L ∈ X, and let F (z) =
∑∞

n=0 cnz
n be a power series with

nonnegative coefficients, where cn > 0 for at least one n ≥ 0 and with radius of
convergence R > 0.

Then, for any fractal string L ∈ X of total length less than R (i.e., |L|1 < R),
we have that

(3.20) ζF (L)(s) =
∞∑
n=0

csnζL(s)
n,

for all complex numbers s in the open right half-plane {Re s > D(ζL)}, where D(ζL)
is the abscissa of absolute convergence of ζL (i.e., the Minkowski dimension of L if
L is an infinite sequence). In particular, if D(ζL) < 1, then

(3.21) ζF (L)(1) = F (|L|1).

Proof. For any s in {Re s > D(ζL)}, we have that

(3.22) ζF (L)(s) =
∞∑
n=0

ζcnLn(s) =
∞∑
n=0

csnζLn(s) =
∞∑
n=0

csnζL(s)
n,

where we have used the fact that for any three fractal strings L1, L2 and L in
X and for any positive real number c, we have that ζL1⊔L2(s) = ζL1(s) + ζL2(s),
ζcL(s) = csζL(s) and ζL1⊗L2(s) = ζL1(s) · ζL2(s) (in particular, by mathematical
induction, we have that ζLn(s) = ζL(s)

n, for any n ≥ 2).
If D(ζL) < 1, then (3.22) implies that

(3.23) ζF (L)(1) =
∞∑
n=0

cnζL(1)
n = F (ζL(1)) = F (|L|1).

□

4. Geometric zeta functions with prescribed abscissa of paramorphic
continuation

This section is divided into two subsections: in Subsection 4.1, we prove one of the
key results of this paper (Theorem 2.12), which establishes the existence of suitable
paramorphic (and complex-valued) fractal zeta functions with prescribed abscissae
of paramorphic, meromorphic and absolute convergence, respectively. Moreover,
in Subsection 4.2, based in part on this result, we construct suitable (real-valued)
harmonic functions that are associated with paramorphic geometric zeta functions
and have interesting sets of essential singularities.
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4.1. Construction of a class of paramorphic fractal zeta functions via a
sequence of generalized Cantor strings. In this subsection, using the results
of Section 3, we construct a fractal string L such that the corresponding geometric
zeta function ζL has prescribed values of abscissae of paramorphic continuation
Dpar(ζL) (see Definition 2.11), of meromorphic continuation D(ζmer) and of absolute
convergence D(ζL). The construction of L is based on a careful choice of a suitable
sequence of generalized Cantor strings. The corresponding precise result is stated
in Theorem 2.12, to which we refer the reader and which we now establish.

Proof of Theorem 2.12. Case (i): We first consider the case when D∞ < D1 = D.

As we have seen, each fractal string L(m,a)
∞ is bounded for any integer m ≥ 2 and for

any real number a ∈ (0, 1/m); see Eq. (3.14) above. Let (Dk)k≥2 be any decreasing
sequence of real numbers converging to D∞ as k → ∞ and such that D2 < D1.

Let (mk)k≥1 be a strictly increasing sequence of integers diverging to +∞ as
k → ∞, such that m1 ≥ 2. Next, we define positive real numbers ak by the

following equality: Dk = log1/ak mk; that is, ak := m
−1/Dk

k , for all k ≥ 1. We have

that mkak = m
1−1/Dk

k < 1; i.e., ak ∈ (0, 1/mk), for all k ≥ 1.
Now, we introduce the following sequence of bounded fractal strings:

(4.1) Lk :=
2−k

Lk
L(mk,ak)
∞ , for all k ≥ 1.

Here, L(mk,ak)
∞ is the generalized Cantor fractal string of infinite order defined by

Eq. (3.12), while Lk is its total length, given by (3.14). We have that

(4.2) Lk := |L(mk,ak)
∞ |1 = exp

( 1

1−mkak

)
− 1.

