


1168 MOSHE MARCUS

Condition (A1) and Hardy’s inequality imply that γ+ > 0 and γ− < 0. If V is
positive then γ− = −∞ and γ+ is the Hardy constant relative to V in Ω, denoted
by cH(V ). If V is negative then γ+ = ∞.

Finally, for every γ ∈ (γ−, γ+) there exists a Green function for LγV in Ω. Thus
condition (A2) implies that LV has a Green function GV in Ω. If D is a Lipschitz
subdomain of Ω, the Green function of LV in D is denoted by GD

V .
Conditions (A1) and (A2) imply:
(i) LV has a ground state in the sense of Agmon [1]. The ground state ΦV is

normalized by the condition ΦV (x0) = 1 where x0 is a fixed reference point in Ω.
(ii) LV is weakly coercive in the sense of Ancona [3]. A proof, due to [22], is

provided in [16, Lemma 1.1].
Consequently the results of Ancona [3] apply to the operators under considera-

tion. In particular:

= LV possesses a Martin kernel KV such that, for every y ∈ ∂Ω, x 7→ KV (x, y) is
positive LV harmonic in Ω and vanishes on ∂Ω \ {y} and the following holds:

Representation Theorem. For every positive LV -harmonic function u there ex-
ists a measure ν ∈ M+(∂Ω) (= the space of positive, bounded Borel measures) such
that

(1.3) u(x) =

∫
∂Ω

KV (x, y)dν(y) =: KV [ν] x ∈ Ω.

Conversely, for every such measure ν, the function u above is LV harmonic.

= The Boundary Harnack Principle (briefly BHP). (See its statement in the next
section.)

In addition, sharp two-sided estimates of Green and Martin kernels of the operator
LV , recently obtained by the author [16] are valid under conditions (A1), (A2), (in
Lipschitz domains). A statement of these estimates is provided in the next section.

Previously these estimates have been obtained in two special cases: (a) V = 0
in Lipshitz domains, Bogdan [7], (b) V = γ/δ2, γ < CH(Ω) in smooth domains,
Filippas, Moschini and Tertikas [11].

The Martin kernel is similar to the Poisson kernel. However, unlike the Poisson
kernel, the mass of KV (·, y) at y need not be finite. For instance, if V = γ/δ(x)2

with γ < CH(Ω) (= the Hardy constant in Ω) then the mass is zero when µ > 0
and infinity when µ < 0. Therefore, in these cases, LV has no Poisson kernel but
possesses a Martin kernel.

Definition 1.1. (i) A function u > 0 is local LV harmonic (respectively superhar-
monic) if it is defined and LV harmonic (respectively superharmonic) in a one-sided
neighborhood of ∂Ω.

(ii) A positive local LV harmonic function u, has minimal growth at ∂Ω if, for
every positive local LV superharmonic function v,

lim sup
δ(x)→0

u

v
(x) < ∞.

(iii) A positive LV superharmonic is called an LV potential if it does not dominate
any positive LV harmonic function. It is known [2] that u is an LV potential if and
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only

u = GV [τ ] :=

∫
Ω
GV (x, y)dτ(y)

where τ is a positive Radon measure on Ω such that GV [τ ] < ∞. (See also (1.6)
below).

The Green kernel GV is uniquely determined by the following conditions, [1].
(a) For every y ∈ Ω, −LV GV (x, y) = δy (the Dirac measure at y) and
(b) the function x 7→ GV (x, y) is of minimal growth in Ω \ {y}.
The BHP and a result of [4] imply,

There exists a constant C > 0 such that for every y0 ∈ Ω,

(1.4) C−1GV (x, y0) ≤ ΦV (x) ≤ CGV (x, y0) when δ(x) < δ(y0)/2.

A proof - based on [5] - is provided in [16, Lemma 1.2].
It is well-known [14] that for any compact set E ⊂ Ω there exists a constant c(E)

such that

(1.5)
1

c(E)
|x− y|2−N ≤ GV (x, y) ≤ c(E)|x− y|2−N ∀(x, y) ∈ E × E.

This inequality and (1.4) imply that,

(1.6) GV [τ ] :=

∫
Ω
GV (x, y)dτ(y) < ∞ ⇐⇒ τ ∈ M+(Ω;ΦV ).

In fact if τ is a positive Radon measure but τ ̸∈ M+(Ω;ΦV ) then GV [τ ] ≡ ∞.
It follows that, in the present context, a positive LV superharmonic w is an LV

potential if and only if w = GV [τ ] for some τ ∈ M+(Ω;ΦV ).
In this paper we study operators LV such that V is strongly singular on ∂Ω, i.e.

V satisfies (A1) and
lim sup

δ→0
V δ2 ̸= 0.

Of special interest are potentials of the form

(1.7)

V = γVF , F ⊂ ∂Ω compact, γ ∈ R

VF =
1

δ2F
, δF (x) = dist (x, F ), γ < CH(VF ).

The main part of our study is devoted to the derivation of weighted integral
estimates of positive LV superharmonic and LV subharmonic functions. The weight
W is given by,

(1.8) W :=
ΦV

Φ0
.

The estimates are sharp and two sided (see Theorems 3.7 and 3.8 below). This
indicates that in the present context the weight W is optimal.

The derivation is based on assumptions (A1), (A2) and two conditions on the
behavior of the ground state, (see (B1) and (B2) in section 3). In the case that V is
positive and Ω is a C2 domain these conditions are satisfied if there exists α > 1/2
and C > 0 such that

(1.9) ΦV (x) ≤ Cδ(x)α ∀x ∈ Ω.
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Thus our approach does not require the availability of sharp estimates of the
ground state.

Linear and nonlinear boundary value problems for operators LV with V as in
(1.7) have been investigated by many authors. But, to our knowledge, these were
restricted to potentials where the ground state is known, i.e. sharp two-sided es-
timates of the ground state are available. Usually, the analysis depends on these
sharp estimates in an essential way.

In the case of strongly singular potentials (1.7), such estimates are available only
in a few instances, in smooth domains:

(i) F a singleton, (also in cones)

(ii) F = ∂Ω,

(iii) F = Fk a smooth k-dim. manifold without boundary.

The estimates of the ground state in (i) and (ii) are classical. For the estimate in
case (iii) see Fall and Mahmoudi [10]. For (i) in cones see Devyver, Pinchover and
Psaradakis [8].

