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expecting that k ≥ 0. The coefficients Cv and Ck are dimensionless constants, the
function ℓ = ℓ(x) is the Prandtl mixing lenght [20], ν > 0 and µ > 0 are the
kinematic viscosity and the diffusion coefficient.

The first mathematical results about the NSTKE model in 2D and 3D bounded
domains were obtained in [13, 14]. Many papers have followed and the reader will
find a comprehensive list of references in [7, Chapters 6, 7 and 8]. More recently,
we have performed in [15] several numerical simulations in a 3D channel, to test the
performances of model (1.1) in boundary layers, including a numerical algorithm to
calculate the mixing length ℓ, which is one of the main issue in the practical use of
the NSTKE model.

The NSTKE system (1.1) yields difficult mathematical issues for several reasons:

i) It involves incompressible Navier-Stokes like equations; without any cou-
pling, Navier-Stokes equations are already leading to difficult problems [10,
11, 16, 22],

ii) Because of the eddy viscosities νt and µt,
iii) Because of the quadratic source terms νt(k)|Dv|2 in the equation satisfied

by the TKE k. Natural estimates yield νt(k)|Dv|2 ∈ L1(Ω). Thus, equation
for k is an equation with “a right hand side in L1” (see in [4, 18]).

We aim in this paper to study the NSTKE model in the 1D case. Surprisingly, this
case has never been studied before so far we know, although in a 3D boundary layer
it fully makes sense. Indeed, let us consider for instance the atmospheric boundary
layer, where it is oftenly assumed that

v = v(z) = (u(z), 0, 0), p = Cte,

z being the altitude (or the distance to the ground). This assumption holds for
z ∈ [0, L], where L denotes the height of the boundary layer (in the atmosphere
10m ≤ L ≤ 100m). The reader is referred to [17, 21] for further reading about
boundary layers theories. It is also reasonnable to assume that the TKE is also
only a function of z, i.e. k = k(z), which is well verified in the case of a flat ground,
according to the numerical results of [15]. Therefore, system (1.1) becomes in the
boundary layer, by writting u = u(z) instead of u for the simplicity:

(1.3)


u
du

dz
− d

dz

(
νt(k)

du

dz

)
= f,

u
dk

dz
− d

dz

(
µt(k)

dk

dz

)
= νt(k)

∣∣∣∣dudz
∣∣∣∣2 − k

√
|k|
ℓ

.

It remains to discuss the boundary conditions. We take L = 1, always for the
simplicity. It is natural to set u(0) = k(0) = 0. However, the boundary condition at
z = 1 might be a wall law (see in [7]), which is more complicated. To focus to one
difficulty after each other, we take in this paper u(1) = k(1) = 0. In conclusion, we
will consider homogeneous Dirichlet boundary conditions:

(1.4) u(0) = k(0) = u(1) = k(1) = 0.

Based on the Leray-Schauder fixed point Theorem, our main result (Theorem 4.1
below) is the existence of a weak solution to Problem (1.3)-(1.4), when the source
term f is small enough (condition (3.3) : 4F < ν2, F = ||f ||H−1) and assuming a
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compatibility condition between ν, µ and F (condition (4.5) : ν−
√
ν2 − 4F < 2µ).

Notice that one also can solve the problem via the Banach-Picard fixed point The-
orem. However, although the solution constructed by this way is uniquely deter-
mined, the conditions for its existence are more restrictive than those required by
the Leray-Schauder Theorem, which has motivated our choice.

For conveniance, we write the NSTKE system in the abstract form: (u, k) ∈
H1

0 (I)
2 (I =]0, 1[) and

(1.5)


B(u, u) +A(νt(k), u) = f,

B(u, k) +A(µt(k), k) = νt(k)

∣∣∣∣dudz
∣∣∣∣2 − k

√
|k|
ℓ

.