Since
lim
k→∞

mkak = lim
k→∞

m
1−1/Dk

k = (+∞)1−1/D = 0,

we conclude from Eq. (4.2) that

(4.3) lim
k→∞

Lk = e− 1.

Let us verify that the fractal string L, given as the disjoint union of the sequence
of bounded fractal strings (Lk)k≥1,

(4.4) L :=

∞⊔
k=1

Lk,

is well defined and bounded. Indeed, we have that

(4.5) |L|1 =
∞∑
k=1

|Lk|1 =
∞∑
k=1

2−k

Lk
|L(mk,ak)

∞ |1 =
∞∑
k=1

2−k = 1,

where in the next to last equality, we have made use of Eq. (4.2).
From the definition of the fractal string L in (4.4) (see also (4.1)), it follows that

(4.6) ζL(s) =
∞∑
k=1

ζLk
(s) =

∞∑
k=1

2−ks

Ls
k

ζ
L(mk,ak)
∞

(s),
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Figure 1. The set S∞ of essential singularities (denoted by small
circles) of the geometric zeta function ζL, corresponding to the fractal
string L constructed in the proof of Theorem 2.12 (see Eqs. (4.4)
and (4.1)), accumulates near the vertical line {Re s = D∞}. Here,
Dpar(ζL) = D∞, Dmer(ζL) = D1 and D(ζL) = dimL = D.

for all s ∈ C with Re s > D∞, except for the set of singularities. All the singu-
larities of ζL, contained in the right half-plane {Re s > D∞}, are essential, and
the corresponding set S∞ of its essential singularities, contained in this same half-
plane, coincides with the union over all k ∈ N of the sets of essential singularities
of ζ

L(mk,ak)
∞

:

(4.7) S∞ =
∞∪
k=1

(
Dk +

2π

log(1/ak)
iZ

)
.

This set S∞ consists of isolated singularities, which means that the geometric zeta
function ζL is paramorphic in the open right half-plane {Re s > D∞}; see Defini-
tion 2.1. [That the zeta function ζL(s) given by (4.6) is indeed well defined in the
connected open set {Re s > D∞} \ S∞, is shown in the Appendix (Section 6); see
Theorem 6.1.]

On the other hand, for each arithmetic set Dk + 2π
log(1/ak)

iZ, the value of pk :=
2π

log(1/ak)
(which is called the oscillatory period of the fractal string Lk; see, e.g., [12, p.

188] and [15]) tends to 0 as k → ∞, because

lim
k→∞

ak = lim
k→∞

m
−1/Dk

k = (+∞)−1/D = 0.

In particular, since Dk → D∞ as k → ∞, it follows that the set of accumulation
points of the set S∞ coincides with the vertical line {Re s = D∞}; see Figure 1.
Indeed, assume that z is an arbitrary complex number contained in the vertical line
{Re s = D∞}. For any connected open neighborhood N(z) of z, there are infinitely
many essential singularities of ζL contained in N(z)∩{Re s > D∞}. This shows that
D∞ is equal to the abscissa of paramorphic continuation Dpar(ζL) of the geometric
zeta function ζL.

Since the function ζL is holomorphic in the open right half-plane {Re s > D1},
while D1 is an essential singularity, it follows that the abscissa of meromorphic
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continuation Dmer(ζL) of ζL is equal to D1. This concludes the proof of the theorem
in case (i).

Case (ii): Let D∞ < D1 < D. Let L(m′,a′), where m′ is an integer ≥ 2 and
a′ ∈ (0, 1/m′), be a generalized Cantor string such that the abscissa D(ζL(m′,a′)) of
(absolute) convergence of its geometric zeta function ζL(m′,a′) is equal to D. Then,

the bounded fractal string L ⊔ L(m′,a′), where L is the fractal string from step
(i), satisfies the desired properties. Indeed, we have that ζL⊔L(m′,a′)(s) = ζL(s) +
ζL(m′,a′)(s), for all s ∈ C with Re s sufficiently large. Therefore, ζL⊔L(m′,a′) can be
paramorphically continued to the open right half-plane {Re s > D∞}.

