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A UNIFORM CONTINUITY PROPERTY OF THE WINDING
NUMBER OF SELF-MAPPINGS OF THE CIRCLE

PETRU MIRONESCU AND ITAI SHAFRIR

ABSTRACT. Let u : S* — S'. When u is continuous, it has a winding number
degu, which satisfies degu = degv if u,v € C°(S,;S") and ||u — v||z= < 2. In
particular, u +— degu is uniformly continuous for the sup norm.

The winding number degu can be naturally defined, by density, when u is
merely VMO. For such u’s, the winding number deg is continuous with respect
to the BMO norm.

Let 1 < p < oo. In view of the above and of the embedding W'/PP(S') —
VMO, maps in Wl/p’p(Sl;Sl) have a well-defined winding number, continuous
with respect to the W/PP norm. However, an example due to Brezis and Niren-
berg yields sequences (uy), (va) C WY/PP(S;SY) such that ||y — vn|y1/p0 — 0
as n — oo and deguy, # degv,, Vn. Thus deg is not uniformly continuous with
respect to the WP norm (and, a fortiori, with respect to the BMO norm).

The above sequences satisty ||un ||y 1700 — 00, |[Un|lyy1/p.p — 00. We prove
that a similar phenomenon cannot occur for bounded sequences. More specifi-
cally, we prove the following uniform continuity result. Given 1 < p < co and
M > 0, there exists some 6 = §(p, M) > 0 such that

Mullpiee <M, |lu—v|lyi/mpe, <6 = degu = degu.

1. INTRODUCTION

If u € C°(S';SY), then u has a winding number degu, which is continuous with
respect to the uniform convergence, and in particular is a homotopic invariant. In
fact, deg is “better than just continuous”: it is uniformly continuous, since

(1.1) [u,v € COSY;SY), lu — v~ < 2] = degu = deguv.

The winding number can still be “naturally” defined (i.e., by density, starting
from smooth maps) when w is slightly less than continuous, more specifically when
u € VMO (S';S!). This has been first noticed by Boutet de Monvel and Gabber [3,
Appendix] for the space H'/2(S!;S!), and then extended and investigated in depth
by Brezis and Nirenberg for maps v € VMO (S';S') [5]. While, in this setting,
the winding number is still continuous with respect to norm convergence, and thus
provides a homotopic invariant, there is no global analogue of (1.1), even if we replace
the BMO norm by one of the stronger norms W'/PP 1 < p < co. More specifically,

2010 Mathematics Subject Classification. 46E35.
Key words and phrases. VMO, Winding number, fractional Sobolev spaces.



1200 P. MIRONESCU AND I. SHAFRIR

a construction from [5] yields two sequences of smooth maps uy,, v, : S' — S! such
that

|un, — vnllypi/ee — 0 as n— 00, V1 < p < 00,
(1.2)
and degu, # deguvy,, Vn
(see [4, Lemma 6.4]). Here, || |lyy1/pp = || llze + | [y71/p0, Where | |y stands for
the Gagliardo seminorm, given for 0 < s < 1, 1 < p < oo and 2, an N-dimensional
Lipschitz bounded domain or compact embedded manifold, by

P u(z) — u(y)[?
|U|Ws,p - /Sv2 0 ’.T — y|N+5p d:L‘dy

(The fact that the W/PP norm is stronger than the BMO one on S' follows from
the embedding W'/P? < BMO, valid in 1D.)

We prove that the above phenomenon can occur only when u,, v, “escape to
infinity”, that is, we have uniform continuity of the degree on bounded sets:

Theorem 1.1. Let 1 < p < oo and M > 0. Then there exists some § = 6(p, M) > 0
such that

[’LL,U € Wl/np(Sl;Sl)a |u’W1/P7P < M, |U - U|w1/p,p < 5]

(1.3)
—> degu = degw.

This provides a partial (positive) answer to [4, Open Problem 3].

Remark 1.2. The new contribution of this note concerns the case where p > 2.
When 1 < p < 2, Theorem 1.1 is a special case of [4, Proposition 7.9]. This
result asserts that, when N > 1 and 1 < p < N + 1, the degree of maps in
u € WN/PP(SN;SN) is uniformly continuous on bounded sets.