On one hand, we take advantage in a 1D case of the injection H1
0 (I) ↪→ C(I) with

compact embedding (see [5]), so that we do not need sharp estimates “à la Boccardo-
Gallouët” [4] to deal with the quadratic source term of the k-equation and the result
remains true for any continuous function νt and µt greater than ν > 0 and µ > 0,
without assuming that they are bounded, as in the 2D and 3D cases. In particular,
the existence result holds when µt and νt are given by (1.2), which is significant. On
the other hand, we are losing identities of the form ⟨B(u, v),H(v)⟩ = 0, satisfied for
any C1 piece-wise function H such that H(0) = 0, arising in the 2D and 3D cases
for incompressible flows. This generates difficulties specific to the 1D case.

Our strategy is to focus on the 1D steady-state Navier-Stokes Equation (NSE)
with an eddy viscosity

(1.6) B(u, u) +A(α, u) = f,

for a given continuous function α = α(z) bounded below by ν. Starting from the
1D Oseen problem,

(1.7) B(U, u) +A(α, u) = f,

where U ∈ L∞(I) is fixed, we prove that (1.6) has a unique solution when the
smallness assumption 4F < ν2 holds (Theorem 3.2). Such a smallness assumption
about the source term is not so surprinzing in steady-state NSE framework when
dealing with uniqueness (see in [22]). However, it seems that in the 1D case it is
more stringent since it is already needed for the existence, and we do not know how
to remove it.

The paper is organized as follows. We start with the Oseen problem (1.7) (section
2), after having set the framework and some notations. Then we study the NSE
(1.6) (section 3) which enables us to prove the existence result about the NSTKE
system (1.5) (section 4). We conclude the paper by a few open problems (section
5).

Acknowledgements. The author thanks Dinh-Duong Nguyen for his careful reread-
ing of this paper.

2. 1D Oseen Problem with eddy viscosity

The Oseen problem is given by the linearized steady-state Navier-Stokes equation,
in which we replace the convection term (v · ∇)v by (U · ∇)v, where U is a fixed
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vector field (see in [1]). The main aim of this section is the study of the 1D Oseen
Problem with a fixed eddy viscosity:

(2.1)

 U
du

dz
− d

dz

(
α
du

dz

)
= f in I,

u(0) = u(1) = 0,

where u = u(z) is the unknown function, the function α = α(z) is the eddy viscosity,
U = U(z) the given convection, f the source term. We assume throughout this
section that:

⋄ α = α(z) ∈ L∞(I) is nonnegative and bounded below by a given ν > 0,
⋄ U = U(z) ∈ L∞(I) and we put U∞ = ||U ||0,∞,
⋄ f ∈ H−1(I), and we put F = ||f ||−1,2,

where || · ||s,p denotes the usual norm over W s,p(I), with I =]0, 1[. We will prove in
this section that Problem (2.1) has a weak solution when

• U is in addition in W 1,1(I) and

∣∣∣∣∣∣∣∣dUdz
∣∣∣∣∣∣∣∣
0,1

< 2ν or
dU

dz
(z) ≤ 0 a.e, by the

Lax-Milgram Theorem,
• U∞ < ν, by the Leray-Schauder fixed point Theorem.

2.1. Framework. We introduce in this subsection notations the variational formu-
lation of Problem (2.1).

According to the Poincaré’s inequality, we can take as norm in H1
0 (I) the L2

norm of the derivative,

||v||H1
0
=

∣∣∣∣∣∣∣∣dvdz
∣∣∣∣∣∣∣∣
0,2

,

for any v ∈ H1
0 (I). For the simplicity, we will write

(2.2) ∀ v ∈ H1
0 (I), ||v||H1

0
= ||v||h.

The following inequality will constantly be used in the following:

(2.3) ∀ v ∈ H1
0 (I), ||v||0,∞ ≤ ||v||h.

We also set W = H1
0 (I)

2 for the simplicity, equipped with the product norm

(2.4) ||(u, k)||W = ||u||h + ||k||h.

We consider the following forms:

(2.5)
(u, v) ∈ W → a(α, u, v) =

∫ 1

0
α(z)

du

dz
(z)

dv

dz
(z)dz,

(u, v) ∈ W → b(U, u, v) =

∫ 1

0
U(z)

du

dz
(z)v(z)dz.