This completes the proof of the theorem. □

The following questions arise naturally in this context:

Q1: What does the asymptotics of the tube function of a fractal string look like
when t → 0+, in the case when the associated geometric zeta function is paramor-

phic? For example, in the case of the fractal strings L(m,a)
n and L(m,a)

∞ constructed
above, as well as for L∞ appearing in Theorem 6.1 of the appendix below.

Q2: In the paramorphic case and under suitable polynomial-type growth hy-
potheses on ζL, is it possible to establish some kind of a tube formula for a fractal
string L if we know the complex dimensions of L?

In light of the results of Section 4.2 below, we could ask analogous questions
about fractal tube formulas for bounded subsets of RN (for N ≥ 2) and their dis-
tance zeta functions instead of for fractal strings and their geometric zeta functions
(corresponding to the case when N = 1, as in [15, Ch. 8]). For fractal tube for-
mulas for bounded sets (and, more generally, for relative fractal drums) in RN ,
see [12, Ch. 5] and [13]. We note that the results about the general fractal tube for-
mulas obtained in [15] and [12,13] assume the meromorphicity of a suitable fractal
zeta function in a suitable domain of C, along with appropriate growth conditions
satisfied by this zeta function. Finally, we mention that several results along the
lines suggested in question Q2 are provided in [14].

4.2. Harmonic functions and their essential singularities. We first introduce
the notion of an isolated singularity of a given harmonic function defined on a
connected open subset of the Euclidean two-dimensional plane.

Definition 4.1. Let U be a nonempty connected open subset of the 2-dimensional
plane R2. Let S be a set of isolated points of U such that a function u : U \S → R is
harmonic in U \S. (Observe that the set U \S is necessarily connected as well.) Let
v : U\S → R be a conjugate harmonic function of the given real-valued function u on
the connected set U \S, meaning that the function f : U \S → C (here, we identify
U \ S with the corresponding subset of C) defined by f(s) := u(x, y) + iv(x, y),
where s := x + iy, is holomorphic in U \ S. We then say that a point (x0, y0) ∈ S
is an isolated singularity of u if the corresponding complex number s0 := x0 + iy0
is an isolated singularity of f . In particular, we say that a point (x0, y0) ∈ S is an
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essential singularity (respectively, pole) of u if the corresponding complex number
s0 := x0 + iy0 is an essential singularity (respectively, pole) of f .

For a harmonic function u appearing in this definition, we say (in short) that
u is paraharmonic in U if each of its points in S is an isolated singularity of the
corresponding holomorphic function f : U \ S → C. Or even more succinctly, a
harmonic function u said to be paraharmonic in U if the corresponding complex-
valued function f is paramorphic in the set U , viewed as a connected open subset
of the complex plane.

It is easy to generate paraharmonic functions from paramorphic functions as
shown in the following example.

Example 4.2. The function u(x, y) = Re(e1/(x+iy−x0−iy0)) is paramorphic in R2.
Here, (x0, y0) ∈ R2 is the only singularity of u, and it is essential. Of course,
the above function is just the real part of the corresponding paramorphic function
f(z) = e1/(z−z0) discussed in Example 2.3.

Note that the notion of an isolated singularity (and in particular, of a pole, as well
as of an essential singularity) of a harmonic function u, introduced in Definition 4.1
above, is meaningful since the conjugate harmonic function v, defined on a connected
open set, is uniquely determined by u, up to an additive constant. In light of this
observation, adding a constant to the function f does not change the type of any
of its isolated singularities.

The following corollary of Theorem 2.12 shows that there exist explicit real-valued
functions u that are paraharmonic in a prescribed open right half-plane U in R2,
and possessing infinitely many essential singularities, accumulating densely along
the boundary ∂U (which, in this case, is a vertical line).