Theorem 1.1 settles thus completely the case of the dimension one. We point out
that its analogue for WN/PP(SN:SN) maps, with N > 2 and p > N + 1, is widely
open.

Remark 1.3. When 1 < p < 2, the proof of [4, Proposition 7.9] yields an explicit
d (in terms of M and p) in (1.3). A similar explicit estimate eludes us when p > 2.

Acknowledgments. This work was completed while the second autor (IS) was a
CNRS visiting professor at the Camille Jordan Institute. He thanks the CNRS
and the Institute for their support. He was also supported by the Israel Science
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2. PROOF

We first recall some basic properties of the winding number. Given p € (1, 00),
degu for u € W/PP(S:S) is defined as follows. To start with, C>°(S';S!) is dense
in W1/PP(S!:S!) [5, Lemmas A.11 and A.12], and the map u — degu, initially
defined for smooth maps u € C*°(S';S!), is continuous with respect to the BMO
norm [5, Theorem 1]. In view of the embedding W'/PP < VMO in 1D, we find that
deg has a unique continuous extension to wY PP(St:SY). In particular, it suffices
to work in (1.3) with smooth maps.
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For further use, let us note the property
(2.1) deg(uv) = degu + degv, Yu,v € WY/PP(S;sh).
As a consequence of (2.1), we have

(2.2) deg@ = — degu, Yu € WYPP(S;sh).

These properties are well known if v and v are smooth. The general case is
obtained by density, using the continuity of the degree with respect to the WW1/P-P
norm and the following easy and standard fact (“W*P N L*> is an algebra”).

Lemma 2.1. Let 0 < s <1 and 1 < p < oo. Let Q be an N-dimensional Lipschitz
bounded domain or compact embedded manifold. If (uy),(v,) C W*P(Q;C) and
u,v € WP(Q; C) satisfy

(2.3) |un, — ulwse = 0, |vp —vlwse = 0 as n — o0,
(2.4) Up = u and v, — U a.e. as N — 00,

(2.5) llunllLe < C, |lvnllLe < C, Vn,

then

(2.6) |unvy, — uvlwse — 0 as n — oo.

Proof. We have

|[(un = w)o](z) = [(un — w0l (Y Sl(un = u)(@)[Plo(z) —v(y)?
+ [(un = u) (@) = (un — )W) ["lo(y))?,

so that
|(un = w)(@)[Plo(z) — v(y)[”
[unv — wvffy s, N/ / |x—y|N+5P dzdy
|(un = w)(2) = (un — w)(y)[Plo(y) "
// |x—y|N+sP dzdy — 0

as n — oo;

here, we use dominated convergence for the first integral, and the facts that v is
bounded and |u, — u|ws»r — 0 as n — oo for the second integral. Thus |u,v —
wv|wsp» — 0 as n — oo. Similarly, |uv, — uv|ysr — 0 as n — oco. In view of the
identity

U Uy, — UV = (Upv — uv) + (uvy, — uv) + (U — u) (v, — v),
it remains to prove that X,, := |(un — u)(v, — v)[}s, — 0 as n — oo. This follows,
by dominated convergence, from

X5 [ [ Lon = I = o) = (00 = P

|ac _ |N+sp

|(un — u) (@) = (un — ) ()P (v — ) (W)
—l—/Q/Q dxdy.

|z — y| NP
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Proof of Theorem 1.1. Given u : S' — C measurable and bounded, we let T}, : D —
C denote its harmonic extension to the unit disc D. We set

(2.7) ¢, = nf{lull . ,,; uwe WYPP(S}S"), T,(0) = 0}.

(Clearly, the inf is achieved in (2.7), but we will not need this fact.) We have [6,
Section 2, item 5]

(2.8) ¢, > 0.

We will prove (1.3) by complete (strong) induction on the integer part L of M? /c;,.