The interest in problems involving operators LV with strongly singular potentials
increased considerably in the last decade. Following is a list of a few works in the
area:

Bandle, Moroz and Reichel [6], Marcus and P.T. Nguyen [18], [19], Gkikas and
Veron [13], P.T. Nguyen [21], Y. Du and L. Wei [9], [24], Marcus and Moroz [17],
Chen and Veron [15].

In most of these, the authors deal with (positive) solutions of nonlinear equations
such as −LV u+ f(u) = 0 under various conditions on the nonlinear term and with
potential V = γδ−2 or V = γ/|x|2 (0 ∈ ∂Ω) or a combination thereof.

The estimates established in the present paper provide a basis for the study of
positive solutions of boundary value problems for equations as above for a large fam-
ily of potentials, including for instance, any positive potential satisfying conditions
(A1), (A2) and (1.9) in smooth domains.

Examples of specific classes of potentials that satisfy these conditions are pre-
sented in Section 8.

The main tools used in the paper are: (a) potential theoretic results (mentioned
above) and (b) estimates of the Green and Martin kernels (described in the next
section).

These tools are valid in bounded Lipschitz domains and the methods employed
in the present paper can be adapted to the case of Lipschits domains. However, for
the sake of clarity, in this paper we present our results for the case of bounded C2

domains.
The adaptation of our results to the case of Lipschitz domains involves modifica-

tions that require careful technical treatment. This will be presented in a separate
note.

The paper is organized as follows.

Section 2 provides statements of some results from the literature that are frequently
used in this paper.
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In Section 3 we state the main results of the present paper, in which it is assumed
that the domains are bounded of class C2.

In Section 4 we establish estimates of positive LV harmonic functions: Theorems
3.1 and 3.2.

In section 5 we derive estimates of LV potentials: Theorems 3.3 and 3.4.

In Section 6 we establish sharp, two-sided estimates of LV superharmonic and LV

subharmonic functions: Theorems 3.7 and 3.8.

Section 7 is devoted to a discussion of boundary trace in terms of harmonic measures

dωx0,D
V of LV in Lipschitz domains D ⋐ Ω relative to a point x0 ∈ D. In particular

we establish an equivalence relation, on Σβ = {x ∈ Ω : δ(x) = β}, 0 < β < β0,

between the weight measure WdS and the harmonic measure dω
x0,Dβ

V where Dβ =
{x ∈ Ω : δ(x) > β}, (Theorem 7.5). Here β0 is a number depending on Ω (see
Section 2 for details) and x0 ∈ Dβ0 is a fixed reference point.

Section 8 provides examples of families of strongly singular potentials which satisfy
the assumptions of this paper.

2. Preliminaries

Denote,

T (r, ρ) = {ξ = (ξ1, ξ
′) ∈ R× RN−1 : |ξ1| < ρ, |ξ′| < r}.

Assuming that Ω is a bounded Lipschitz domain, there exist positive numbers r0 ,
κ such that, for every y ∈ ∂Ω, there exist: (i) a set of Euclidean coordinates ξ = ξy
centered at y with the positive ξ1 axis pointing in the direction of ny

1 and (ii) a
function Fy uniformly Lipschitz in RN−1 with Lipschitz constant ≤ κ such that

(2.1)
Qy(r0, ρ0) :=Ω ∩ Ty(r0, ρ0)

= {ξ = (ξ1, ξ
′) : Fy(ξ

′) < ξ1 < ρ0, |ξ′| < r0},

where Ty(r0, ρ0) = y+T (r0, ρ0) in coordinates ξ = ξy and ρ0 = 10κr0. Without loss
of generality, we assume that κ > 1.

The set of coordinates ξy is called a standard set of coordinates at y and Ty(r, ρ)
with 0 < r ≤ r0 and ρ = cκr, 2 < c ≤ 10 is called a standard cylinder at y.

If Ω is a bounded C2 domain there exists β0 > 0 such that for every x ∈ Ωβ0

there is a unique point σ(x) ∈ ∂Ω such that

|x− σ(x)| = δ(x)

and x 7→ δ(x) is in C2(Ωβ0) while x 7→ σ(x) is in C1(Ωβ0). The set of coordinates
(δ, σ) defined in this way in Ωβ0 is called the flow coordinates set. We denote

(2.2)
Dβ = {x ∈ Ω : δ(x) > β}, Ωβ = {x ∈ Ω : δ(x) < β},

Σβ = {x ∈ Ω :δ(x) = β}.

1If Ω is smooth, ny denotes the inward normal at y. If Ω is Lipschitz, ny denotes an approximate
normal.
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Notation. Let fi, i = 1, 2, be positive functions on some domain X. Then the
notation f1 ∼ f2 in X means: there exists C > 0 such that

1

C
f1 ≤ f2 ≤ Cf1 in X.

The notation f1 ≲ f2 means: there exists C > 0 such that f1 ≤ Cf2 in X. The
constant C will be called a similarity constant.

The BHP and estimates of the Green and Martin kernels will be frequently used
in the sequel. Therefore, for the convenience of the reader, we state them here.
These results are valid in bounded Lipschitz domains.

The Boundary Harnack Principle:

Theorem 2.1 (Ancona [3]). Let P ∈ ∂Ω and let TP (r, ρ) be a standard cylinder
at P . There exists a constant c depending only on N, ā and ρ

r such that whenever
u is a positive LV harmonic function in QP (r, ρ) that vanishes continuously on
∂Ω ∩ TP (r, ρ) then

(2.3) c−1rN−2GV
Ω(x,A

′) ≤ u(x)

u(A)
≤ c rN−2GV

Ω(x,A
′), ∀x ∈ Ω ∩ T

P
(
r

2
;
ρ

2
)

where A = (ρ/2)(1, 0, ..., 0), A′ = (2ρ/3)(1, 0..., 0) in the corresponding set of local
coordinates ξP .

In particular, for any pair u, v of positive LV harmonic functions in QP (r, ρ) that
vanish on ∂Ω ∩ TP (r, ρ):

(2.4) u(x)/v(x) ≤ Cu(A)/v(A), ∀x ∈ Ω ∩ T
P
(r/2, ρ/2))

where C = c2.