Corollary 4.3. Let U be an open right half-plane in R2 defined by U := {(x, y) ∈
R2 : x > D∞}, where D∞ ∈ [0, 1) is given. Let D1 and D be such that D∞ < D1 ≤
D < 1. Then, there exists an explicitly constructible real-valued function u which is
paraharmonic in U (in the sense of Definition 4.1), and is generated by the geometric
zeta function ζL of a bounded fractal string L (i.e., f = u + iv = ζL in Definition
4.1). Furthermore, the set S of its essential singularities is infinite, contained in
the semi-open vertical strip {(x, y) ∈ R2 : D∞ < x ≤ D1}, and such that the set of
accumulation points of S coincides with the vertical line {(x, y) ∈ R2 : x = D∞},
while u is harmonic in the open right half-plane {(x, y) ∈ R2 : x > D}.

Moreover, the open right half-plane {(x, y) ∈ R2 : x > D∞} is the maximal right
half-plane to which the function u can be paraharmonically extended.

Proof. The claim follows immediately from Theorem 2.12, by letting u := Re ζL.
The corresponding conjugate harmonic function is v := Im ζL. □

Remark 4.4. It is possible to construct a class of paraharmonic functions by using
paramorphic functions of a simpler type, for example g(s) := exp(1/s). Here, g is
paramorphic on C and s = 0 is the only isolated singularity of f . Furthermore, it
is an essential singularity of f . If S = {an : n ∈ N} is any set of isolated points
contained in a given connected open set U ⊆ C, then, by using the Weierstrass
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M -test, it is easy to verify that the function

f(s) :=

∞∑
j=1

1

n!
g(s− an) =

∞∑
j=1

1

n!
exp(1/(s− an))

is paramorphic on U . More precisely, f is holomorphic in U \ S; see Definition 2.1.
We can ensure that the set of accumulation points of the set S of isolated singu-
larities of f coincide with the boundary of U . However, we do not know if there
is a (bounded) fractal string L such that ζL(s) = g(s − a), for all s ∈ C with Re s
sufficiently large, where a ∈ (0, 1) is fixed.

5. Essential singularities of distance zeta functions

Let A be a nonempty bounded set in RN , where N is a positive integer, and
let d(x,A) := inf{|x − a| : a ∈ A} denote the Euclidean distance from x ∈ RN to
A. Assume that δ is an arbitrary positive real number, and let Aδ := {x ∈ RN :
d(x,A) < δ} be the open δ-neighborhood of A in RN . The distance zeta function
ζA of the set A is defined by

(5.1) ζA(s) :=

∫
Aδ

d(x,A)s−Ndx,

for all s ∈ C such that Re s is sufficiently large; see [11] or [12]. It is easy to verify
that the difference of distance zeta functions corresponding to different values of the
parameter δ > 0 is always an entire function. Hence, the value of the parameter δ is
unimportant, since it does not have any influence on the type of any of the isolated
singularities of the distance zeta function, considered on any given connected and
open subset U of the complex plane.

We denote by D(ζA) the abscissa of convergence of the Dirichlet-type integral
defining ζA on the right-hand side of (5.1); by definition, this means that {Re s >
D(ζA)} is the largest right-half plane for which the Lebesgue integral defining ζA in
(5.1) is convergent. Then, according to [12, Theorems 2.1.11 and 2.1.20], we have
that

(5.2) D(ζA) = DA,

the (upper) Minkowski (or box) dimension of A.10 Moreover, by analytic continua-
tion, Eq. (5.1) continues to hold for all s ∈ C with Re s > D(ζA); see loc. cit.

We refer the reader to interesting examples of obtained distance zeta functions
of various well-known fractal sets, such as the Sierpiński gasket and carpet, which
can be found in [12, Section 3.2] as well as in the paper [11].