Step 1. Proof of (1.3) when L =0
Let § > 0 be such that (M + 0)P := ¢ < ¢,. If u,v are smooth and as in (1.3), then

|u|€vl/w < ¢ and ‘U|€V1/P’P < ¢, and therefore there exists some ¢ > 0 such that
|Tu(z)] > &, |Ty(z)| > e, Vo € D [6, Section 2, items 8 and 9]. Thus u,v : St — S!

are smooth functions with smooth non vanishing extensions to D. It follows that
degu = degv = 0.
Step 2. Proof of (1.3) for L > 1 (assuming that (1.3) holds for 0,...,L — 1)
Argue by contradiction. Then there exist ¢ < (L 4 1) ¢, and sequences (uy), (vn) C
C>(S";S) such that [unly.),, < ¢ [valf,,, < ¢ degu, # degu,, ¥n, and
|tun — Unlyp1/pe — 0 as n — oo.

Since at least one of the integers deg uy,, deg v, is non zero, we may assume that
degu, # 0, Vn. Therefore, T, has to vanish at some point a,, € D.

Let M,(z) = fl;_z, Va €D, Vz e D, denote the (normalized) Mébius transfor-
—az

mation vanishing at a. Let N, : S' — S! be the restriction of M, to S!. We note
the following properties, valid for each a € D and each u € C°(S!; S!) [6, Section 2,
item 1].

(2.9) deg(u o Ng) = degu,
(2.10) Tuon, = (Tu) © My,
(2.11) Tuon, (0) = Ty (a).

In addition, we have [6, Section 2, item 2]

(2.12) |f o Nalywisow = | fliwime, V1 <p<oo,VfeWPP(SL ).

We consider U,, := uy o N,, and V,, := v, 0N,, . By properties (2.9)-(2.12) above
and by the assumptions on u, and v,, we have

(2.13) Unlpyipe < cand [Valh,,, <ec
(2.14) Ty, (0) =0, Vn,

(2.15) deg U, # degV,,, Vn,

(2.16) \Up, — anwl/p,p —0

and, possibly up to subsequences still denoted (U,,) and (V,,),

(2.17) U, — U e W/PP(S: S a.e. and weakly in W/PP as n — oo,
(2.18) V, =V e WYPP(SLS!) ae. and weakly in WY/PP as n — oo,
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(2.19) U-V=CeC,
(2.20) Ty (0) = 0.

The last property follows, by dominated convergence, from (2.14), (2.17) and the
fact that T,,(0) = f5, v(z) dz, Vv € L'(S'; C).

Claim 1. We have C = 0, and thus
(2.21) Vi, = U ae. as n — oo.

Granted Claim 1, we continue as follows. Since U, — U and V,, — U a.e. as
n — oo, we have [6, Section 2, item 10]

(2.22) Unl? i jp = U1 H U T, 4 0(1) as n— oo,
(2.23) Valirisme = Ulyimw + Ve UL, +0(1) as n— oo,

Combining (2.20), the fact that U € W1/PP(S';S') and the definition (2.7) of Cp

we obtain

(2.24) Uy = €l

From (2.22)—(2.24), (2.1) and (2.2), we find that U, := U, U and V, := V,,U
satisfy

(2.25) U, | <c—d,+o(l) asn — oo,

wl/pp —
(2.26) \V ]Ww » — ¢, +o(1),
(2.27) deg U, = deg U, —degU # degV,, —degU = degV,,, Vn.
Claim 2. We have
(2.28) Uy, — Vil yyiymw — 0 a8 n — oc.

Granted Claim 2 and using (2.25)-(2.27) together with the fact that ¢ — ¢, <

Lc;7 we find that the sequences (lj'n)7 (17”) contradict, for large n, the induction
hypothesis.

In order to complete the proof of the theorem, it thus remains to justify Claims
1 and 2.

Proof of Claim 1. Since |[U| =1 and |V | =1 a.e., (2.19) implies that U takes values,
a.e., in the set S' N (C' + S'). When C # 0, this set contains at most two points.
Since the essential range of U is connected [5, Section 1.5, Comment 2|, we find
that U is constant a.e. Thus Ty is a constant of modulus 1, which is impossible, by
(2.20).

Proof of Claim 2. Let us note that U € W1/PP 0 [ Claim 2 is then a consequence
of (2.21) and Lemma 2.1, applied with w, = U,, =V, v, =U,u=0and v =U. O

Remark 2.2. The idea of “extracting” information concerning a map u : S' — S!
from the behavior of an appropriate extension of u to D (which is at the heart of
the asymptotic analysis in Step 2) originates in [1], where the harmonic extension
is considered; see also [2] for an extension by averages.
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