


1096 C. G. LEFTER AND E. A. MELNIG

where −A is generator of an analytic semigroup S(t) = e−tA, in a Banach space X,
f ∈ Lq(X) := Lq(0, T ;X), y0 ∈ X. The mild solution is written in the form

(1.5) y(t) = e−tAy0 +

∫ t

0
e−(t−s)Af(s)ds = S(t)y0 + [S ∗ f ](t).

The classical reference for existence and regularity of solutions to parabolic prob-
lems with f ∈ Lp(Q) = Lp(Lp(Ω)) is the monograph by O. A. Ladyzenskaja, V.
A. Solonnikov, N .N. Uralceva [21], where maximal regularity is obtained in the

anisotropic Sobolev spaces W 2,1
p (Q). The regularity of solutions to abstract para-

bolic problems (1.4) by using the representation (1.5) and estimates in real inter-
polation spaces, was considered in the paper of Gabriella Di Blasio [13]; there, for
f ∈ Lq(X) one obtains S ∗ f ∈W θ,q(X), θ ∈]0, 1[ and S ∗ f ∈ Lq(DA(θ, q)), θ ∈]0, 1[
(here DA(θ, q) = (X,D(A))θ,q and W θ,q(X) is a vector valued Sobolev-Slobodeckii
space).

The existence and maximal regularity in concrete parabolic problems with
X = Lp(Ω) is established by W. von Wahl in [35], where estimates for S ∗ f ∈
Lq(D(A)), Dt(S ∗ f) ∈ Lq(X) in terms of norm of f ∈ Lq(Lp(Ω)) with q, p > 1 are
obtained by applying a refined study of A. Benedek, A. P. Calderón, R. Panzone [7]
on the convolution of operators, using ideas from the theory of singular integrals.

When dealing with parabolic problems with nonhomogeneous boundary condi-
tions, a study of maximal regularity in Lq(Lp) spaces was established by P. Weide-
maier [36,37].

Maximal regularity in Lq(X) for abstract parabolic problem (1.4) is deeply related
to the geometry of X and properties of operator A. More precisely, if X is UMD
space (a space with unconditional martingale difference property or, equivalently,
a space having the property that the vector valued Hilbert transform is bounded
in Lq(X)) and A is sectorial with bounded imaginary powers, A ∈ BIP (X, θ),
with spectral angle θ < π

2 , then equation (1.4) has maximal regularity property:

y ∈W 1,q(X)∩Lq(D(A)). We refer here to the monograph of C. Martinez Carracedo,
M. Sanz Alix [24], Chapter 8 and the references therein. An essential ingredient in
the approach of such problems is a theorem of G.Dore and A.Venni characterizing
invertibility of sums of operators in BIP class.

The BIP class is important in our presentation of parabolic regularity; it allows to
characterize the domains of powers of positive operators defined by elliptic operators
with boundary conditions, as complex interpolation spaces. In such situation these
are closed subspaces of Bessel potential spaces (this important result is due to R.
T. Seeley [30]). Then, by using an argument based on extension operators one may
relate these spaces to Sobolev-Slobodeckii spaces. Another ingredient we use in
studying regularity is represented by convolution estimates in Lr(D(Aγ)), by using
estimates which are specific to analytic semigroups, in domains of fractional powers
of the generating operator.

As we are interested in Lp realizations of elliptic operators in bounded domains,
we mention that the boundedness of imaginary powers of such operators was proved
by R. T. Seeley in [32] by using a representation of the resolvent and the theory of
pseudodifferential operators ( [29,31]). A more direct approach to such results was
given by J. Prüss and H. Sohr in [27] (see also Th. 12.1.12 in [24]). We also mention
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here the paper by R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni [12] for a study
of elliptic operators with Hölder coefficients in principal part, in connection to the
H∞ calculus and the BIP property.

The parabolic regularity we present may be derived from existing theory in the
cited literature and we chose to present it in a more concentrated appearance,
which is useful for studying regularity in nonlinear parabolic problems, through
bootstrap arguments, when the nonlinearity depends on y and Dy. The parabolic
regularity results are then used to present alternative proofs to classical embeddings
for anisotropic Sobolev spaces and we also use this approach to Sobolev embeddings
of W 2,1

p,q (Q) spaces.
Concernig classical Gagliardo-Nirenberg inequalities for Sobolev-Slobodeckii

spaces, in the most general framework, we refer to the papers of H. Brezis and P.
Mironescu [9, 10]. We discuss Gagliardo-Nirenberg type inequalities for anisotropic
Sobolev spaces.

Global Carleman inequalities in L2 for parabolic problems were established by
O.Yu. Imanuvilov in the context of controllability problems when the control is
supported in a subdomain. We refer to the work of A. V. Fursikov and O. Y.
Imanuvilov [17] and the monograph of V. Barbu [6]; see also the paper of E. Fer-
nandez-Cara, E. Zuazua [16] where the cost of approximate controllability is esti-
mated through a careful analysis of the Carleman inequalities and the constants
there involved. Global parabolic Carleman estimates in Lq, q ≤ 2 for homogeneous
parabolic equations, in the context of control and observability, were considered by
V. Barbu [5].

These estimates found applications to the stability estimates in inverse parabolic
problems. We refer to the work of O. Y. Imanuvilov and M. Yamamoto [19] for
L2 stability. The Lq Carleman estimates in the framework of inverse problems
were studied by E. A. Melnig in [25]. This motivates us to apply our regularity
arguments to establish global Carleman parabolic estimates in Lq(Lp), q, p > 2
spaces, for nonhomogeneous parabolic equations.

2. Function spaces and Sobolev embeddings

Interpolation. Consider two Banach spaces E0, E1 with contionuous and dense em-
bedding E1 ⊂ E0. For θ ∈]0, 1[ denote by [E0, E1]θ the complex interpolation space
of order θ. If p ∈]1,∞[, denote by (E0, E1)θ,p the real interpolation space. When
E0, E1 are Hilbert spaces, [E0, E1]θ = (E0, E1)θ,2.