Estimates of the Green and Martin kernels (Marcus [16]):

Theorem 2.2. Assume (A1), (A2) and N ≥ 3.
Then, for every b > 0 there exists a constant C(b), depending also on N, r0, κ, ā,

such that: if x, y ∈ Ω and

(2.5) |x− y| ≤ 1

b
min(δ(x), δ(y))

then

(2.6)
1

C(b)
|x− y|2−N ≤ GV (x, y) ≤ C(b)|x− y|2−N .

In the next theorems, C stands for a constant depending only on r0, κ, ā and N .

Theorem 2.3. Assume (A1), (A2) and N ≥ 3.
If x, y ∈ Ω and

(2.7) max(δ(x), δ(y)) ≤ r0/10κ

(2.8) min(δ(x), δ(y)) ≤ |x− y|
16(1 + κ)2
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then

(2.9)

1

C
|x− y|2−N φγV (x)φγV (y)

φγV (xy)2
≤ GV (x, y)

≤ C|x− y|2−N φγV (x)φγV (y)

φγV (xy)2
.

The point xy depends on the pair (x, y). If

r̂(x, y) := |x− y| ∨ δ(x) ∨ δ(y) ≤ r0/10κ

xy can be chosen arbitrarily in the set

(2.10) A(x, y) := {z ∈ Ω :
1

2
r̂(x, y) ≤ δ(z) ≤ 2r̂(x, y)} ∩B4r̂(x,y)(

x+ y

2
)}.

Otherwise set xy = x0 where x0 is a fixed reference point.

Theorem 2.4. Assume (A1), (A2) and N ≥ 3.
If x ∈ Ω, y ∈ ∂Ω and |x− y| < r0

10κ then

(2.11)
1

C

φγV (x)

φγV (xy)2
|x− y|2−N ≤ KγV

Ω (x, y) ≤ C
φγV (x)

φγV (xy)2
|x− y|2−N ,

where xy is an arbitrary point in A(x, y).

Finally we recall two well-known results that will be used later on. These results
apply to a general class of operators that includes in particular, operators LV sat-
isfying (A1) and (A2).

I. Riesz decomposition lemma. Let u be a positive LV superharmonic function.
Then u has a unique representation of the form:

(2.12) u = p+ w where p is an LV potential, w is LV harmonic.

II. Characterization of LV potentials. A positive LV superharmonic function
p is an LV potential if and only if it is a Green potential, i.e., p = GV [τ ] for some
τ ∈ M(Ω;ΦV ). (See [2, Theorem 12]).

3. Main results

In the results stated below Ω is a bounded C2 domain in RN . As mentioned in
the introduction, the results will be extended, in a separate note, to the case of
bounded Lipschits domains.

The first result provides a sharp estimate of positive LV harmonic functions.

Theorem 3.1. Assume conditions (A1), (A2). In addition assume that,

(B1) limβ→0

∫
Σβ

Φ2
V

δ
dS = 0.

Then

(3.1)
1

C
∥ν∥ ≤

∫
Σβ

ΦV

Φ0
KV [ν]dS ≤ C∥ν∥ ∀ν ∈ M+(∂Ω),

where C depends on ā,Ω and the rate of convergence in (B1). Condition (B1) is
also necessary.
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Notation Let u be a positive LV harmonic function. Put

(3.2) σβ(u) := σ(u,Dβ) =

{
Wu1Σβ

dHN−1 in Ω

0 in RN \ Ω

where W := ΦV
Φ0

. Let

M(u) := {σβ(u) : 0 < β < β0}.
Theorem 3.1 implies that M(u) is a bounded set of measures on RN . Therefore, for
any sequence βn → 0, there is a subsequence {βn′} such that {σβn′ (u)} converges
weakly to a measure in M(∂Ω). The set of weak limit points of M(u) as β → 0
(with respect to weak convergence) is denoted by T (u).

A measure ν ′ ∈ T (u) is called an approximate trace of u.

Theorem 3.2. Assume conditions (A1), (A2), (B1) and let u = KV [ν], ν ∈ M(∂Ω)
positive. If ν ′ is an approximate trace of u then ν and ν ′ are mutually absolutely
continuous and

1

C
≤ h :=

dν ′

dν
≤ C

where C is the constant in (3.1).

In the following theorems we present estimates of LV potentials. Recall that
w is an LV potential iff w = GV [τ ] for some positive measure τ ∈ M(Ω;ΦV ).
Alternatively we refer to such a function as a ’Green potential’.

Theorem 3.3. Assume (A1) and (A2). Then there exists a constant c depending
on ā, r0 and κ such that, for every τ ∈ M+(Ω;ΦV ),

(3.3)
1

c

∫
Ωr0/4

ΦV dτ ≤
∫
Ωr0/12κ

ΦV

Φ0
GV [τ ]dx

and

(3.4)
1

c

∫
Ω
ΦV dτ ≤

∫
Ω

ΦV

Φ0
GV [τ ]dx

Remark. See also Lemmas 5.1 and 5.2 below for more specific estimates concerning
surface integrals on manifolds Σβ.

Theorem 3.4. Assume (A1), (A2). In addition assume that there exist α, α∗ such
that:

(B2) 0 < α− 1/2 < α∗ ≤ α,
1

c
δα ≤ ΦV ≤ cδα

∗
in Ωr0 .

Then there exists c′ > 0, depending on a, ā, α∗, α and Ω such that for every
τ ∈ M+(Ω;ΦV )

(3.5)

∫
Ω

ΦV

Φ0
GV [τ ]dx ≤ c′

∫
Ω
ΦV dτ.

Corollary 3.5. Assume (A1), (A2), (B1) and (B2). Then

(3.6)

∫
Σβ

ΦV

Φ0
GV [τ ]dSx → 0 as β → 0.

Using these facts and the Riesz decomposition lemma we obtain,
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Proposition 3.6. Assume (A1), (A2).
(i) If u is a positive LV superharmonic function then

(3.7) −LV u = τ ∈M(Ω;ΦV )

and there exists a non-negative measure ν ∈ M(∂Ω) such that

(3.8) u = GV [τ ] +KV [ν].

(ii) Let u be a non-negative LV subharmonic function and τ := LV u. Then, τ ∈
M(Ω;ΦV ) if and only if u is dominated by an LV superharmonic function. If the
above condition holds then there exists a non-negative measure ν ∈ M(∂Ω) such
that

(3.9) u+GV [τ ] = KV [ν].

Combining Proposition 3.6 with Theorems 3.1, 3.3 and 3.4 we obtain the folowing
two sided estimates.

