

A UNIFORM CONTINUITY PROPERTY OF THE WINDING NUMBER OF SELF-MAPPINGS OF THE CIRCLE

PETRU MIRONESCU AND ITAI SHAFRIR

ABSTRACT. Let $u: \mathbb{S}^1 \to \mathbb{S}^1$. When u is continuous, it has a winding number $\deg u$, which satisfies $\deg u = \deg v$ if $u, v \in C^0(\mathbb{S}^1; \mathbb{S}^1)$ and $||u - v||_{L^{\infty}} < 2$. In particular, $u \mapsto \deg u$ is uniformly continuous for the sup norm.

The winding number $\deg u$ can be naturally defined, by density, when u is merely VMO. For such u's, the winding number \deg is continuous with respect to the BMO norm.

Let $1 . In view of the above and of the embedding <math>W^{1/p,p}(\mathbb{S}^1) \hookrightarrow VMO$, maps in $W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$ have a well-defined winding number, continuous with respect to the $W^{1/p,p}$ norm. However, an example due to Brezis and Nirenberg yields sequences $(u_n), (v_n) \subset W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$ such that $||u_n - v_n||_{W^{1/p,p}} \to 0$ as $n \to \infty$ and deg $u_n \neq \deg v_n, \forall n$. Thus deg is not uniformly continuous with respect to the $W^{1/p,p}$ norm (and, a fortiori, with respect to the BMO norm).

The above sequences satisfy $||u_n||_{W^{1/p,p}} \to \infty$, $||v_n||_{W^{1/p,p}} \to \infty$. We prove that a similar phenomenon cannot occur for bounded sequences. More specifically, we prove the following uniform continuity result. Given 1 and <math>M > 0, there exists some $\delta = \delta(p, M) > 0$ such that

$$[\|u\|_{W^{1/p,p}} \le M, \|u - v\|_{W^{1/p,p}} \le \delta] \implies \deg u = \deg v.$$

1. Introduction

If $u \in C^0(\mathbb{S}^1; \mathbb{S}^1)$, then u has a winding number $\deg u$, which is continuous with respect to the uniform convergence, and in particular is a homotopic invariant. In fact, deg is "better than just continuous": it is uniformly continuous, since

$$(1.1) [u, v \in C^0(\mathbb{S}^1; \mathbb{S}^1), ||u - v||_{L^{\infty}} < 2] \implies \deg u = \deg v.$$

The winding number can still be "naturally" defined (i.e., by density, starting from smooth maps) when u is slightly less than continuous, more specifically when $u \in VMO(\mathbb{S}^1;\mathbb{S}^1)$. This has been first noticed by Boutet de Monvel and Gabber [3, Appendix] for the space $H^{1/2}(\mathbb{S}^1;\mathbb{S}^1)$, and then extended and investigated in depth by Brezis and Nirenberg for maps $u \in VMO(\mathbb{S}^1;\mathbb{S}^1)$ [5]. While, in this setting, the winding number is still continuous with respect to norm convergence, and thus provides a homotopic invariant, there is no global analogue of (1.1), even if we replace the BMO norm by one of the stronger norms $W^{1/p,p}$, 1 . More specifically,

²⁰¹⁰ Mathematics Subject Classification. 46E35.

a construction from [5] yields two sequences of smooth maps $u_n, v_n : \mathbb{S}^1 \to \mathbb{S}^1$ such that

(1.2)
$$||u_n - v_n||_{W^{1/p,p}} \to 0 \text{ as } n \to \infty, \forall 1 and deg $u_n \neq \deg v_n, \forall n$$$

(see [4, Lemma 6.4]). Here, $\| \|_{W^{1/p,p}} = \| \|_{L^p} + \| \|_{W^{1/p,p}}$, where $\| \|_{W^{s,p}}$ stands for the Gagliardo seminorm, given for $0 < s < 1, 1 \le p < \infty$ and Ω , an N-dimensional Lipschitz bounded domain or compact embedded manifold, by

$$|u|_{W^{s,p}}^p = \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} dx dy.$$

(The fact that the $W^{1/p,p}$ norm is stronger than the BMO one on \mathbb{S}^1 follows from the embedding $W^{1/p,p} \hookrightarrow BMO$, valid in 1D.)