Lemma 2.1. The forms a and b are bilinear continuous on the space W = H1
0 (I)

2,
and one has

(2.6)
|a(α, u, v)| ≤ ||α||0,∞||u||h||v||h,

|b(U, u, v)| ≤ U∞||u||h||v||h.
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We skip the proof of Lemma 2.1. Notice that we also have, for all u, v, w ∈ H1
0 (I),

(2.7) |b(u, v, w) ≤ ||u||h||v||h||w||h.
The variational formulation of problem (2.1) is the following:

(2.8)
Find u ∈ H1

0 (I) such that
∀ v ∈ H1

0 (I), b(U, u, v) + a(α, u, v) = ⟨f, v⟩,
where ⟨ ·, ·⟩ is the duality product. We also can write,

(2.9) a(α, u, v) = ⟨A(α, u), v⟩, b(U, u, v) = ⟨B(U, u), v⟩,
and by (2.6) we have

(2.10) ||A(α, u)||−1,2 ≤ ||α||0,∞||u||h, ||B(U, u)||−1,2 ≤ ||U ||∞||u||h,
so that problem (2.1) can be written in the abstract form:

(2.11) u ∈ H1
0 (I), B(U, u) +A(α, u) = f.

2.2. Existence result when U ∈ W 1,1(I). The first idea that comes to mind is
to apply the Lax-Milgram to Problem (2.8) (see in [5]). According to Lemma 2.1,
it remains to check the coercivity of the form (u, v) → b(U, u, v) + a(α, u, v). We
have on one hand

(2.12) a(α, u, u) ≥ ν||u||2h.
However, unlike the 2D and 3D incompressible Navier-Stokes equations, we do not
generally have b(U, u, u) = 0, which is a source of difficulty. Assuming that U ∈
W 1,1(I), we get by an integration by parts

(2.13) ∀u ∈ H1
0 (I), b(U, u, u) =

1

2

∫ 1

0
U(z)

d

dz
u2(z)dz = −1

2

∫ 1

0

dU

dz
(z)u2(z)dz,

which holds for smooth functions and therefore in our case by standard density
results. Equation (2.13) combined with (2.6), (2.12) and the Lax-Milgram Theorem,
yields the following result.

Theorem 2.2. Assume that U ∈ W 1,1(I) and either of the two following conditions
is satisfied:

ν − 1

2

∣∣∣∣∣∣∣∣dUdz
∣∣∣∣∣∣∣∣
0,1

> 0,(2.14)

dU

dz
≤ 0 a.e in I.(2.15)

Then problem (2.8) has a unique solution u = u(z).

Taking u = v as test function yields the estimate

(2.16) ||u||h ≤ F

ν − 1
2

∣∣∣∣dU
dz

∣∣∣∣
0,1

in case (2.14), and

(2.17) ||u||h ≤ F

ν

in case (2.15).
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2.3. Existence result when U is just in L∞(I). We only assume in this section
that U ∈ L∞(I). We aim to apply the Leray-Schauder fixed point theorem to
Problem (2.1). There are several version of this Theorem. The one we use is the
following, stated in the following in its more general abstract form (see in [23]), and
that will be used throughout the paper.

Theorem 2.3. Let E be a separated topological vector space, K ⊂ E be a convex
subset, F : K → K be a continuous function on K, equipped with the topology
inherited from that of E. Assume that F(K) is a compact subset of K. Then F
has a fixed point, that is, there exists u ∈ K such that F(u) = u.

We start with the following estimate.

Lemma 2.4. Assume

(2.18) U∞ < ν.

Then any solution to Problem (2.8) satisfies

(2.19) ||u||h ≤ F

ν − U∞
.

Proof. Taking v = u as test and integrating by parts yields

(2.20) ν||u||2h ≤ a(α, u, u) ≤ F ||u||h +
∫ 1

0
|U |
∣∣∣∣dudz

∣∣∣∣ |u| ≤ F ||u||h + U∞||u||2h,

by using (2.3). □
Throughout the rest of the section, we assume that the compatibility condition

(2.18) is fulfilled. The main result is:

Theorem 2.5. Problem (2.8) has a unique solution.