If F0, F1 are another two Banach spaces with contionuous and dense embedding
F1 ⊂ F0 and T ∈ L(E0, F0) and T ∈ L(E1, F1) then the Riesz-Thorin-Marcinkiewicz
theorem states that T ∈ L([E0, E1]θ, [F0, F1]θ) with convex inequality

∥T∥L([E0,E1]θ,[F0,F1]θ) ≤ ∥T∥1−θL(E0,F0)
∥T∥θL(E1,F1)

.

Spaces of functions. Let Ω ⊂ Rn be a bounded domain with smooth boundary. The
classical Sobolev spaces of integer order k and for p ∈ [1,∞[ are

(2.1) W k,p(Ω) = {f ∈ Lp(Ω) : Dβf ∈ Lp(Ω), for |β| ≤ k},
where β = (β1, . . . , βn) is a multi-index, |β| = β1 + · · ·βn, and the associated norm
is the canonical one.
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For a given s ∈]0, 1[ and p ∈ [1,∞[ the Sobolev-Slobodeckii space (or fractional
Sobolev space) is defined by

(2.2) W s,p(Ω) =

{
f ∈ Lp(Ω) : ∥f∥Lp +

(∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

<∞

}
,

with the norm ∥f∥W s,p(Ω) the finite quantity above. For s > 1 not an integer

the space W s,p(Ω) is defined as the space of functions f ∈ W [s],p(Ω) such that

Dβf ∈ W s−[s],p(Ω) for all multi-index β with |β| = [s] and is endowed with the
natural norm.

For the fractional Sobolev spaces W s,p(Ω), with s ∈]0, 1[ and p ∈]1,∞[, one has
a characterization by real interpolation (see [34], p.317):

(2.3) W s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.

The Bessel potential spaces for s > 0, p ∈ [1,∞[ are defined using the Fourier
transform F as

(2.4) Hs,p(Rn) = {f ∈ Lp(Rn) : ∥f∥Hs,p = ∥F−1[(1 + |x|2)s/2Ff ]∥Lp <∞}.

For s = k ∈ N and p ∈]1,∞[ one has

Hk,p(Rn) =W k,p(Rn).

If p = 2 this is an immediate consequence of properties of the Fourier transform.
However, in the case p ̸= 2 this is a deep result and the proof relies on a study of the
Bessel potential using the theory of singular integrals (see [33], Theorem 3,p.135).

The Bessel potential spaces behave well under complex interpolation, defining a
complete scale of spaces (see [34], p.185): if s = θs2 + (1 − θ)s1 for some θ ∈]0, 1[
then

(2.5) Hs,p(Rn) = [Hs1,p(Rn),Hs2,p(Rn)]θ.

One defines Hs,p(Ω) as the space of restrictions to Ω of functions in Hs,p(Rn) with
∥f∥Hs,p(Ω) = inf{∥g∥Hs,p(Rn) : g|Ω = f}.

Consider also for k ∈ N, Ck(Ω) to be the space of functions f : Ω → R for which
Dβf is bounded and uniformly continuous on Ω, for 0 ≤ |β| ≤ k. For 0 < α < 1,
the Hölder space Ck,α(Ω) is the subspace of Ck(Ω) of functions f for which

sup
x,y∈Ω,x ̸=y

|Dβf(x)−Dβf(y)|
|x− y|α

< +∞.

Ck,α(Ω) is a Banach space with the norm

(2.6) ∥f∥Ck,α(Ω) := max
0≤|β|≤k

sup
x∈Ω

|Dβf(x)|+ max
|β|=k

sup
x,y∈Ω,x ̸=y

|Dβf(x)−Dβf(y)|
|x− y|α

.

We will also consider anisotropic Hölder spaces in Q, Cα,
α
2 (Q), with α not integer.

For 0 < α < 1, this is the space of continuous functions g : Q → R having the
property that t → g(t, x) is in C0,α

2 ([0, T ]) for all x ∈ Ω, with uniformly bounded
norm with respect to x ∈ Ω, and x → g(t, x) belongs to C0,α(Ω) for all t ∈ [0, T ],
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with uniformly bounded norm with respect to t ∈ [0, T ]. It is a Banach space with
the norm

(2.7) ∥g∥
Cα,α2 (Q)

:= sup
(t,x)∈Q

|g(t, x)|+ sup
(t,x) ̸=(s,y)∈Q

|g(t, x)− g(t, y)|
(|x− y|2 + |t− s|)

α
2

For noninteger α > 1 we refer to [21] for the definition of Cα,
α
2 (Q).

In the present paper we will use the classical results on embeddings of Bessel
potential and Sobolev spaces into Lebesgue and Hölder spaces (see e.g. [1], [8], [3],
[34]) which state that

Theorem 2.1. For 0 < s and 1 < p < ∞ the following continuous embeddings
hold:

W s,p(Ω),Hs,p(Ω) ⊂


Lp̃(Ω), p̃ = np

n−sp if sp < n,

Lp̃(Ω), p̃ ∈ [p,∞[ if sp = n,
Cr,α(Ω), α ∈]0, 1[, r ∈ N, r + α = s− n

p if sp > n.

Let (X, ∥ · ∥) be a Banach space. One defines the vector valued Lebesgue spaces,
Sobolev spaces and Hölder spaces in analogy to the corrsponding scalar cases (by
replacing | · | with ∥·∥ when this is applied to functions) and we denote by Lq(X) :=
Lq(0, T ;X),W s,q(X) :=W s,q(0, T ;X), Ck,α(X) = Ck,α([0, T ];X).

We will be particularly interested in the case X = Lp(Ω) for some p ∈]1,∞[.
In estimates in the last section we will denote, for simplicity, by Lq(Lp) the space
Lq(Lp(Ω)).

One defines the anisotropic Sobolev spaces as:

(2.8) W 2,1
p (Q) =W 1,p(Lp(Ω)) ∩ Lp(W 2,p(Ω)).