Theorem 5.1. Let N ≥ 1 be a fixed but arbitrary integer. Let D∞, D1 and D be
real numbers belonging to the interval [0, N) and such that D∞ < D1 ≤ D. Then,
there exists an explicitly constructible nonempty bounded set A in RN such that the
corresponding distance zeta function ζA can be paramorphically extended to the open
right half-plane {Re s > D∞} and

(5.3) Dpar(ζA) = D∞, Dmer(ζA) = D1, D(ζA) = D.

10It follows from our hypotheses and the definition of DA that 0 ≤ DA ≤ N .
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The proof of the theorem rests on the following ‘shift property’. For another
related shift property result, see [11] or [12, Theorem 2.2.32 and Remark 2.2.33].

Lemma 5.2 (Shift property of distance zeta functions). Let L = (ℓj)j∈N be a
bounded fractal string, and let

(5.4) AL := {ak :=

∞∑
j=k

ℓj , k ∈ N}

be its canonical geometric realization contained in [0, a1]. Assume that δ > ℓ1/2.
Then, for any N ≥ 2,

(5.5) ζAL×[0,1]N−1(s) =
2N−s

s−N + 1
ζL(s−N + 1) + ζAL×{0}N−1(s) + g(s),

with g(s) := 2N−s

s−N+1δ
s−N+1, for all s ∈ C with Re s sufficiently large.

In particular, if S is the set of isolated singularities of a paramorphic extension
of ζL to the connected open subset U ⊆ C and is such that 0 /∈ S, then the shifted
set S + (N − 1) := {s + N − 1 : s ∈ S} is the set of isolated singularities of the
corresponding paramorphic extension of ζAL×[0,1]N−1. If 0 ∈ S, then the set of

isolated singularities of ζAL×[0,1]N−1 is (S + (N − 1)) ∪ {N − 1}.

Proof. Since δ > ℓ1/2, we have that (Aα)δ = (−δ, a1+ δ). The set (AL× [0, 1]N−1)δ
contained in RN is connected, and it can be obtained as the union V1 ∪ V2 ∪ V3 of
the following three disjoint subsets of RN :

V1 := [0, a1]× [0, 1]N−1, V3 := (AL)δ ∩ ({x1 < 0} ∪ {x1 > a1}),

V2 := (AL × [0, 1]N−1)δ \ (V1 ∪ V3).

If we let A′ := AL × [0, 1]N−1 ⊂ RN , we have that

(5.6) ζA′(s) =

∫
(A′)δ

d(x,A′)s−Ndx =

∫
V1

+

∫
V2

+

∫
V3

.

The last three integrals are respectively equal to the corresponding three terms on
the right hand-side of Eq. (5.5). For example, since

V1 := ∪∞
j=1[aj+1, aj ]× [0, 1]N−1,

then ∫
V1

d(x,A′)s−Ndx =

∞∑
j=1

∫ aj

aj+1

d(x1, {aj+1, aj})s−Ndx1

∫ 1

0
dx2· · ·

∫ 1

0
dxn

=
∞∑
j=1

2

∫ ℓj/2

0
τ s−Ndτ =

2N−s

s−N + 1

∞∑
j=1

ℓs−N+1
j

=
2N−s

s−N + 1
ζL(s−N + 1),

for all s ∈ C with Re s > N − 1. We leave to the interested reader the easy (and
analogous) verification of the other two equalities. □
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Proof of Theorem 5.1. We consider the following cases:

Case (i): ForN = 1, it suffices to use Theorem 2.12 with A := AL, where AL ⊂ R,
defined by Eq. (5.4), is the canonical geometric realization of the bounded fractal
string L appearing in Theorem 2.12.

Case (ii): If N ≥ 2, let A := AL × [0, 1]N−1; that is, A is the ‘fractal grill’
generated by the set AL. Then, the claim follows from Lemma 5.2, provided the
numbers D∞, D1 and D belong to the interval [N − 1, N).