Proof. The proof is organized in three steps:

i) We determine the functional F : H1
0 (I) → H1

0 (I) to which the fixed
point theorem will be applied, and then a ball B(0, R) ⊂ H1

0 (I) such that
F(B(0, R)) ⊂ B(0, R),

ii) We show that F is continuous over B(0, R) and F(B(0, R)) is compact, so
that it has a fixed point in B(0, R) by the Leray-Schauder Theorem 2.3,

iii) We prove the uniqueness.

Step i) Let w ∈ H1
0 (I), and let us consider the following problem in H1

0 (I),

(2.21) B(U,w) +A(α, u) = f in [0, 1],

the variational formulation of which is:

(2.22)
Find u ∈ H1

0 (I), such that
∀ v ∈ H1

0 (I), a(α, u, v) = ⟨f, v⟩ − b(U,w, v).

As B(U,w) ∈ H−1(I) by (2.10), we deduce from (2.6), (2.12) and the Lax-Milgram
theorem that the variational problem (2.22) has a unique solution, and therefore
(2.21) has a unique weak solution. We put u = F(w), which in particular satisfies

(2.23) ||F(w)||h ≤ F + U∞||w||h
ν

= r(w).
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Any fixed point of F is a weak solution to (2.1). The issue is to find a radius R > 0
such that F(B(0, R)) ⊂ B(0, R). Such a radius must verify:

(2.24) ∀w ∈ B(0, R), r(w) ≤ R,

which gives by (2.23) the inequality F +RU∞ ≤ νR, leading

R =
F

ν − U∞

as better choice.

Step ii) As (B(0, R) is a closed subset ofH1
0 (I), which is a separable Hilbert space,

it suffises to prove the sequential continuity of F and to check that F(B(0, R))
satisfies the Bolzano-Weiertrass property to prove that it is compact. We focus
on the compactness property, the proof of which also yields the continuity of F .
Therefore, we consider a sequence (wn)n∈IN in B(0, R), and let un = F(wn). We
aim to prove that from the sequence (un)n∈IN, we can extact a subsequence which
strongly converges in H1

0 (I) to some u ∈ F(B(0, R)). The process is divided in
three sub-steps:

a) Extracting from (wn)n∈IN and (un)n∈IN weak convergent subsequences to
some w and u, still denoted (wn)n∈IN and (un)n∈IN,

b) Showing that u = F(w),
c) Proving that a(α, un, un) → a(α, u, u) by the energy method, which yields

the strong convergence of (un)n∈IN to u in H1
0 (I).

a) As (wn)n∈IN is bounded inH1
0 (I), we can extract a subsequence (wnj )j∈IN which

weakly converges to some w (see in [5]), and also uniformly in I. Similarly, from
(unj )j∈IN, also bounded in H1

0 (I), we can extract another subsequence (unjk
)k∈IN

which weakly converges to some u in H1
0 (I), and uniformly in I as well2. For the

simplicity, we re-write (wn)n∈IN and (un)n∈IN instead of (wnjk
)k∈IN and (unjk

)k∈IN,
so far no risk of confusion occurs.

b) For a given n, wn and un satisfy

(2.25) B(U,wn) +A(α, un) = f.

Let v ∈ H1
0 (I). Since (wn)n∈IN and (un)n∈IN weakly converge to w and u, and as

α,U ∈ L∞(I), we easily deduce from standard arguments

(2.26) lim
n→∞

b(U,wn, v) = b(U,w, v), lim
n→∞

a(α, un, v) = a(α, u, v),

leading to

(2.27) B(U,w) +A(α, u) = f,

hence u = F(w).

c) In order to prove that (un)n∈IN strongly converges to u, take v = un as test in
(2.25), and v = u as test in (2.27), which yields

b(U,wn, un) + a(α, un, un) = ⟨f, un⟩,(2.28)

b(U,w, u) + a(α, u, u) = ⟨f, u⟩.(2.29)

2We have used the compactness of the embedding H1
0 (I) ↪→ C(I).
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The equalities (2.28) and (2.29) are the energy balances. The aim of what follows
is to pass to the limit in (2.28) as n → ∞.

We first note that by the weak convergence3 of (un)n∈IN to u

(2.30) lim
n→∞

⟨f, un⟩ = ⟨f, u⟩.