For the study of parabolic problems in these spaces, we refer to the classical
monograph [21]. We give here a simplified version of Lemma 3.3 from the cited
reference, which states corresponding Sobolev embeddings:

Theorem 2.2. Consider u ∈W 2,1
p (Q), p ∈]1,∞[. Then u ∈ Z1, with

Z1 =


Lr(Q) with r = (n+2)p

n+2−2p when p < n+2
2

Lr(Q) with r ∈ [p,∞[, when p = n+2
2

Cα,α/2(Q) with 0 < α < 2− n+2
p , when p > n+2

2

and there exists C = C(Q, p, n) such that

∥u∥Z1 ≤ C∥u∥
W 2,1

p (Q)
.

Moreover, Du ∈ Z2 with

Z2 =


Lr1(Q) with r1 =

(n+2)p
n+2−p when p < n+ 2

Lr1(Q) with r1 ∈ [p,∞[, when p = n+ 2

Cα,α/2(Q) with 0 < α < 1− n+2
p , when p > n+ 2

and there exists C = C(Q, p, n) such that

∥Du∥Z2 ≤ C∥u∥
W 2,1

p (Q)
.
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For p, q ∈ [1,∞[ consider the spaces (see [36,37]):

W 2,1
p,q (Q) = Lq(W 2,p(Ω)) ∩W 1,q(Lp(Ω)).

One of the main results in the paper is about Sobolev type embeddings forW 2,1
p,q (Q),

and the approach will rely on the regularity of flows generated by analytic semi-
groups.

3. Operators, semigroups and parabolic regularity

We recall a number of classical notions and results from the Theory of operator
semigroups, for which we refer e.g. to [23,26]. We also discuss convolution estimates
between operator valued and vector valued functions.

Analytic semigroups. Let (X, ∥ · ∥) be a Banach space and A : D(A) ⊂ X → X be
a positive operator such that −A is the generator of an analytic semigroup on X.
This is equivalent to the existence of some δ > 0, π2 > ω > 0 such that

σ(A) ⊂ Vδ,ω := {λ ∈ C : | arg(λ− δ)| < ω}

and for some constantM > 0 and λ ∈ C\Vδ,ω one has the estimate for the resolvent
R(λ,A) = (λI −A)−1:

∥R(λ,A)∥L(X) ≤
M

1 + |λ|
.

Denoting by S(t) = e−tA the semigroup generated by −A one may consider the
linear nonhomogeneous Cauchy problem in X, (1.4), whose mild solution is given
by (1.5).

Powers of operators and domains. The fractional powers of A are defined for α ∈
C, Reα < 0 as:

Aα =
1

2π

∫
γr,θ

λαR(λ,A)dλ,

where γr,θ = {reiθ : r ≥ 0} ∪ {re−iθ : r ≥ 0} oriented from ∞eiθ to ∞e−iθ and
ω < θ < π. For Reα ∈]− 1, 0[ this formula may be put in the form:

Aαx = −sin(πα)

π

∫ ∞

0
λα(λI +A)−1xdλ.

For α, β with negative real parts one has Aα+β = AαAβ. For Reα < −n one has
RangeAα ⊂ D(An) and AnAα = An+α. This motivates the definition of the powers
for 0 ≤ Reα < n, n ∈ N as

D(Aα) = {x ∈ X : Aα−nx ∈ D(An)}, Aαx = AnAα−nx.

We note here that a fundamental property, characterising the norm in domains
of fractional powers of the trajectories, of the semigroup generated by −A is that
(see [26], Th.6.13) for α ∈]0, 1], there exists M =M(α) such that on ]0, T ] one has
for all x ∈ X:

(3.1) ∥AαS(t)x∥ ≤Mt−α∥x∥.
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We are interested in our paper on characterisations of domains of fractional pow-
ers of positive operators, generating analytic semigroups, as above, and we have
(see [34] Th.1.15.3, [23] Th.4.2.6, [24] Th.11.6.1):

Theorem 3.1. If A is a densely defined positive operator, such that Ait ∈ L(X), t ∈
R, then for 0 ≤ Reα < Reβ one has

(3.2) [D(Aα), D(Aβ)]θ = D(A(1−θ)α+θβ).

A more direct approach to the characterisation of Lp realizations of elliptic oper-
ators as belonging to the BIP class comes through transference methods (see [11])
and we mention in this respect the following theorem (see [23], Th.4.2.4):

Theorem 3.2. Let (Ω, µ) be a σ−finite measure space and let p ∈]1,∞[. Suppose
A is a positive operator in Lp(Ω, µ) such that for λ > 0, ∥(λI +A)−1∥L(X) <

1
λ and

(λI +A)−1 has the property that (λI +A)−1f ≥ 0 in Ω, whenever f ∈ Lp(Ω, µ) and
f ≥ 0 in Ω. Then A has bounded imaginary powers in Lp(Ω, µ).

We consider now an uniformly elliptic operator in the form (1.2) with the assumed
regularity for coefficients and ellipticity conditions. The Lp realization for some
p ∈]1,∞[, with homogeneous Dirichlet boundary conditions for L takes into account
the Lp regularity theory for elliptic equations (see [18]) and is defined as A = Ap :

D(A) =W 2,p(Ω) ∩W 1,p
0 (Ω) with Au = Lu, u ∈ D(A).

Without loss of generality concerning regularity we may suppose that L is pos-
itive. In fact there always exists λ0 > 0 such that L + λ0I is positive. Moreover,
one knows that −A generates an analytic semigroup in Lp(Ω).

Maximum principle applied to elliptic operator L shows that (λI +A)−1 is posi-
tivity preserving and by Theorem 3.2 we find that A = Ap has bounded imaginary
powers. We have thus:

Theorem 3.3. The operator A = Ap with p ∈]1,∞[, which is the Lp realization of
elliptic operator L with homogeneous boundary conditions on ∂Ω, has the property
that, for γ ∈]0, 1[,

D(Aγ) = [Lp(Ω),W 2,p(Ω) ∩W 1,p
0 (Ω)]γ .