Case (iii): In the general case, when N ≥ 2 and D∞, D1 and D are in [0, N),
we first take N1 to be the smallest integer strictly larger than D∞, and let D′

1 be a
real number belonging to (D∞, N1) and such that D′

1 ≤ D1. As in case (ii), we first
define the set A1 := AL × [0, 1]N1 , with the bounded fractal string L chosen as in
Theorem 2.12. Then D∞(ζA1) = D∞. We then let A′′ := A1 × {0}N−1−N1 ⊂ RN ,11

and finally, A := A′′ ∪ B ∪ C, where the sets B and C are defined so that the
corresponding distance zeta functions ζB and ζC can be paramorphically continued
to {Re s > 0}, such that D1 and D are then the respective isolated singularities,
D1 being the essential singularity of ζB and D the pole of ζC .

The set B can be constructed as the fractal grill B := C
(m1,a1)
∞ × [0, 1]d1, where

C
(m1,a1)
∞ is the canonical geometric realization of the fractal string L(m1,a1)

∞ , with
d1 := ⌊D1⌋, and the parameters m1 and a1 chosen so that log1/a1 m1 = D1 − d1.

Similarly, the set C can be constructed as the fractal grill C := C(m,a) × [0, 1]d, by
letting d := ⌊D⌋, and the parameters m and a chosen so that log1/am = D − d.

(Here, C(m,a) is the generalized Cantor set introduced in [12, Definition 3.1.1, p. 187],
determined by an integer m ≥ 2 and a positive real number a such that ma < 1.)

The claim now follows, since ζA(s) = ζA′′(s) + ζB(s) + ζC(s) for all s ∈ C with
Re s sufficiently large, and hence, ζA can be paramorphically continued to the open
right half-plane {Re s > D∞}.

This completes the proof of the theorem. □

6. Appendix

Here, we show that the geometric zeta function defined by Eq. (4.6) is paramor-
phic in the open right half-plane {Re s > D∞}; see Definition 2.1. This result is
needed in the proof of Theorem 2.12.

Theorem 6.1. The geometric zeta function ζL defined by Eq. (4.6) is paramorphic
in the open right half-plane {Re s > D∞}; that is, ζL ∈ Par({Re s > D∞}).

The proof of Theorem 6.1 follows from the following lemma, as will be explained
at the end of this appendix.

Lemma 6.2. Let U be any open disk contained in the set {Re s > D∞} \ S∞ with
sufficiently small radius, where the set S∞ of essential singularities of ζL is defined
by Eq. (4.7), and is such that the Euclidean distance from U to S∞ is positive.

11Note that the singularities of the distance and tube fractal zeta functions do not depend on
the dimension of the ambient space (see [19], along with [12, Section 4.7]); thus, Dpar(ζA1) =
Dpar(ζA′′) = D∞.
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Then, there exists ε > 0 such that for all s ∈ U and for each k ∈ N, we have that
|1−mk · ask| ≥ ε.

Proof. We consider the following three cases:

Case (a): Let U be as in the statement of the lemma and such that its closure does
not intersect any of the vertical lines {Re s = Dk}, where k ∈ N. We assume that
for some k0 ∈ N, the set U is placed between the two consecutive lines {Re s = Dk0}
and {Re s = Dk0+1}, i.e., in the open vertical strip {Dk0+1 < Re s < Dk0}. In other
words,

(6.1) Dk0+1 < inf
s∈U

Re s ≤ sup
s∈U

Re s < Dk0 .

We have that

|1−mk · ask|2 = m2
k · a2Re s

k − 2mk · aRe s
k cos

(
(log ak)(Im s)

)
+ 1

≥ (1−mk · aRe s
k )2;

so that |1 − mk · ask| ≥ |1 − mk · aRe s
k |, for all s ∈ U and k ∈ N. Hence, since

ak = m
−1/Dk

k , we obtain the following inequality:

(6.2) |1−mk · ask| ≥ |1−m
1−(Re s)/Dk

k |.
Now, let us consider the following two subcases:

Case (a1): If k = 1, . . . , k0, then, since sups∈U Re s < Dk, for any s ∈ U we have
that

|1−m
1−(Re s)/Dk

k | = m
1−(Re s)/Dk

k − 1 ≥ m
1−(sups∈U Re s)/Dk

k − 1 > 0.