Theorem 3.7. Assume (A1), (A2), (B1) and (B2). Let u be a positive LV su-
perharmonic function and let τ , ν be as in Proposition 3.6. Then there exists a
constant C depending only on ā, α∗, α, r0, Ω such that

(3.10)
1

C
(

∫
Ω
ΦV dτ + ∥ν∥) ≤

∫
Ω

ΦV

Φ0
udx ≤ C(

∫
Ω
ΦV dτ + ∥ν∥).

Theorem 3.8. Assume (A1), (A2), (B1) and (B2). Let u be a positive LV sub-
harmonic function and assume that

(3.11) τ := LV u ∈ M(Ω;ΦV ).

Put ν := trV (u). Then there exists a constant C depending only on ā, α∗, α, r0, Ω
such that

(3.12)
1

C
∥ν∥ ≤

∫
Ω

ΦV

Φ0
udx+

∫
Ωr0/4

ΦV dτ ≤ C ∥ν∥ .

In Section 7 we establish an equivalence relation between the measureWdS on Σβ

and the harmonic measure of LV in Dβ (see Theorem 7.5). This relation provides

further indication to the effect that the weight W = ΦV
Φ0

is optimal in the present
context.

Estimates (3.1) and (3.5) and a version of Proposition 3.6 have been proved in [18]
in the special case V = γ/δ2 and in [19] in the case V = γ/δ2Fk

where Fk is a smooth
k-dimensional manifold without boundary. In both papers the proofs dependended,
in an essential way, on the fact that, in those cases, the precise behavior of the ground
state is known. In [18] the estimates have been applied to a study of boundary value
problem for the equation −LV u+ up = 0. These results have been extended in [17]
by a considerable relaxation of the conditions on γ. In [19] the above estimates
have been applied to the study of a more general family of nonlinear equations with
absorption of the form −LV u+ f(x, u) = 0.

Theorems 3.2, 3.3, the related Lemmas 5.1 and 5.2 and consequently the lower
estimates in Theorems 3.7 nd 3.8 are new even in the model case V = γ/δ2.
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4. Estimates of LV harmonic functions and approximate boundary
trace

Proof of Theorem 3.1. For y ∈ ∂Ω denote

Cy = {x ∈ Ω : ⟨x− y,ny⟩ >
1

2
|x− y|, δ(x) < β0/2}

It is known [3] that there exists t0 > 0 such that

(4.1) KV (y + tny, y)GV (y + tny, x0) ∼ t2−N t ∈ (0, t0)

with similarity constant dependent on ā,Ω but independent of y. We assume that
ϵb < t0. Hence, by the strong Harnack inequality,

K0(x, y)

KV (x, y)
∼ GV (x, x0)

G0(x, x0)
∼ ΦV (x)

Φ0(x)
in Cb(y).

Thus,

(4.2)

∫
Cb(y)∩Σβ

ΦV (x)

Φ0(x)
KV (x, y)dSx ∼

∫
Cb(y)∩Σβ

K0(x, y)dSx,

with similarity constants independent of y ∈ ∂Ω and β ∈ (0, ϵb).
By BHP KV (·, y) ∼ GV (·, x0) in Ωϵb \ Cb(y), uniformly with respect to y ∈ ∂Ω.

Therefore condition (B1) and (4.2) imply that there exists a constant C = C(V,Ω)
such that

(4.3)

∫
Σβ

ΦV (x)

Φ0(x)
KV (x, y)dSx ∼

∫
Σβ

K0(x, y)dSx,

with similarity constants independent of y ∈ ∂Ω and β ∈ (0, ϵb).
By Fubini’s theorem (4.3) implies (3.1).
The last part of the proof also shows that condition (B1) is necessary. □

Proof of Theorem 3.2. By assumption, ν ′ is an approximate trace of u, i.e., there
exists a sequence of positive numbers {βn} converging to zero such that

σβn(u) ⇀ ν ′.

Let E ⊂ ∂Ω be a compact set and denote by νE the measure on ∂Ω given by
νE(A) = ν(E ∩A). We similarly define the measure (ν ′)E : (ν

′)E(A) = ν ′(E ∩A).
Put uE := KV [νE ]. Taking a further subsequence if necessary, we may assume

that {σβn(uE)} is also weakly convergent. The weak limit of this sequence is denoted
by (νE)

′. Note that (νE)
′ and (ν ′)E are different measures.

We have to show that

(#)
1

C
ν(E) ≤ ν ′(E) ≤ Cν(E)

with C as in (3.1). First observe that

(νE)
′(∂Ω) ≤ ν ′(E)

and, by (3.1),
1

C
ν(E) ≤ (νE)

′(∂Ω).

This proves the left inequality in (#).
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Given ϵ > 0, let E ⊂ O ⊂ ∂Ω, O relatively open and ν(O \ E) < ϵ. Further put
ν̃O := ν∂Ω\O. Then - taking a subsequence if necessary - we may assume that both
sequences {σβn(KV [νO])} and {σβn([ν̃O])} converge weakly. We denote the limits
by (νO)

′ and (ν̃O)
′ respectively. Obviously

(νO)
′ + (ν̃O)

′ = ν ′

and (ν̃O)
′(E) = 0. Therefore, by (3.1),

ν ′(E) ≤ (νO)
′(∂Ω) ≤ Cν(O) ≤ C(ν(E) + ϵ)

This implies the right inequality in (#). □

5. Estimates of LV potentials

In this section we prove Theorems 3.3 and 3.4 and Proposition 3.5. The proofs
are based on two lemmas.

Lemma 5.1. Assume that (A1) and (A2) hold. Let τ ∈ M+(Ω;ΦV ) and denote

I1(β) :=
1

β

∫
Σβ

ΦV (x)

∫
Ω
GV (x, y)χaβ(|x− y|)dτ(y)dSx

where χs(t) = 1
(0,s)

(t) and a ≥ 16κ2. Then there exists a constant c depending only
on a, ā and Ω such that,

(5.1)
1

c

∫
Ω3aβ/2

ΦV dτ ≤ I1(β) ≤ c

∫
Ω
ΦV dτ ∀β ∈ (0, r0/3a).