The characterization of complex interpolation spaces between domains of opera-
tors with boundary conditions is studied in [30]. The result in our case of Dirichlet

homogeneous boundary conditions tells basically that [Lp(Ω),W 2,p ∩W 1,p
0 (Ω)]γ co-

incides with H2γ,p(Ω) for 2γp < 1 and is the closed subspace of H2γ,p(Ω) containing
functions with null boundary conditions when 2γp ≥ 1 (in the case 2γp = 1 the
trace is understood in a generalized sense). Relation between domains of fractional
powers of operator A and Sobolev-Slobodeckii spaces is given in the next proposi-
tion:

Proposition 3.4. Consider γ ∈]0, 1[. Then, if p ≥ 2, one has the continuous
inclusion

D(Aγ) ⊂ H2γ,p(Ω) ⊂W 2γ,p(Ω).

If 1 < p < 2 and γ′ < γ,

D(Aγ) ⊂ H2γ,p(Ω) ⊂W 2γ′,p(Ω).
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with continuous inclusion.

Proof. Consider a linear continuous extension operator

E :W 1,p
0 (Ω) ∩W 2,p(Ω) + Lp(Ω) →W 2,p(Rn) + Lp(Rn).

By Riesz-Thorin-Marcinkiewicz we have that E is continuous between interpolated
spaces

E ∈ L([X,D(A)]γ , [L
p(Rn),H2,p(Rn)]γ)

Observe that, if p ≥ 2, one has by Theorem 5, p.155 in [33]

H2γ,p(Rn) = [Lp(Rn),H2,p(Rn)]γ ⊂W 2γ,p(Rn).

By the same theorem in [33], if 1 < p < 2

H2γ,p(Rn) = [Lp(Rn),H2,p(Rn)]γ ⊂ B2γ
p,2(R

n) =

= (Lp(Rn),W 2,p(Rn))γ,2 ⊂ (Lp(Rn),W 2,p(Rn))γ′,p =W 2γ′,p(Rn).

Here B2γ
p,2 is a Besov space (see [34]). On the other hand,

D(Aγ) = [X,D(A)]γ .

Suppose first that p ≥ 2 and u ∈ D(Aγ); we have

∥u∥D(Aγ) ≥ C∥Eu∥[Lp,H2,p]γ ≥ C∥Eu∥W 2γ,p(Rn) ≥ C∥u∥W 2γ,p(Ω).

If 1 < p ≤ 2 and u ∈ D(Aγ) and 0 < γ′ < γ, we have by a similar argument

∥u∥D(Aγ) ≥ C∥Eu∥[Lp,H2,p]γ ≥ C∥Eu∥W 2γ′,p(Rn) ≥ C∥u∥W 2γ′,p(Ω).

Last inequalities above follow from the fact that Sobolev-Slobodeckii norm is in
integral form and restricting the respective integrals to Ω will decrease the value of
the integral. □

Convolution estimates. When searching for various types of solutions (classical,
strong, weak) one needs to study convolutions between operator valued functions
and vector valued functions.

Besides the spaces Lq(X), we also consider the space Lqw(X) = Lqw(0, T ;X) for
q > 1, which is defined, analogously to the scalar case, as the space of measurable
functions h : [0, T ] → X such that

(3.3) ∥h∥Lq
w(X) := sup

λ>0
λµ({t ∈ [0, T ] : ∥h(t)∥X ≥ λ})

1
q <∞.

We may formulate the following result on convolutions of operator valued with
vector valued functions, analogously to the scalar case:

Lemma 3.5. Let X,Y be two Banach spaces and p, q, r ∈ [1,∞] such that 1 + 1
r =

1
p +

1
q . Consider S ∈ Lp(0, T ;L(X,Y )) and f ∈ Lq(0, T ;X) Then S ∗ f defined by

[S ∗ f ](t) =
∫ t
0 S(t− s)f(s)ds belongs to Lr(0, T ;Y ) and

(3.4) ∥S ∗ f∥Lr(Y ) ≤ ∥S∥Lp(L(X,Y ))∥f∥Lq(X).
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Moreover, if p, q, r ∈]1,∞[ and S ∈ Lpw(L(X,Y )), then [S ∗f ](t) =
∫ t
0 S(t−s)f(s)ds

belongs to Lr(0, T ;Y ) and there exists C = C(p, q) such that

(3.5) ∥S ∗ f∥Lr(Y ) ≤ C∥S∥Lp
w(L(X,Y ))∥f∥Lq(X).

Proof. The proof of this result follows easily from the result in the scalar case.

Since ∥[S ∗ f ](t)∥Y ≤
∫ t
0 ∥S(t− s)∥L(X,Y )∥f(s)∥Xds, we may apply the convolution

estimates for scalar functions ∥S(·)∥L(X,Y ) and ∥f(·)∥, for which we refer to Lemma
1.4 respectively to Theorem 1.5 in [4]. □

Regularity for parabolic problems. Consider X = Lp(Ω) and the parabolic problem
with homogeneous initial data:

(3.6) y′ +Ay = f, y(0) = 0, t ∈]0, T [
with A the Lp realization of parabolic operator L with Dirichlet boundary con-
ditions. It turns out that D(A) = W 2,p ∩ W 1,p

0 (Ω). The mild solution is given
by

(3.7) y(t) =

∫ t

0
e−(t−s)Af(s)ds.

Our purpose is to obtain regularity in Lr(D(Aγ)) and, subsequently, relating
D(Aγ) to Bessel potential and Sobolev-Slobodeckii spaces, in Lr(Hs,p(Ω)) and
Lr(W s,p(Ω)), for some s > 0, r > 1.

Spatial regularity.

Theorem 3.6. Let A be a positive operator with −A generator of an analytic semi-
group, q ∈]1,∞[ and f ∈ Lq(X). Consider γ ∈ [ q−1

q , 1[. With r ∈]q,∞] such that

1 + 1
r = 1

q + γ, we have y ∈ Lr(D(Aγ)) (for γ = q−1
q we have y ∈ L∞(D(A

q−1
q ))).

Moreover, for some constant C = C(γ, q)

(3.8) ∥y∥Lr(D(Aγ)) ≤ C∥f∥Lq(X).