Next, since U ∈ L∞(I) and (un)n∈IN strongly converges to u in L2(I) (because
uniformly in I), then (Uun)n∈IN strongly converges to Uu in L2(I). Therefore, as
(w′

n)n∈IN weakly converges to w′ in L2(I), we deduce that4

(2.31) lim
n→∞

b(U,wn, un) = b(U,w, v).

Combining (2.28), (2.29), (2.30), (2.31) leads to

(2.32) lim
n→∞

a(α, un, un) = a(α, u, u).

As α ≥ ν > 0 and α ∈ L∞(I), v → a(α, v, v)1/2 is a Hilbert norm on H1
0 (I),

equivalent to || · ||h. We deduce from (2.32) that

(2.33) lim
n→∞

||un||h = ||u||h,

which, combined with the weak convergence of (un)n∈IN to u yields the strong con-
vergence in H1

0 (I), and concludes this step, which also gives the continuity of F as
a byproduct.

In conclusion, B(0, R) being a closed convex subset of H1
0 (I), we deduce from

the Leray-Schauder Theorem that the application F has a fixed point u, hence the
existence of a weak solution to Problem (2.1).

Step iii) Uniqueness. This is equivalent to prove that u = 0 is the unique solution
when f = 0. In this case, we take v = u in (2.29) and integrate by parts. We get
by the same arguments as above,

ν||u||2h ≤ a(α, u, u) ≤ |b(U, u, u)| ≤ U∞||u||2h,

which yields u = 0 by (2.18). □

In what follows, let G denotes the application defined by

(2.34) G :

{
B (0, ν) → H1

0 (I)
U → the unique solution u to Problem (2.1),

which is well defined because of (2.3) and (2.18).

3. 1D Navier-Stokes equation with an eddy viscosity

The 1D Navier-Stokes equation with an eddy viscosity is given by the equation

(3.1) u ∈ H1
0 (I), B(u, u) +A(α, u) = f,

3SinceH1
0 (I) is a separable Hilbert space, we do not distinguish weak-star and weak convergence.

4As usual, for any differentiable function g over I, we write g′ =
dg

dz
.
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We prove in this section the existence of a weak solution to (3.1) when F is small
enough compared to ν2. The variational problem corresponding to Problem (3.1)
is similar to the variational problem (2.8) and specified by:

(3.2)
Find u ∈ H1

0 (I) such that
∀ v ∈ H1

0 (I), b(u, u, v) + a(α, u, v) = ⟨f, v⟩.
The solution is constructed as a fixed point of the application G defined by (2.34).
We then consider the uniqueness question. The key of the analysis is the following
elementary technical result.

Lemma 3.1. Assume that

(3.3) F < ν2/4,

and let

(3.4) 0 < R1 =
1

2

(
ν −

√
ν2 − 4F

)
, R2 =

1

2

(
ν +

√
ν2 − 4F

)
< ν,

Then all R ∈ [R1, R2] satisfies

(3.5) G (B (0, R)) ⊂ B (0, R) ,

where G is given by (2.34).

Proof. According to (2.3) and (2.19), we have

(3.6) ||G(U)||h ≤ F

ν − ||U ||h
.

Therefore, all radius R < ν such that

(3.7)
F

ν −R
≤ R

are verifying (3.5). The inequality (3.7) is equivalent to

(3.8) R2 − νR+ F ≤ 0.

When condition (3.3) holds, the polynomial function R → R2 − νR+ F admits R1

and R2 for real roots and (3.8) holds, then (3.5), for R ∈ [R1, R2], which concludes
the proof. □
Theorem 3.2. Assume that (3.3) holds and let R ∈ [R1, R2]. Then G admits a
fixed point in B(0, R), which is a solution to the variational problem (3.2).