We prove that the above phenomenon can occur only when u_n , v_n "escape to infinity", that is, we have uniform continuity of the degree on bounded sets:

Theorem 1.1. Let 1 and <math>M > 0. Then there exists some $\delta = \delta(p, M) > 0$ such that

(1.3)
$$[u, v \in W^{1/p, p}(\mathbb{S}^1; \mathbb{S}^1), \ |u|_{W^{1/p, p}} \le M, \ |u - v|_{W^{1/p, p}} \le \delta]$$

$$\implies \deg u = \deg v.$$

This provides a partial (positive) answer to [4, Open Problem 3].

Remark 1.2. The new contribution of this note concerns the case where p > 2. When $1 , Theorem 1.1 is a special case of [4, Proposition 7.9]. This result asserts that, when <math>N \ge 1$ and $1 , the degree of maps in <math>u \in W^{N/p,p}(\mathbb{S}^N;\mathbb{S}^N)$ is uniformly continuous on bounded sets.

Theorem 1.1 settles thus completely the case of the dimension one. We point out that its analogue for $W^{N/p,p}(\mathbb{S}^N;\mathbb{S}^N)$ maps, with $N\geq 2$ and p>N+1, is widely open.

Remark 1.3. When 1 , the proof of [4, Proposition 7.9] yields an*explicit* $<math>\delta$ (in terms of M and p) in (1.3). A similar explicit estimate eludes us when p > 2.

Acknowledgments. This work was completed while the second autor (IS) was a CNRS visiting professor at the Camille Jordan Institute. He thanks the CNRS and the Institute for their support. He was also supported by the Israel Science Foundation (Grant No. 894/18).

2. Proof

We first recall some basic properties of the winding number. Given $p \in (1, \infty)$, deg u for $u \in W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$ is defined as follows. To start with, $C^{\infty}(\mathbb{S}^1;\mathbb{S}^1)$ is dense in $W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$ [5, Lemmas A.11 and A.12], and the map $u \mapsto \deg u$, initially defined for smooth maps $u \in C^{\infty}(\mathbb{S}^1;\mathbb{S}^1)$, is continuous with respect to the BMO norm [5, Theorem 1]. In view of the embedding $W^{1/p,p} \hookrightarrow VMO$ in 1D, we find that deg has a unique continuous extension to $W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$. In particular, it suffices to work in (1.3) with $smooth\ maps$.

For further use, let us note the property

(2.1)
$$\deg(uv) = \deg u + \deg v, \ \forall u, v \in W^{1/p,p}(\mathbb{S}^1; \mathbb{S}^1).$$

As a consequence of (2.1), we have

(2.2)
$$\deg \overline{u} = -\deg u, \ \forall u \in W^{1/p,p}(\mathbb{S}^1; \mathbb{S}^1).$$

These properties are well known if u and v are smooth. The general case is obtained by density, using the continuity of the degree with respect to the $W^{1/p,p}$ norm and the following easy and standard fact (" $W^{s,p} \cap L^{\infty}$ is an algebra").

Lemma 2.1. Let 0 < s < 1 and $1 \le p < \infty$. Let Ω be an N-dimensional Lipschitz bounded domain or compact embedded manifold. If $(u_n), (v_n) \subset W^{s,p}(\Omega; \mathbb{C})$ and $u, v \in W^{s,p}(\Omega; \mathbb{C})$ satisfy

$$(2.3) |u_n - u|_{W^{s,p}} \to 0, |v_n - v|_{W^{s,p}} \to 0 \text{ as } n \to \infty,$$