Proof. The domain of integration in I1(β) is {(x, y) ∈ Σβ × Ω : |x − y| < aβ}.
We partition the domain of integration into three parts and estimate each of the
resulting integrals separately. Accordingly we denote:

I1,1(β) :=
1

β

∫
Σβ

ΦV (x)

∫
β/a≤δ(y)≤β

GV (x, y)χaβ(|x− y|)dτ(y)dSx,

I1,2(β) :=
1

β

∫
Σβ

ΦV (x)

∫
δ(y)≤β/a

GV (x, y)χaβ(|x− y|)dτ(y)dSx,

I1,3(β) :=
1

β

∫
Σβ

ΦV (x)

∫
β≤δ(y)

GV (x, y)χaβ(|x− y|)dτ(y)dSx

so that I1 = I1,1 + I1,2 + I1,3.

Estimate of I1,1(β).

By the Hardy (chain) inequality (see e.g. [16, Lemma 3.2]) , there exists C(a) > 0
such that, if

(*) β/a ≤ δ(y) ≤ β, x ∈ Σβ, |x− y| ≤ aβ

then

(5.2)
1

C(a)
ΦV (x) ≤ ΦV (y) ≤ C(a)ΦV (x).

By Theorem 2.2, if (*) holds then

1

c
|x− y|2−N ≤ GV (x, y) ≤ c|x− y|2−N
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for some constant c = c(a). Hence,

(5.3)

I1,1(β) ∼
1

β

∫
Σβ

∫
β/a≤δ(y)≤β

|x− y|2−Nχaβ(|x− y|)ΦV (y)dτ(y)dSx

=
1

β

∫
β/a≤δ(y)≤β

∫
Σβ

|x− y|2−Nχaβ(|x− y|)dSxΦV (y)dτ(y)

By (*),

(5.4)

∫
Σβ

|x− y|2−Nχaβ(|x− y|)dSx ≲
∫ aβ

0
dr = aβ,

(a− 1)β ≤
∫ aβ

[β−δ(y)]
dr ≲

∫
Σβ

|x− y|2−Nχaβ(|x− y|)dSx.

Hence by (5.3),

(5.5) I1,1(β) ∼
∫
β/a≤δ(y)≤β

ΦV dτ

with similarity constant depending on a and ∂Ω.

Estimate of I1,2(β). Here we assume that β < r0/3a. Since δ(y) < β/a it follows
that in the domain of integration of I1,2,

(5.6) (a− 1)δ(y) ≤ β − δ(y) ≤ |x− y| < aβ.

Thus the pair (x, y) satisfies the conditions of Theorem 2.3 and consequently,

(5.7) ΦV (x)GV (x, y) ∼
ΦV (x)

2

ΦV (xy)2
ΦV (y)|x− y|2−N ,

where xy may be chosen as follows: xy := η + |x − y|nη with η ∈ ∂Ω the closest
point to y.

Then, by (5.6), δ(xy) = |x − y| ∼ β and |xy − x| ≤ aβ. Hence, by the strong
Hardy inequality, there exists c′(a) > 0 such that

1

c′
ΦV (x) ∼ ΦV (xy) ≤ c′ΦV (x).

Therefore,

(5.8)
ΦV (x)GV (x, y) ∼

ΦV (x)
2

ΦV (xy)2
ΦV (y)|x− y|2−N

∼ |x− y|2−NΦV (y).

with similarity constant depending on a. It follows that,

(5.9) I1,2(β) ∼
1

β

∫
Σβ

∫
δ(y)≤β/a

|x− y|2−Nχaβ(|x− y|)ΦV (y)dτ(y)dSx.

By (5.4) and (5.9) we conclude that,

(5.10) I1,2(β) ∼
∫
δ(y)≤β/a

ΦV (y)dτ(y).
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Estimate of I1,3(β).

In this case, as |x − y| < aβ and δ(y) > β inequality (5.2) holds. Moreover, by
Theorem 2.2 the inequality below holds:

1

c
|x− y|2−N ≤ GV (x, y) ≤ c|x− y|2−N .

Therefore, as in (5.3), we obtain

(5.11)

I1,3(β) ∼
1

β

∫
Σβ

∫
β≤δ(y)

|x− y|2−Nχaβ(|x− y|)ΦV (y)dτ(y)dSx

∼ 1

β

∫
β≤δ(y)

∫
Σβ

|x− y|2−Nχaβ(|x− y|)dSxΦV (y)dτ(y)

≲
∫
β≤δ(y)

ΦV dτ

We also have a (partial) estimate from below.
If y is a point such that β ≤ δ(y) < 3a

2 β then Baβ(y) ∩ Σβ contains an (N − 1)
dimensional ball of radius β/2 and consequently there exists a constant c3(a) > 0
such that ∫

Σβ

|x− y|2−Nχaβ(|x− y|)dSx > c3.

Therefore

(5.12) c3

∫
β≤δ(y)< 3a

2
β
ΦV dτ ≤ I1,3(β)

In conclusion, there exists a constant c > 0 such that (5.1) holds. □
Lemma 5.2. Assume (A1), (A2). In addition assume that there exist α, α∗ such
that:

(B2) 0 < α− 1/2 < α∗ ≤ α,
1

c
δα ≤ ΦV ≤ cδα

∗
in Ωr0 .

Then there exists C > 0 such that for every τ ∈ M+(Ω;ΦV ) and β ∈ (0, r0),

(5.13)

I2,λ(β) :=
1

βλ

∫
Σβ

ΦV (x)

∫
Ω
GV (x, y)(1− χaβ(|x− y|))dτ(y)dSx

≤C

∫
Ω
ΦV dτ,

where λ := 2(α∗ − α) + 1 > 0.

Proof. Since δ(x) = β and |x− y| ≥ aβ,

a inf(δ(x), δ(y)) ≤ |x− y|.
Therefore, as before, we can estimate GV (x, y) by (5.7). Here we choose xy =
η′ + |x − y|nη′ where η′ is the nearest point to x on ∂Ω. Thus x and xy are on a
normal to ∂Ω and |x− y| = δ(xy) ≥ aδ(x).

By assumption (B2),
ΦV (x)

ΦV (xy)
≤ c(a)

βα∗

|x− y|α
.
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Hence, by the first relation in (5.8)

(5.14)

I2,0 ≲
∫
Σβ∩[|x−y|>aβ]

ΦV (x)
2

ΦV (xy)2
|x− y|2−N

∫
Ω
ΦV (y)dτ(y) dSx

≲ β2α∗
∫
Σβ∩[|x−y|>aβ]

|x− y|2−N−2α

∫
Ω
ΦV (y)dτ(y) dSx

≲ β2α∗
∫ 1

aβ
r−2αdr

∫
Ω
ΦV (y)dτ(y)

≲ β2α∗−2α+1

∫
Ω
ΦV (y)dτ(y).