If for some σ ∈]0, 1[ we have f ∈ Lq(D(Aσ)), then for σ + q−1
q ≤ γ < 1 + σ and r

given by 1 + 1
r = 1

q + γ − σ one has y ∈ Lr(D(Aγ)). Moreover, for r, γ, σ as above

there exists C = C(σ, γ, q) such that

(3.9) ∥y∥Lr(D(Aγ)) ≤ C∥f∥Lq(D(Aσ)).

Proof. By Theorem 6.13, [26], p.74 ,

∥AγS(t)∥L(X) ≤
C

tγ

This implies that for 1 ≤ q̃ < 1
γ

∥S(·)∥L(X,D(Aγ)) ∈ Lq̃(0, T ),

and in the limit

∥S(·)∥L(X,D(Aγ)) ∈ L
1
γ
w(0, T ).

Then, by convolution estimates we have:
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∥y∥Lr(D(Aγ)) ≤ C∥S(·)∥
L

1
γ
w (L(X,D(Aγ))

∥f∥Lq(X) ≤ C∥f∥Lq(X).

The case f ∈ Lq(D(Aσ)) may be treated in the same way by using convolution
estimates and taking into account that, for γ > σ, there exists C = C(σ, γ) such
that

∥AγS(t)x∥ ≤ C

tγ−σ
∥Aσx∥, x ∈ D(Aσ),

which gives that for σ + q−1
q ≤ γ < 1 + σ one has

S ∈ L
1

γ−σ
w (L(D(Aσ), D(Aγ)))

and (3.9) follows as above.
□

Temporal regularity. The next result is probably known but we did not find the
appropriate reference. It is a generalization of Th.3.1,Ch.4 in [26], with similar ideea
of proof, and gives regularity in spaces C0,α(D(Aγ)) for appropriate α, γ ∈]0, 1[.

Theorem 3.7. For f ∈ Lq(X), q ∈]1,∞[, the mild solution y = S ∗f given by (3.7)

belongs to the spaces C
0, q−1

q
−γ

(D(Aγ)), γ ∈]0, q−1
q [, and there exists C = C(q, γ)

such that the following estimate holds

∥S ∗ f∥
C

0,
q−1
q −γ

(D(Aγ))
≤ C∥f∥Lq(X).

Proof. First, observe that ∥AγS(t)x∥X ≤ C 1
tγ ∥x∥X and 1

tγ ∈ Lq
′
(0, T ), q′ = q

q−1 , as

q′γ < 1. From Lemma 3.5 we have a first estimate

(3.10) ∥S ∗ f∥L∞(D(Aγ)) ≤ C∥f∥Lq(X).

In order to prove Hölder continuity, we need now the following classical estimate
for the analytic semigroup generated by −A (see [26], Th.6.13,Ch.2):

∥S(t)x− x∥X ≤ C(α)tα∥Aαx∥X , x ∈ D(Aα), α ∈]0, 1],

which has as consequence,

∥AγS(t+ h)x−AγS(t)x∥X ≤ C(α, γ)
hα

tα+γ
∥x∥X , 0 < α, γ, α+ γ < 1.

Now we estimate the difference

Aγy(t+ h)−Aγy(t) =

∫ t+h

t
AγS(t+ h− s)f(s)ds

+

∫ t

0
Aγ [S(t+ h− s)− S(t− s)]f(s)ds

= I1 + I2.

We estimate the two terms:

∥I1∥X ≤
∫ t+h

t
∥AγS(t+ h− s)f(s)∥Xds =

∫ h

0
∥AγS(τ)f(t+ h− τ)∥Xdτ
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≤
∫ h

0

1

τγ
∥f(t+ h− τ)∥Xdτ ≤

(∫ h

0
∥f(t+ h− τ)∥qXdτ

) 1
q
(∫ h

0

1

τγq′
dτ

) 1
q′

≤ C∥f∥Lq(X)h
1
q′−γ ,(3.11)

with q′ = q
q−1 and γq′ < 1.

For I2 we choose α+ γ = 1
q′ and we have

∥I2∥X ≤
∫ t

0
∥Aγ [S(t+ h− s)− S(t− s)]∥L(X)∥f(s)∥Xds

≤
∫ t

0
C(α, γ)

hα

(t− s)α+γ
∥f(s)∥Xds

≤ C(α, γ)hα
∥∥∥∥ 1

(·)α+γ
∗ ∥f(·)∥X

∥∥∥∥
L∞(0,T )

(3.12)

≤ C(α, γ)hα
∥∥∥∥ 1

(·)α+γ

∥∥∥∥
L

1
α+γ
w (0,T )

∥f∥Lq(X).

Conclusion now follows from (3.11),(3.12) and (3.10).
□

Consequences of spatial regularity. Proposition 3.4 and Theorem 3.6 have as imme-
diate consequence

Proposition 3.8. Consider q, p ∈]1,∞[ and f ∈ Lq(Lp(Ω)). For r ∈]q,∞] and
θ = 2 + 2

r −
2
q , the mild solution y to (3.6), given by (3.7), satisfies the regularity

estimate:

(3.13) ∥y∥Lr(Hθ,p(Ω))) ≤ C∥f∥Lq(Lp(Ω)),

with a constant C = C(p, q, r).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, and choosing

θ̃ = 1 + 2
r1

− 2
q , the gradient of the mild solution y satisfies the regularity estimate:

(3.14) ∥Dy∥
Lr1 (H θ̃,p(Ω))

≤ C̃∥f∥Lq(Lp(Ω)).

with a constant C̃ = C̃(p, q, r1).

Remark 3.9. If we take into account Proposition 3.4, we find for p ≥ 2, with
r ∈]q,∞] and θ = 2 + 2

r −
2
q , the estimate:

∥y∥Lr(W θ,p(Ω)) ≤ C(p, q, r)∥f∥Lq(Lp(Ω)),

while for 1 < p < 2 and θ′ < 2 + 2
r −

2
q one has

∥y∥Lr(W θ′,p(Ω)) ≤ C(p, q, r, θ′)∥f∥Lq(Lp(Ω)).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, with θ̃ = 1 + 2

r1
− 2

q ,

when p ≥ 2, one has the estimate

∥Dy∥
Lr1 (W θ̃,p(Ω))

≤ C̃(p, q, r̃)∥f∥Lq(Lp(Ω))
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while when p ∈]1, 2[, with θ′ < 1 + 2
r1

− 2
q we have

∥Dy∥Lr1 (W θ′,p(Ω)) ≤ C̃(p, q, r̃)∥f∥Lq(Lp(Ω)).