(2.4)
$$u_n \to u \text{ and } v_n \to v \text{ a.e. as } n \to \infty,$$

$$(2.5) ||u_n||_{L^{\infty}} \le C, ||v_n||_{L^{\infty}} \le C, \forall n,$$

then

$$(2.6) |u_n v_n - uv|_{W^{s,p}} \to 0 \text{ as } n \to \infty.$$

Proof. We have

$$|[(u_n - u)v](x) - [(u_n - u)v](y)|^p \lesssim |(u_n - u)(x)|^p |v(x) - v(y)|^p + |(u_n - u)(x) - (u_n - u)(y)|^p |v(y)|^p,$$

so that

$$|u_{n}v - uv|_{W^{s,p}}^{p} \lesssim \int_{\Omega} \int_{\Omega} \frac{|(u_{n} - u)(x)|^{p}|v(x) - v(y)|^{p}}{|x - y|^{N+sp}} dxdy + \int_{\Omega} \int_{\Omega} \frac{|(u_{n} - u)(x) - (u_{n} - u)(y)|^{p}|v(y)|^{p}}{|x - y|^{N+sp}} dxdy \to 0$$
as $n \to \infty$:

here, we use dominated convergence for the first integral, and the facts that v is bounded and $|u_n-u|_{W^{s,p}}\to 0$ as $n\to\infty$ for the second integral. Thus $|u_nv-uv|_{W^{s,p}}\to 0$ as $n\to\infty$. Similarly, $|uv_n-uv|_{W^{s,p}}\to 0$ as $n\to\infty$. In view of the identity

$$u_n v_n - uv = (u_n v - uv) + (uv_n - uv) + (u_n - u)(v_n - v),$$

it remains to prove that $X_n := |(u_n - u)(v_n - v)|_{W^{s,p}}^p \to 0$ as $n \to \infty$. This follows, by dominated convergence, from

$$X_{n} \lesssim \int_{\Omega} \int_{\Omega} \frac{|(u_{n} - u)(x)|^{p} |(v_{n} - v)(x) - (v_{n} - v)(y)|^{p}}{|x - y|^{N + sp}} dxdy + \int_{\Omega} \int_{\Omega} \frac{|(u_{n} - u)(x) - (u_{n} - u)(y)|^{p} |(v_{n} - v)(y)|^{p}}{|x - y|^{N + sp}} dxdy.$$

Proof of Theorem 1.1. Given $u: \mathbb{S}^1 \to \mathbb{C}$ measurable and bounded, we let $T_u: \mathbb{D} \to \mathbb{C}$ denote its harmonic extension to the unit disc \mathbb{D} . We set

(2.7)
$$c'_{p} := \inf\{|u|_{W^{1/p,p}}^{p}; u \in W^{1/p,p}(\mathbb{S}^{1}; \mathbb{S}^{1}), T_{u}(0) = 0\}.$$

(Clearly, the inf is achieved in (2.7), but we will not need this fact.) We have [6, Section 2, item 5]

$$(2.8) c_p' > 0.$$

We will prove (1.3) by complete (strong) induction on the integer part L of M^p/c_p' . Step 1. Proof of (1.3) when L=0

Let $\delta > 0$ be such that $(M + \delta)^p := c < c'_p$. If u, v are smooth and as in (1.3), then $|u|^p_{W^{1/p,p}} \leq c$ and $|v|^p_{W^{1/p,p}} \leq c$, and therefore there exists some $\varepsilon > 0$ such that $|T_u(x)| \geq \varepsilon$, $|T_v(x)| \geq \varepsilon$, $\forall x \in \mathbb{D}$ [6, Section 2, items 8 and 9]. Thus $u, v : \mathbb{S}^1 \to \mathbb{S}^1$ are smooth functions with smooth non vanishing extensions to $\overline{\mathbb{D}}$. It follows that $\deg u = \deg v = 0$.

Step 2. Proof of (1.3) for $L \geq 1$ (assuming that (1.3) holds for $0, \ldots, L-1$) Argue by contradiction. Then there exist $c < (L+1) c'_p$ and sequences $(u_n), (v_n) \subset C^{\infty}(\mathbb{S}^1; \mathbb{S}^1)$ such that $|u_n|_{W^{1/p,p}}^p \leq c$, $|v_n|_{W^{1/p,p}}^p \leq c$, $\deg u_n \neq \deg v_n$, $\forall n$, and $|u_n - v_n|_{W^{1/p,p}} \to 0$ as $n \to \infty$.