Proof. According to what is done in Section 2 and Lemma 3.1, and to avoid rep-
etitions, we focus on the compactnes property, stated under the following form.
Let (Un)n∈IN be a sequence in B(0, R) that weakly converges to some U in H1

0 (I),
un = G(Un). We aim at proving that un → u = G(U) as n → ∞. We follow the
same outline as that of step ii) in Theorem 2.5’s proof.

a) Extracting subsequences. Since (un)n∈IN is bounded in H1
0 (I) (because in

B(0, R)), as well as (Un)n∈IN, we can extract from these two sequences, subsequences
(still denoted by (un)n∈IN and (Un)n∈IN without risk of confusion) such that (un)n∈IN
weakly converges to some u in H1

0 (I), and uniformly in I, and (Un)n∈IN uniformly
converges to U in I.
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b) Proving that u = G(U). The equality un = G(Un) means

(3.9) B(Un, un) +A(α, un) = f.

Let v ∈ H1
0 (I) be any test function. We obvioulsy have Unv → Uv in L2 strong,

which combined with u′n → u′ in L2 weak yields,

(3.10) lim
n→∞

b(Un, un, v) = b(U, u, v).

Futhermore, since α ∈ L∞, and still because u′n → u′ in L2 weak,

(3.11) lim
n→∞

a(α, un, v) = a(α, u, v).

By consequence, u is a weak solution of the equation,

(3.12) B(U, u) +A(α, u) = f,

hence u = G(U).

c) Energy method for proving the H1 strong convergence of (un)n∈IN to u. Taking
v = un as test in (3.9) and v = u in (3.12), we get

(3.13)
b(Un, un, un) + a(α, un, un) = ⟨f, un⟩,

b(U, u, u) + a(α, u, u) = ⟨f, u⟩.

Since (un)n∈IN and (Un)n∈IN are uniformly convergent, we have in particular Unun →
Uu in L2 strong. Therefore, from the H1 weak convergence of (un)n∈IN to u, we
deduce

(3.14) lim
n→∞

b(Un, un, un) = b(U, u, u), lim
n→∞

⟨f, un⟩ = ⟨f, u⟩,

which, by (3.13), yields

(3.15) lim
n→∞

a(α, un, un) = a(α, u, u),

hence the strong convergence of (un)n∈IN to u in H1 as above. The rest of the proof
results from Leray-Schauder’s Theorem and we skip the details. □

We now look at the uniqueness issue. Let θ ∈ [0, 1] and let

(3.16) Rθ = θR1 + (1− θ)R2,

where R1 and R2 are given by (3.4).

Theorem 3.3. Assume that (3.3) holds and let θ ∈ ]12 , 1]. Then the solution to
Problem (3.1) is unique in B(0, Rθ).

Proof. Note that according to Theorem 3.3, we know the existence of a solution to
problem (3.1) in B(0, Rθ) whatever the choice of θ ∈ ]12 , 1], because of (3.3).

Let u1 and u2 be two solutions, δu = u1 − u2 in B(0, Rθ). We deduce from an
usual calculation that δu verifies

(3.17) B(u2, δu) +A(α, δu) = −B(δu, u1).

We take δu as test function in (3.17) and we integrate by parts. Then, by the
inequality (2.7) we deduce

(3.18) ν||δu||2h ≤ ||u2||h||δu||2h + ||u1||h||δu||2h ≤ 2Rθ||δu||2h,
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that yields ||δu||2h = 0 when 2Rθ < ν, which is equivalent to θ ∈ ]12 , 1], concluding
the proof. □

A slight modification of the proof above gives the following result (we skip the
details).

Theorem 3.4. Assume that (3.3) holds and let θ ∈ ]12 , 1]. Let (αn)n∈IN be a sequence

of continuous functions defined on I, such that each αn is bounded below by ν,
and that uniformly converge converges to α. Let un ∈ H1

0 (I) be the solution of
B(un, un)+A(αn, un) = f . Then the sequence (un)n∈IN strongly converges in H1

0 (I)
to u, solution of B(u, u) +A(α, u) = f .

Remark 3.5. Let β ∈ L1(I) such that β ≥ 0 a.e. in I. Let u ∈ H1
0 (I) be given,

and ε(β, u) defined by, for all v ∈ H1
0 (I),

(3.19) ⟨ε(β, u), v⟩ = e(β, u, v) =

∫ 1

0
β(z)u(z)v(z)dz.