Therefore (5.13) holds with λ = 2α∗ − 2α+ 1. □

Proof of Theorem 3.3. By Lemma 5.1,

1

c

∫
Ω3aβ/2

ΦV dτ ≤ I1(β)

for every β < r0/3a. Therefore for every r0/6a < β < r0/3a,

1

c

∫
Ωr0/4

ΦV dτ ≤ I1(β).

This implies (3.3). More precisely, there exists a constant c∗ depending only on a,
ā, r0, κ such that

(5.15) c∗
∫
Ωr0/4

ΦV dτ ≤
∫
[
r0
6a

<δ<
r0
3a

]

ΦV

Φ0
GV [τ ]dx.

A suitable constant is given by c∗ = (infΩr0/4
H)−1 r0

6ac where H is the Jacobian

of the transformation from Euclidean coordinates to flow coordinates (δ, σ). It is
known that H(x) → 1 as δ(x) → 0.

Put τ ′ = τ1
[δ≥r0/4]

. Then

(5.16)

∫
Ω

ΦV

Φ0

∫
Ω
GV (x, y)dτ

′(y)dx =

∫
Ω

∫
Ω

ΦV

Φ0
GV (x, y)dxdτ

′(y) ≥∫
[δ(y)≥r0/4]

∫
|x−y|<r0/8

ΦV

Φ0
(x)GV (x, y)dxdτ

′(y) ≥

c1

∫
[δ(y)≥r0/4]

∫
|x−y|<r0/8

ΦV

Φ0
(x)|x− y|2−Ndxdτ ′(y) ≥

c2

∫
[δ(y)≥r0/4]

∫
|x−y|<r0/8

|x− y|2−NdxΦV (y)dτ
′(y) ≥

c3

∫
[δ≥r0/4]

ΦV dτ
′ ≥ c4

∫
Ω
ΦV dτ

′,

the constants depending only on a, ā, r0, κ. (By Harnack: ΦV (x) ≥ cΦV (y) in the
domain of integration above.) Combining (5.15) and (5.16) we obtain (3.4). □
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Proof of Theorem 3.4. By (5.1) and (5.13)

I1(β) ≤ c1

∫
Ω
ΦV dτ, and I2,λ(β) ≤ c2

∫
Ω
ΦV dτ

for every β ∈ (0, r1) where r1 := r0/12κ. Therefore∫
Σβ

ΦV

β
GV [τ ]dx ≤ I1(β) + βλ−1I2,λ(β) ≤ cmax(1, βλ−1)

∫
Ω
ΦV dτ

where λ is a positive number. Consequently, integrating over β in (0, r1),

(5.17)

∫
Ωr1

ΦV

Φ0
GV [τ ]dx ≤ C1

∫
Ω
ΦV dτ

where C1 depends on ā, r0, κ, α
∗.

Therefore, to obtain (3.5), it remains to show that

(5.18)

∫
Dr1

ΦV

Φ0
GV [τ ]dx ≤ C2

∫
Ω
ΦV dτ

with C2 depending on the parameters mentioned above.
Recall that the ground state is normalized by ΦV (x0) = 1. Therefore, by Har-

nack’s inequality, it follows that ΦV ∼ 1 in Dr1 , i.e, ΦV is bounded and bounded
away from zero in Dr1 by constants depending only on ā, r0, κ.

Let r2 = r1/2 and write,∫
Dr1

ΦV

Φ0
GV [τ ]dx =

∫
Dr1

ΦV

Φ0

∫
Dr2

GV (x, y)dτ(y)dx

+

∫
Dr1

ΦV

Φ0

∫
Ω\Dr2

GV (x, y)dτ(y)dx =: J1 + J2.

In J2, x ∈ Dr1 and y ∈ Ω \ Dr2 . Therefore GV (x, y) ∼ ΦV (y). Consequently

(5.19) J2 ≲
∫
Ω\Dr2

ΦV dτ.

In J1 x, y ∈ Dr2 and therefore, by Theorem 2.2,

(5.20) J1 ≲
∫
Dr1

∫
Dr2

|x− y|2−Ndτ(y)dx ≲ τ(Dr2) ≲
∫
Dr2

ΦV dτ.

Combining these inequalities we obtain (5.18). □

Proof of Corollary 3.5. Given ϵ > 0 choose βϵ > 0 sufficiently small so that∫
Ω̄βϵ

ΦV dτ < ϵ.

Put

τ1 = τ1Ω̄β′
τ2 = τ − τ1 ui = GV [τi].

By Theorem 3.4

(5.21) J1 :=

∫
Σβ

ΦV

δ
u1 dS ≤ c′ϵ ∀β ∈ (0, βϵ).
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If E is a compact subset of Ω, there exists a constant cE such that, for every
y ∈ E,

1

cE
ΦV (x) ≤ GV (x, y) ≤ cEΦV (x) when δ(x) <

1

2
dist (E, ∂Ω).

Consequently, for every y ∈ Ω such that δ(y) ≥ βϵ

(5.22) GV (x, y) ≲ ΦV (x) ∀x ∈ Ωβϵ/2

with similarity constant independent of y. Hence

(5.23) u2 ∼ ΦV ∥τ2∥ in Ωβϵ/2.

Therefore, by condition (B1),

J2 :=

∫
Σβ

ΦV

δ
u2dSx → 0 as β → 0.

This fact and (5.21) imply (3.6). □

6. LV superharmonic and subharmonic functions

Assume that V satisfies conditions (A1), (A2).
Let D ⋐ Ω be a Lipschitz domain, denote by PD

V the Poisson kernel of LV in D

and by ωx0,D
V the harmonic measure of LV on ∂D relative to a fixed reference point

x0 ∈ D. Then,

(6.1) dωx0,D
V = PD

V (x0, ·)dS.

Lemma 6.1. (i) Let u be positive LV superharmonic and denote:

w := sup{v ≤ u : v is LV harmonic}.

Then w is LV harmonic.
(ii) Let u be positive LV subharmonic. Assume that there exists a positive LV

superharmonic function dominating u. Then

w := inf{v ≥ u : v is LV superharmonic}

is LV harmonic.