Using the Sobolev embeddings for Hs,p(Ω),W s,p(Ω) with s = θ or s = θ̃, in the
framework of Proposition 3.8 and Remark 3.11, we find the following estimates for
the mild solution to (3.6):

Corollary 3.10. With r ∈]q,∞[ and θ = 2 + 2
r −

2
q we have the estimates:

• For θp ≤ n, choosing p̃ ≤ np
n−θp if θp < n and choosing arbitrarily p̃ ∈ [p,∞[

if θp = n, one has

∥y∥Lr(Lp̃(Ω))) ≤ C(p, q, r, p̃)∥f∥Lq(Lp(Ω));

• If θp > n, then y ∈ Lr(Cr,α(Ω)) with α ∈]0, 1], k ∈ {0, 1}, k+α = θ− n
p and

∥y∥Lr(Ck,α(Ω))) ≤ C(p, q, r, p̃)∥f∥Lq(Lp(Ω)).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, denoting by θ̃ =

1 + 2
r1

− 2
q we have the following estimates for the gradient of the solution:

• For θ̃p ≤ n, choosing p̃1 ≤ np

n−θ̃p if θ̃p < n and choosing arbitrarily p̃1 ∈
[p,∞[ if θ̃p = n, one has

∥Dy∥Lr1 (Lp̃1 (Ω))) ≤ C(p, q, r1, p̃1)∥f∥Lq(Lp(Ω));

• If θ̃p > n, then y ∈ Lr1(C0,α1(Ω)) with α1 ∈]0, 1[, α1 = θ̃ − n
p and

∥Dy∥Lr1 (C0,α1 (Ω))) ≤ C(p, q, r1, p̃)∥f∥Lq(Lp(Ω)).

Remark 3.11. In the above considerations we studied regularity for solutions to
parabolic problems with null boundary conditions and zero initial data. If we want
to recover Sobolev embedding results without imposing boundary conditions, we
proceed as follows. Take Ω̃, some bounded domain with smooth boundary Ω ⊂⊂ Ω̃
and a continuous extension operator E :W 2,p(Ω)+Lp(Ω) →W 2,p∩W 1,p

0 (Ω̃)+Lp(Ω̃).

For some u ∈ W 2,1
p,q (Ω×]0, T [) we have Eu ∈ W 2,1

p,q (Ω̃×]0, T [). Extend now Eu by

reflection to Ω̃×] − T, T [. Denote it by ũ(x, t) = Eu(x,−t), t ∈] − T, T [ and this

function belongs to W 2,1
p,q (Q̃), Q̃ = Ω̃×] − T, T [. Denote by P (D) the parabolic

operator P (D) = Dt − ∆ and take a function η ∈ C∞(] − T, T [), η(t) = 0 for
t < −T

2 and η(t) = 1 for t > −T
4 . We have

P (D)(ηũ) = ηP (D)ũ+ η′(t)ũ.

If we apply regularity estimates in Lr(Lp̃)in terms of right hand side in Lq(Lp) (see
Proposition 3.8), we find that

∥u∥Lr(Lp̃(Ω)) ≤ C∥ηũ∥Lr(−T,T ;Lp̃(Ω̃)) ≤ C∥P (D)(ηũ)∥Lq(−T,T ;Lp(Ω̃))

≤ C(∥ũ∥
W 2,1

p,q (Q̃)
+ ∥ũ∥Lq(Lp(Ω̃))) ≤ C1∥u∥W 2,1

p,q (Q)
.
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Remark 3.12. Observe that if u ∈ W 2,1
p (Q) with p < (n+2)

2 and considering the

remark above with q = p, we may take r = (n+2)p
n+2−2p . Correspondingly, θ =

2n
n+2 and

θp < n. Observing that p̃ := np
n−θp = r, we find from Corollary 3.10 that

∥u∥
L

(n+2)p
n+2−2p (Q)

≤ C(p)∥u∥
W 2,1

p (Q)
.

Moreover, if p < n+ 2 and considering the remark above with q = p, we may take

r1 =
(n+2)p
n+2−p . Correspondingly, θ̃ =

n
n+2 and θ̃p < n. Observing that p̃ := np

n−θ̃p = r1,

we find from Corollary 3.10 that

∥Du∥
L

(n+2)p
n+2−p (Q)

≤ C(p)∥u∥
W 2,1

p (Q)
.

One may see that we recovered the Sobolev type embedding in Theorem 2.2.

Concerning Sobolev embeddings for W 2,1
p,q (Q) spaces we obtain from Proposition

3.8 and the Remark 3.11 the following result:

Theorem 3.13. Consider u ∈W 2,1
p,q (Q).

Then u ∈ Z1 where

Z1 =


Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ≤ np

n−(2+ 2
r
− 2

q
)p
, if (2 + 2

r −
2
q )p < n,

Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ∈ [p,∞[, if (2 + 2
r −

2
q )p = n,

Lr(Ck,α(Ω)), α ∈]0, 1], k ∈ {0, 1}, k + α = 2 + 2
r −

2
q −

n
p ,

if (2 + 2
r −

2
q )p > n

and there exists C = C(p, q, r, p̃), respectively C = C(p, q, r) in the third case, such
that

∥u∥Z1 ≤ C∥u∥
W 2,1

p,q (Q)
.

Moreover, Du ∈ Z2 where

Z2 =


Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ≤ np

n−(1+ 2
r1

− 2
q
)p
, if (1 + 2

r1
− 2

q )p < n,

Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ∈ [p,∞[, if (1 + 2
r1

− 2
q )p = n,

Lr1(C0,α(Ω)), α ∈]0, 1], α = 1 + 2
r1

− 2
q −

n
p if (1 + 2

r1
− 2

q )p > n

and there exists C = C(p, q, r1, p̃1), respectively C = C(p, q, r1) in the third case,
such that

∥Du∥Z2 ≤ C∥u∥
W 2,1

p,q (Q)
.