Let

ε1 := min
{
m

1−(sups∈U Re s)/Dk

k − 1 : k = 1, . . . , k0

}
> 0.

Then, in light of Eq. (6.2), we have that |1 − mk · ask| ≥ ε1, for all s ∈ U and
1 ≤ k ≤ k0.

Case (a2): If k ≥ k0 + 1, then, since infs∈U Re s > Dk for all ≥ k0 + 1, it follows
that for any s ∈ U ,

|1−m
1−(Re s)/Dk

k | = 1−m
1−(Re s)/Dk

k ≥ 1−m
1−(Re s)/Dk

k0+1

≥ 1−m
1−(Re s)/Dk0+1

k0+1 ≥ 1−m
1−(infs∈U Re s)/Dk0+1

k0+1 =: ε2.

By letting ε := min{ε1, ε2} > 0, we deduce from Eq. (6.2) that |1−mk · ask| ≥ ε,
for all s ∈ U and k ∈ N. This completes the proof of the lemma in case (a).

Case (b): Assume that the disk U is such that it intersects the vertical line
{Re s = Dk0}, for some k0 ≥ 2, and let U be a disk of sufficiently small radius, so
that Dk0+1 < infs∈U Re s ≤ sups∈U Re s < Dk0−1. Analogously as in case (a), we
have that there exists a positive real number ε1 such that |1−mk · ask| ≥ ε1, for all
k ̸= k0.

When k = k0, there exists a positive constant ε2 such that h(s) := |1−mk0 ·ask0 | ≥
ε2, for all s ∈ U . Indeed, the only zeros of the function h : C → [0,+∞) are elements
of the arithmetic sequence Sk0 := Dk0 +

2π
log(1/ak0 )

iZ. Since U and Sk0 are disjoint
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(here, U denotes the closure of U in C), then h(s) > 0 for all s ∈ U ; so that the
continuous function h = h(s) has a strictly positive minimum on the compact set
U ; that is, ε2 := mins∈U h(s) > 0.

The claim of the lemma in case (b) follows immediately by choosing ε :=min{ε1, ε2}.

Case (c): The remaining case, when the open disk U is such that infs∈U Re s >
D1, is treated analogously as in case (a2).

This completes the proof of the lemma. □

Proof of Theorem 6.1. Let U be an arbitrary open disk contained in {Re s > D∞}\
S∞. Let us show that the geometric zeta function

(6.3) ζL(s) :=
∞∑
k=1

2−ks

Ls
k

ζ
L(mk,ak)
∞

(s) =
∞∑
k=1

2−ks

Ls
k

∞∑
n=1

(1−mk · ask)−n

(n!)s

is well defined.
In light of Lemma 6.2 and since the sequence (Lk)k≥1 is bounded from below by

a positive constant L (see Eq. (4.3)), we deduce from (6.3) that for all s ∈ U ,

(6.4)

|ζL(s)| ≤
∞∑
k=1

2−kRe s

LRe s
k

∞∑
n=1

εn

(n!)Re s

≤ L−Re s
∞∑
k=1

2−kRe s
∞∑
n=1

εn

(n!)Re s
=

(2L)−Re s

1− 2−Re s

∞∑
n=1

εn

(n!)Re s

≤ (2L)− infs∈U Re s

1− 2− sups∈U Re s

∞∑
n=1

εn

(n!)infs∈U Re s
< ∞.

Hence, by using the Weierstrass M -test, we conclude that the function ζL is well
defined and holomorphic in {Re s > D∞} \ S∞. By Definition 2.1, this means
that ζL is paramorphic in the open right half-plane {Re s > D∞}; that is, ζL ∈
Par({Re s > D∞}). □
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