Proof. (i) Let {Dn} be a smooth exhaustion of Ω and let

(6.2) un(x) =

∫
∂Dn

PDn
V (x, ξ)hn(ξ)dSξ ∀x ∈ Dn, hn = u⌊∂Dn .

where hn is the trace (in the Sobolev sense) of u on ∂Ωn. Then un is LV harmonic,
un ≤ u and {un} is decreasing. Therefore the limit v := limun is LV harmonic.
Clearly v is the largest LV harmonic function dominated by u so that w = v.

(ii) In this case {un} is an increasing sequence which may tend to infinity. How-
ever, if u is dominated by an LV superharmonic function, {un} converges to an LV

harmonic function w. If v is an LV superharmonic function dominting u the v ≥ un
for every n. Therefore w is the smallest LV superharmonic function dominating u.
Consequently w = w. □
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Proof of Proposition 3.6. (i) This statement is an immediate consequence of the
Riesz decomposition lemma and the fact that u is an LV potential if and only if
u = GV [τ ] for some τ ∈ M(Ω;ΦV ).
(ii) If τ ∈ M(Ω;ΦV ) then u+GV [τ ] is positive LV harmonic. By the Representation
Theorem ∃ ν ∈ M(∂Ω) such that u + GV [τ ] = KV [ν]. In this case u is dominated
by KV [ν].

Conversely, if u is dominated by an LV superharmonic function v and un is
defined as in Lemma 6.1 then un < v and

u+GDn
V [τ1Dn

] = un ≤ v in Dn.

It follows that GV [τ ] = limGDn
V [τ1Dn

] < ∞, which implies τ ∈ M(Ω;ΦV ). □

Proof of Theorems 3.7 and 3.8. These theorems are a direct consequence of Theo-
rems 3.1, 3.3 and 3.4 applied to (3.8) and (3.9). □

7. The harmonic measure and the measure W dS.

Assume that V satisfies conditions (A1), (A2).
Let D ⋐ Ω be a Lipschitz domain, denote by PD

V the Poisson kernel of LV in D

and by ωx0,D
V the harmonic measure of LV in D relative to a fixed reference point

x0 ∈ D. Then,

(7.1) dωx0,D
V = PD

V (x0, ·)dS on ∂D.

Let {Dn} be a uniformly Lipschitz exhaustion of Ω. It is well known that if u is
a positive ∆-harmonic function then

(7.2) u⌊
∂Dn

dωx0,Dn
0 ⇀ ν

where ν ∈ M(∂Ω) is the boundary trace of u and ⇀ indicates weak convergence in
measure. In [20, Definition 3.6], (7.2) was used as a definition of boundary trace for
solutions of certain semilinear equations with absorption. In this spirit we define,

Definition 7.1. A non-negative Borel function u defined in Ω has an LV boundary
trace ν ∈ M(∂Ω) if

(7.3) lim
n→∞

∫
∂Dn

hudωx0,Dn

V =

∫
∂Ω

hdν ∀h ∈ C(Ω̄),

for every uniformly Lipschitz exhaustion {Dn} of Ω. The LV trace will be denoted
by trV (u). Here we assume that Dβ0 ⊂ D1 and x0 ∈ Dβ0 .

In the present context a ’good’ definition of trace should imply two basic state-
ments: (a) if u is positive LV harmonic then trV (u) should be defined and coincide
with the measure in its Martin representation and (b) if u is an LV potential its LV

trace should be zero. The next lemmas show that, with the above definition, these
statements are valid.
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Lemma 7.2. If {Dn} is a uniformly Lipschitz exhaustion of Ω then, for every
positive LV harmonic function u = KV [ν],

(7.4) lim
n→∞

∫
∂Dn

hu dωx0,Dn

V =

∫
∂Ω

h dν ∀h ∈ C(Ω̄).

Proof. First observe that

(7.5) u(x0) =

∫
∂Dn

u dωx0,Dn

V

and, as the Martin kernel is normalized by KV (x0, y) = 1 for every y ∈ ∂Ω,

u(x0) =

∫
∂Ω

KV (x0, y) dν(y) = ν(∂Ω).

Thus (7.4) holds for h ≡ 1. By (7.1) the following sequence of measures is bounded:

σn =

{
u dωx0,Dn

V on ∂Dn

0 on Ω̄ \ ∂Dn
n ∈ N.

Let {σnk
} be a weakly convergent subsequence with limit ν ′. Then

ν(∂Ω) = ν ′(∂Ω).

Let F ⊂ ∂Ω be a compact set and define

νF = ν1F , uF = KV [ν
F ].

Let σF
n be defined in the same way as σn with u replaced by uF . Proceeding as

before we obtain a weakly convergent subsequence of {σF
n } with limit ν̂F supported

in F . Furthermore,

ν̂F (F ) = ν̂F (∂Ω) = uF (x0) = νF (∂Ω) = ν(F ).

Since uF ≤ u it follows that ν̂F ≤ ν ′. Consequently ν(F ) ≤ ν ′(F ). As this inequality
holds for every compact subset of ∂Ω it follows that nu ≤ ν ′. As the measures are
positive and ν(∂Ω) = ν ′(∂Ω) it follows that ν = ν ′ and therefore the whole sequence
{σn} converges weakly to ν. □
Lemma 7.3. Assume (A1) and (A2). Then

(7.6)
(a) trV (KV [ν]) = ν ∀ν ∈ M+(∂Ω)

(b) trV (GV [τ ]) = 0 ∀τ ∈ M+(Ω;ΦV ).

Proof. (a) is a restatement of Lemma 7.2. (b) follows from the fact that GV [τ ]
is an LV potential , i.e., it does not dominate any positive LV harmonic function
(see [2]). Let un be defined as in (6.2), with u = GV [τ ]. Then limun is the largest
LV harmonic function dominated by u, which in this case is the zero function. Thus,

un(x0) =

∫
∂Dn

GV [τ ]⌊∂Dn dω
x0,Dn

V → 0.

□
Lemma 7.4. Let u ∈ L1

loc be a positive function such that −LV u =: τ where
|τ | ∈ M(Ω;ΦV ). Then u has an LV boundary trace, say ν, and u = GV [τ ] +KV [ν].
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Proof. Put U = u+GV (|τ | − τ). Then U is positive, LV superharmonic: −LV U =
|τ |. By propostion 3.6(i), trV (U) =: ν exists and U = GV [τ

′]+KV [ν]. Thus τ
′ = |τ |

and
u = U −GV (|τ | − τ) = GV [τ ] +KV [ν].