Consequences of temporal regularity. An immediate consequence of Theorem 3.7,
considering that D(Aγ) ⊂ H2γ,p(Ω), is the following:

Proposition 3.14. Let f ∈ Lq(Lp(Ω)), γ ∈]0, q−1
q [, then the solution y to (3.6)

given by (3.7) belongs to C
0, q−1

q
−γ

(H2γ,p(Ω)) and there exists C = C(p, q, γ) such
that

∥y∥
C

0,
q−1
q −γ

(H2γ,p(Ω))
≤ C∥f∥Lq(Lp(Ω)).

Now, by the previous results, taking into account Remark 3.11 and isotropic
Sobolev embedding from Theorem 2.1, we obtain the following Morrey type result
for W 2,1

p,q spaces:
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Theorem 3.15. For p, q∈]1,∞[, suppose there exists γ∈]0, q−1
q [ with 2γ− n

p > 0 not

an integer. Then the space W 2,1
p,q (Q) is continuously embedded in C

0, q−1
q

−γ
(Ck,α(Ω))

where k ∈ {0, 1}, α ∈]0, 1[, k + α = 2γ − n
p .

Remark 3.16. Suppose p > nq′ = nq
q−1 and denote by α0 =

1
q′ −

n
p ∈ (0, 1). Taking

first γ = q−1
2q we obtain that W 2,1

p,q (Q) is continuously embedded in C0,α1(C0,α0(Ω))

with α1 = 1
2q′ . Taking γ = n

p and α2 = γ we find that W 2,1
p,q (Q) is continuously

embedded in C0,α0(C0,α2(Ω)). One may see that C0,α1(C0,α0(Ω))∩C0,α0(C0,α2(Ω))
is continuously embedded in the space of Hölder continuous functions C0,α0(Q).
This conclusion is in the spirit of the result established in [28].

Remark 3.17. Theorem 3.15 has as consequence the Morrey type embedding in
Theorem 2.2. Indeed, if we take p = q > n+2

2 and α ∈]0, 2− n+2
p [ not an integer, we

find, by choosing γ = α
2 + n

2p and observing that α1 :=
1
p′ − γ > 0, that W 2,1

p (Q) is

continuously embedded in C0,α1(C0,α(Ω)).
With the same α, choose γ = 1

p′−
α
2 . Observe that γ ∈] n2p , p

′[ and with α2 = 2γ−n
p

we find thatW 2,1
p (Q) is continuously embedded in C0,α

2 (C0,α2(Ω)). The intersection

of C0,α1(C0,α(Ω)) and C0,α
2 (C0,α2(Ω)) is continuously embedded in Cα,

α
2 (Q) and we

recover the corresponding conclusion in Theorem 2.2.

Gagliardo-Nirenberg type inequalities involving anisotropic Sobolev spaces. One may
easily use Theorem 3.13 to obtain interpolation inequalities of Gagliardo type be-
tween spacesW 2,1

p,q (Q) and Lσ(Lτ (Ω)), with p, q, σ, τ ∈]1,∞[. IfW 2,1
p,q (Q)⊂ Lr(Lp̃)(Ω)

with continuous injections and u ∈ W 2,1
p,q (Q) ∩ Lσ(Lτ (Ω)), then for θ ∈]0, 1[,

u ∈ [Lr(Lp̃(Ω)), Lσ(Lτ (Ω))]θ and satisfies the inequality

∥u∥Lσθ (Lτθ (Ω)) ≤ C(θ, p, q, σ, τ)∥u∥1−θ
W 2,1

p,q (Q)
∥u∥θLσ(Lτ (Ω)),

where 1
σθ

= θ
σ + 1−θ

r and 1
τθ

= θ
τ + 1−θ

p̃ .

4. Carleman inequalities in Lq(Lp(Ω)) for q, p ≥ 2

In what follows, we are interested to obtain Carleman estimates in Lq(Lp) spaces,
when q, p ≥ 2.

We recall first the statement of L2 global Carleman estimates:
Let ω ⊂⊂ Ω. One needs (and existence is guaranteed, see [17]) an auxiliary

function ψ with the following properties:

ψ0 ∈ C2(Ω), 0 < ψ0 in Ω, ψ0|∂Ω = 0, {x ∈ Ω : |∇ψ0(x)| = 0} ⊂⊂ ω.

Denote by

(4.1) ψ := ψ0 +K,

for a positive constant K > 0 which is fixed such that supψ
inf ψ < δ small enough

(see [16]). Introduce also, for parameters s, λ > 0 the auxiliary functions:

(4.2) φ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e
1.5λ∥ψ∥C(Ω)

t(T − t)
.
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The choice of K above is needed in order to have uniform estimates with respect to
λ, with C = C(T ):

φt ≤ Cφ2, |αt| ≤ Cφ2, |αtt| ≤ Cφ3.

Following the strategy in [16, 17] one obtains in fact a family of Carleman esti-
mates with general powers for the weight functions φ (see [20] and also [25]):

Lemma 4.1 (Carleman estimates with general weights). Let m ∈ R, then there
exist λ0 = λ0(Ω, ω,m), s0 = s0(Ω, ω,m), C = C(Ω, ω,m) > 0 such that, for any
λ ≥ λ0, s ≥ s0, the following inequality holds:

(4.3)

∫
Q
[(sφ)m−1λm(|Dty|2 + |D2y|2) + sm+1λm+2φm+1|Dy|2]e2sαdxdt

+

∫
Q
sm+3λm+4φm+3|y|2e2sαdxdt

≤ C

∫
[0,T ]×ω

sm+3λm+4φm+3|y|2e2sαdxdt+
∫
Q
smλmφmf2e2sαdxdt

for all y ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (1.1) with f ∈ L2(Q).

Using a bootstrap argument based on the above result and the regularizing effect
of the parabolic flow, we obtain a family of Carleman estimates in spaces Lq(Lp).