Then ε(β, u) ∈ H−1(I) and ||ε(β, u)||−1,2 ≤ ||β||0,1||u||h. As

(u, v) ∈ W → e(β, u, v) = ⟨ε(β, u), v⟩

is a continuous non negative bilinear form on H1
0 (I), the analysis carried out before

also applies to the following equations, for a given w ∈ H1
0 (I),

B(w, u) +A(α, u) + ε(β, u) = f,(3.20)

B(u, u) +A(α, u) + ε(β, u) = f(3.21)

without any change, by Leray-Schauder’s Theorem and the energy method. The
estimates remain the same because of the non negativity of ε.

4. Existence of a solution to the NSTKE system

In this section, νt and µt are two continuous non negative real valued functions
bounded below by ν > 0 and µ > 0. The NSTKE system (1.3) can be written in
the following form, for (u, k) ∈ W ,

(4.1)

{
B(u, u) +A(νt(k), u) = f,

B(u, k) +A(µt(k), k) + ε
(
ℓ−1
√

|k|, k
)
= D(k, u),

where D(k, u) ∈ H−1(I) is the operator specified by, for p ∈ H1
0 (I),

(4.2) ⟨D(k, u), p⟩ = d(k, u, p) =

∫ 1

0
νt(k(z))

∣∣∣∣dudz (z)
∣∣∣∣2 p(z)dz,

and the operator ε is given by (3.19).
We will prove in this section that system (4.1) has a solution. We first observe

that as k is bounded and νt is continuous, α = νt ◦ k is bounded and we have

(4.3) ||D(k, u)||−1,2 ≤ ||νt ◦ k||0,∞||u||2h.
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The variational formulation of (4.1), then (1.3), is given by:

(4.4)

Find (u, k) ∈ W such that ∀ (v, p) ∈ W,

b(u, u, v) + a(νt(k), u, v) = f,

b(u, k, p) + a(µt(k), k, p) + e(ℓ−1
√

|k|, k, p) = ⟨D(k, u), p⟩.
We now prove that system (4.1) has a weak solution under suitable assumptions
about the data:

Theorem 4.1. Assume that (3.3) holds, and in addition

(4.5) R1 =
1

2
(ν −

√
ν2 − 4F ) < µ.

Then Problem (4.4) admits a solution.

Proof. For the simplicity, we take θ = 1, which means that we are working in
B(0, R1), where R1 = 1

2(ν −
√
ν2 − 4F ). Let q ∈ H1

0 (I), and u = u(q) ∈ B(0, R1)
that satisfies in a weak sense

(4.6) B(u(q), u(q)) +A(νt(q), u(q)) = f,

which is uniquely determined, according to Theorems 3.2 and 3.3. We deduce from
(4.6) that

(4.7) ||D(q, u(q))||−1,2 ≤ ||νt(q)
∣∣∣∣dudz

∣∣∣∣2 ||0,1 = a(νt(q), u(q), u(q)) ≤ FR1 +R3
1,

which substantially improves (4.3) since the bound does not depends on q. We are
now led to consider the equation

(4.8) B(u(q), κ) +A(µt(q), κ) + ε
(
ℓ−1
√

|q|, κ
)
= D(q, u(q)).

By (4.5), Theorem 2.5 combined with Remark 3.5 applies to equation (4.8). There-
fore, it has a unique weak solution k = κ(q) ∈ H1

0 (I) such that, by (2.19) and
(4.7),

(4.9) ||κ(q)||h ≤ FR1 +R3
1

µ−R1
= R′.

Consequently, we are able to define the application

(4.10) κ :

{
B(0, R′) → B(0, R′)

q → k = κ(q).

Any fixed point k of the application κ yields a weak solution to (4.1), given by
(u(k), k). In view of all we already have done and to avoid repetition, it remains to
check the compactness of the application κ to ensure the existence of such a fixed
point. In what follows, we skip elementary steps to get to the essential.