Since τ is the difference of two positive measures in M(Ω;ΦV ) it follows that
trV (GV [τ ]) = 0. □

A comparison of (7.6) (a) with Theorem 3.2 and of (7.6) (b) with Corrollary 3.5
indicates that the behavior of the measure WdS on Σβ is similar to that of the
harmonic measure near the boundary. The next result gives a precise meaning to
this relation.

Theorem 7.5. Assume (A1), (A2), (B1). For y ∈ ∂Ω, denote by Cy the spherical
cone with vertex y whose axis points in the direction of ny and its opening angle is
π/4. Then, there exists a positive constant C independent of y ∈ ∂Ω such that, for
every β ∈ (0, β0),

(7.7)
1

C
W (y + βny) ≤

1

βN−1

∫
Cy∩Σβ

dω
x0,Dβ

V ≤ CW (y + βny).

Proof. We know that

(7.8) Jβ :=

∫
Σβ

KV (x, y)dω
x0,Dβ

V = KV (x0, y) = 1 ∀β ∈ (0, β0).

We write Jβ as a sum of two integrals:

(7.9) Jβ =

∫
Cy∩Σβ

+

∫
Σβ\Cy

KV (x, y)dω
x0,Dβ

V =: Jβ
1 + Jβ

2 .

By BHP,
KV (·, y) ∼ GV (x, x0) in Ωβ \ Cy

uniformly with respect to y. Therefore, by (7.6) (b),

Jβ
2 ≲

∫
Σβ

GV (x, x0)dω
x0,Dβ

V → 0 as β → 0

uniformly with respect to y. Consequently, by (7.8) and (7.9),

(7.10) Jβ
1 → 1 as β → 0

uniformly with respect to y. In addition, by the strong Harnack inequlity,

Jβ
1 ∼ KV (y + βny, y)

∫
Cy∩Σβ

dω
x0,Dβ

V

with similarity constants independent of y. Therefore there exists C1 indpendent of
y such that

(EST1)
1

C1
≤ KV (y + βny, y)

∫
Cy∩Σβ

dω
x0,Dβ

V ≤ C1 ∀β ∈ (0, β0).

Similarly we denote,

J̃β :=

∫
Cy∩Σβ

+

∫
Σβ\Cy

KV (x, y)WdS =: J̃β
1 + J̃β

2 .
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By (3.1) J̃β is bounded above and below by positive constants independent of y ∈ ∂Ω
and β ∈ (0, β0). By BHP and (1.4)

KV (·, y) ∼ GV (·, x0) ∼ ΦV in Ωβ \ Cy.

Therefore, by (B1),

J̃β
2 ≲

∫
Σβ

Φ2
V

Φ0
dS → 0 as β → 0.

It follows that J̃β
1 is bounded above and below by positive constants independent

of y, β. By the strong Harnack inequality,

J̃β
1 =

∫
Σβ∩Cy

KV (x, y)WdS ∼ KV (y + βny, y)W (y + βny)β
N−1,

with similarity constants independent of y, β. Therefore there exists a constant C2

independent of y such that

(EST2)
1

C2
≤ KV (y + βny, y)W (y + βny)β

N−1 ≤ C2 ∀β ∈ (0, β0).

Combining (EST1) and (EST2) we obtain (7.7). □

8. Examples

Let Ω be a smooth bounded domain, F ⊂ ∂Ω a compact set. Denote

VF =
1

δ2F
, δF (x) = dist (x, F ),

cH(VF ) = inf
C∞

0 (Ω)

∫
Ω |∇φ|2∫
Ω VFφ2

.

1. The model case V = γ/δ2 with γ < CΩ
H (= Hardy constant for the domain). In

every smooth domain CΩ
H ≤ 1/4.

Here ΦV ∼ δα, α > 1/2, ∀γ < CΩ
H . Thus (B1), (B2) hold.

2. V = γ/δ2F where ∅ ̸= F is an arbitrary compact subset of ∂Ω and 0 < γ < CΩ
H .

Then,

0 < VF < γ/δ2 =⇒ δ ≤ ΦVF
≤ δα

∗

for some α∗ > 1/2. Therefore (B1), (B2) hold.

If γ < 0:

−γ/δ2 ≤ VF ≤ 0 ⇐⇒ δα ≲ ΦV ≲ δ, α =
1

2
+

√
1

4
− γ > 1.

(B1) always holds. (B2) holds if α < 3/2, i.e., γ > −3/4. In summation,

(∗) (B1) holds ∀γ < CΩ
H , (B2) holds ∀γ ∈ (−3

4
, CΩ

H).
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3. V = γ/δ2Fk
, 0 < k < N − 1 and γ < min(CH(VFk

), 2(N−k)−1
4 ) =: γk. Fk ⊂ ∂Ω is

a smooth k-dimensional manifold without boundary and

(8.1) CH(VFk
) = inf

ϕ∈C1
c (Ω)

∫
Ω |∇ϕ|2 dx∫
Ω ϕ2/δ2Fk

dx
.

In a neighborhood of Fk,

ΦV ∼ δδαFk
where α =

1

2
(k −N +

√
(k −N)2 − 4γ).

The restriction on γ implies α > −1/2. Therefore, if 0 ≤ γ then, in a neighborhood

of Fk, δ ≲ ΦV ≲ δα
′
for some α′ > 1/2. Thus (B1), (B2) hold.

When γ < 0, (B1) always holds and the argument in 2. shows that (B2) holds
when γ > −3/4. In summation,

(**) (B1) holds ∀γ < γk, (B2) holds ∀γ ∈ (−3

4
, γk)

As expected the restriction is weaker then in 2.

4. V = γ/δ2F where F is an arbitrary compact subset of a manifold Fk (defined in
3.), 0 < k ≤ N − 1.
If k = N − 1 then Fk = ∂Ω and (∗) holds.
If 0 < k < N − 1 then again (**) holds.

In these examples, the conditions imposed on γ are sufficient but, in most cases,
far from optimal. Therefore there is need for further research concentrating on
special (more restricted) families of potentials.
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[13] K. Gkikas and L. Véron, Boundary singularities of solutions of semilinear elliptic equations
with critical Hardy potentials, Nonlinear Anal. 121 (2015), 469–540.
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