Let us now construct the following sequences: {qj}j∈N, q0 = 2, qj = q, ∀j ∈ N∗

and {pj}j∈N with p0 = 2, p1 =
2nq
nq−4 and for j ≥ 2 we define inductively

(4.4) pj :=


npj−1

n−
(
1+ 2

qj
− 2

qj−1

)
pj−1

=
npj−1

n−pj−1
, if pj−1 < N,

2pj−1, if pj−1 ≥ N.

The sequence {pj}j∈N is increasing and pj → +∞.
Define p̃j = min{pj , p} and take m the first index such that p̃m = p. Observe

that by Corollary 3.10 (see also the Theorem 3.13 for explicit orders of integration),
the solutions to parabolic problem (1.1) with null initial condition (y0 = 0) satisfy
for j = 2, . . . ,m the estimate

(4.5) ∥y∥
Lqj (Lp̃j (Ω))

+ ∥Dy∥
Lqj (Lp̃j (Ω))

≤ C(p̃j−1, qj−1))∥f∥Lqj−1 (Lp̃j−1 (Ω))
.

We define the sequence {kj}j∈N, kj := kj−1 − 2 with k0 ∈ R and we denote by

wj := φkjyesα.
We write now the problem satisfied by the new variables wj , with j = 1,m using

(1.1). By standard computations we find:

• Dt(wj) = O(s)wj−1 + φkjDtye
sα

• Dk(wj) = O(sλφ−1)wj−1 + φkjDkye
sα

• Dl(aklDkwj) = O(s2λ2)wj−1 +O(sλφ−1)Dkwj−1 +O(sλφ−1)Dlwj−1

+φkjDj(aklDky)e
sα.

Then, the problem takes form

(4.6)


Dtwj + Lwj = φkjfesα +O(s2λ2wj−1) +O(sλDwj−1), in (0, T )× Ω

wj = 0, on (0, T )× ∂Ω,

wj(0, ·) = 0 in Ω.
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Since wj satisfies an equation of type (1.1) with wj(0, ·) = 0 in Ω, we have an
inequality of type (4.5)

(4.7)

∥wj∥Lqj (Lp̃j )
+

1

sλ
∥Dwj∥Lqj (Lp̃j )

≤ ∥wj∥Lqj (Lp̃j )
+ ∥Dwj∥Lqj (Lp̃j )

≤

≤ C
[
s2λ2∥wj−1∥Lqj−1 (Lp̃j−1 )

+ sλ∥Dwj−1∥Lqj−1 (Lp̃j−1 )

+∥φkj−1fesα∥
Lqj−1 (Lp̃j−1 )

]
.

where, for the first inequality we choose sλ > 1.
By a standard telescopic summation procedure, after multiplying each equation in

(4.7) with (Cs2λ2)m−j respectively and recording that p̃0 = q0 = 2, p̃m = p, qm = q,
we obtain

(4.8)
∥wm∥Lq(Lp) + ∥Dwm∥Lq(Lp) ≤
≤ C

[
s2mλ2m∥w0∥L2(Q) + s2m−1λ2m−1∥Dw0∥L2(Q) + Ek0(f)

]
,

where we denoted by

Ek0(f) =
m∑
j=1

s2(m−j)λ2(m−j)∥φkj−1fesα∥
Lqj−1 (Lp̃j−1 )

.

Now we write w0, Dw0 in terms of y,Dy and we find in the right side of (4.8)
terms involving φk0+1yesα, φk0Dyesα. Using the L2 Carleman inequality (4.3), we
obtain

(4.9)

∥wm∥Lq(Lp) + ∥Dwm∥Lq(Lp)

≤ C[s2mλ2m∥φk0+1yesα∥L2(Qω) + s2m− 3
2λ2m−2∥φk0−

1
2 fesα∥L2(Q) + Ek0(f)]

≤ C[s2mλ2m∥φk0+1yesα∥L2(Qω) + Ẽk0(f)],

where

Ẽk0(f) = Ek0(f) + s2m− 3
2λ2m−2∥φk0−

1
2 fesα∥L2(Q)

≤ Cs2m− 3
2λ2m−2∥φk0−

1
2 fesα∥Lq(Lp).

Because Dwm = O(sλφkm+1ysα) + φkmDyesα, we obtain

(4.10)
∥φkmyesα∥Lq(Lp) + s−1λ−1∥φkm−1Dyesα∥Lq(Lp)

≤C[s2mλ2m∥φk0+1yesα∥L2(Qω) + s2m− 3
2λ2m−2∥φk0−

1
2 fesα∥Lq(Lp)],

which gives the following theorem

Theorem 4.2. Let f ∈ Lq(Lp(Ω)), p, q ∈ [2,∞[ and k0 ∈ R. Then there exist
m = m(q, p) ∈ N, λ0 = λ0(p, q, k0), s0 = s0(p, q, k0) and C = C(p, q, k0) > 0 such
that, for any λ ≥ λ0, s ≥ s0, the following inequality holds:

(4.11)

∥φk0−2myesα∥Lq(Lp(Ω)) + s−1λ−1∥φk0−2m−1Dyesα∥Lq(Lp(Ω))

≤C[s2mλ2m∥φk0+1yesα∥L2(Qω) + s2m− 3
2λ2m−2∥φk0−

1
2 fesα∥Lq(Lp(Ω))]

≤C[s2mλ2m∥φk0+1yesα∥Lq(Lp(ω)) + s2m− 3
2λ2m−2∥φk0−

1
2 fesα∥Lq(Lp(Ω))].
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Remark 4.3. The above regularity argument may be further used in order to have
estimates also for D2y and Dty in Lq(Lp) spaces or, if q, p are big enough, estimates
for y in anisotropic Hölder spaces.

Explicit dependence on T of constant C appearing in Carleman inequality (4.11)
may be obtained by using the results in [16]. Indeed, we perform here only a finite
number of boot-strap arguments involving constants from Sobolev embeddings so,
for fixed principal part of operator L, one may write for the constant in (4.11)

C = exp

[
K(Ω, ω, ∥bk, c∥L∞)

(
1

T
+ T

)]
.

This kind of estimate is useful in nonlinear controllability problems (see [14,15]), as
well as in unique continuation results at initial time (see [2, 22]).
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