Thus, let (qn)n∈IN be a sequence that weakly converges to q in H1
0 (I), uniformly

in I, and such that (kn)n∈IN = (κ(qn))n∈IN weakly converges to some k, uniformly
in I (after having extracted a subsequence). We must prove that k = κ(q) and that
(kn)n∈IN strongly converges to k in H1

0 (I). We treat one equation after each other.
Let αn = νt(qn). As νt is continuous and qn, q ∈ C(I), qn → q uniformly, then

αn → α = νt(q) uniformly in I. According to Theorem 3.4, un = u(qn) → u = u(q)
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strongly in H1
0 (I). Thus D(qn, u(qn)) → D(q, u(q)) strongly in L1(I). In particular,

from H1
0 (I) ↪→ C(I), we get

(4.11) ∀ p ∈ H1
0 (I), lim

n→∞
⟨D(qn, u(qn)), p⟩ = ⟨D(q, u(q)), p⟩.

Let us consider the second equation, and let p ∈ H1
0 (I). Then for all n ∈ IN, we

have

(4.12) b(u(qn), kn, p) + a(µt(qn), kn, p) + e
(
ℓ−1
√

|qn|, kn, p
)
= ⟨D(qn, u(qn)), p⟩.

According to the previous results, in particular by (4.11) and because βn = µt(kn) →
β = µt(k) uniformly in I, the term e(ℓ−1

√
|qn|, kn, p) being not a source of difficulty,

we deduce from (4.12)

(4.13) b(u(q), k, p) + a(µt(q), k, p) + e
(
ℓ−1
√

|q|, k, p
)
= ⟨D(q, u(q)), p⟩,

hence k = κ(q).
It remains to prove the strong convergence of (kn)n∈IN by the energy method,

which consists in taking p = kn in (4.12). As qn → q, u(qn) → u(q) and kn →
k, all uniformly in I, then by the weak convergence of (kn)n∈IN to k in H1

0 (I),

b(u(qn), kn, kn) → b(u(q), k, k) and obviously e(ℓ−1
√
|qn|, kn, kn) → e(ℓ−1

√
|q|, k, k)

and by (4.11), ⟨D(qn, u(qn)), kn⟩ → ⟨D(q, u(q)), k⟩. Therefore, by (4.13)

lim
n→∞

a(µt(qn), kn, kn) = a(µt(q), k, k),

hence the strong convergence in H1
0 (I) of (kn)n∈IN to k, which concludes the proof.

□

5. Additional remarks and open problems

It remains questions about maximum principle and uniqueness.

- Maximum principle. It is expected that k ≥ 0 in I. This is usually shown in
the 2D and 3D cases, by splitting k as k = k+ − k−, and proving b(v, k, k−) = 0
by the incompressibility constrain (see in [7, section 7.5.2]). However, this does not
work anymore in the 1D case. Thus, the problem remains open.

- Uniqueness. We already know that uniqueness results about the NSTKE system
(1.1) in the 2D and 3D case are subjected to smallness assumptions about the L∞

norm of the derivative of νt and µt (see [2, 6]). We conjecture that the same
conditions must be assumed in the 1D case. Beyond the uniqueness issue is the
convergence of the Picard iterations related to Problem (4.1),

(5.1)

{
B(un−1, un) +A(νt(kn−1), un) = f,

B(un−1, kn) +A(µt(kn−1), kn) + ε
(
ℓ−1
√
|kn−1|, kn

)
= D(kn−1, un−1),

which is an interesting problem.

We conclude by mentioning a last problem that may arise in some atmospheric
boundary layer regimes, in which the constants ν and µ are not involved in the
definition of the eddy coefficents, the mixing length is proportional to the distance
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to the ground, ℓ = ℓ(z) = κz (κ > 0 being the Van Kármán constant), and the
mean motion is driven by the friction velocity given by

u2⋆ = u2⋆(u) = ν

∣∣∣∣dudz (0)
∣∣∣∣

(see in [19]), that can be considered as a source term in the equation for the mean
motion. This suggests to consider the following system in I = [0, 1]:

(5.2)


B(u, u) +A(z

√
k, u) = u2⋆(u),

B(u, k) +A(z
√
k, k) + ε

(√
k

z
, k

)
= z

√
k

∣∣∣∣dudz
∣∣∣∣2 ,

(assuming k ≥ 0) which yields a difficult problem.
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