Since at least one of the integers $\deg u_n$, $\deg v_n$ is non zero, we may assume that $\deg u_n \neq 0, \forall n$. Therefore, T_{u_n} has to vanish at some point $a_n \in \mathbb{D}$.

Let $M_a(z) = \frac{a-z}{1-\overline{a}z}$, $\forall a \in \mathbb{D}$, $\forall z \in \overline{\mathbb{D}}$, denote the (normalized) Möbius transformation vanishing at a. Let $N_a : \mathbb{S}^1 \to \mathbb{S}^1$ be the restriction of M_a to \mathbb{S}^1 . We note the following properties, valid for each $a \in \mathbb{D}$ and each $u \in C^0(\mathbb{S}^1; \mathbb{S}^1)$ [6, Section 2, item 1].

- (2.9) $\deg(u \circ N_a) = \deg u,$
- $(2.10) T_{u \circ N_a} = (T_u) \circ M_a,$
- $(2.11) T_{u \circ N_a}(0) = T_u(a).$

In addition, we have [6, Section 2, item 2]

$$(2.12) |f \circ N_a|_{W^{1/p,p}} = |f|_{W^{1/p,p}}, \ \forall 1$$

We consider $U_n := u_n \circ N_{a_n}$ and $V_n := v_n \circ N_{a_n}$. By properties (2.9)–(2.12) above and by the assumptions on u_n and v_n , we have

(2.13)
$$|U_n|_{W^{1/p,p}}^p \le c \text{ and } |V_n|_{W^{1/p,p}}^p \le c,$$

- $(2.14) T_{U_n}(0) = 0, \ \forall n,$
- (2.15) $\deg U_n \neq \deg V_n, \ \forall n,$
- $(2.16) |U_n V_n|_{W^{1/p,p}} \to 0$

and, possibly up to subsequences still denoted (U_n) and (V_n) ,

(2.17)
$$U_n \to U \in W^{1/p,p}(\mathbb{S}^1; \mathbb{S}^1)$$
 a.e. and weakly in $W^{1/p,p}$ as $n \to \infty$,

(2.18)
$$V_n \to V \in W^{1/p,p}(\mathbb{S}^1; \mathbb{S}^1)$$
 a.e. and weakly in $W^{1/p,p}$ as $n \to \infty$,

$$(2.19) U - V = C \in \mathbb{C},$$

$$(2.20) T_U(0) = 0.$$

The last property follows, by dominated convergence, from (2.14), (2.17) and the fact that $T_v(0) = \int_{\mathbb{S}^1} v(x) dx$, $\forall v \in L^1(\mathbb{S}^1; \mathbb{C})$.

Claim 1. We have C = 0, and thus

$$(2.21) V_n \to U \text{ a.e. as } n \to \infty.$$

Granted Claim 1, we continue as follows. Since $U_n \to U$ and $V_n \to U$ a.e. as $n \to \infty$, we have [6, Section 2, item 10]

$$(2.22) |U_n|_{W^{1/p,p}}^p = |U|_{W^{1/p,p}}^p + |U_n \overline{U}|_{W^{1/p,p}}^p + o(1) \text{ as } n \to \infty,$$

$$(2.23) |V_n|_{W^{1/p,p}}^p = |U|_{W^{1/p,p}}^p + |V_n \overline{U}|_{W^{1/p,p}}^p + o(1) \text{ as } n \to \infty.$$

Combining (2.20), the fact that $U \in W^{1/p,p}(\mathbb{S}^1;\mathbb{S}^1)$ and the definition (2.7) of c'_p , we obtain

$$(2.24) |U|_{W^{1/p,p}}^p \ge c_p'.$$

From (2.22)–(2.24), (2.1) and (2.2), we find that $\widetilde{U}_n:=U_n\,\overline{U}$ and $\widetilde{V}_n:=V_n\,\overline{U}$ satisfy

(2.25)
$$|\widetilde{U}_n|_{W^{1/p,p}}^p \le c - c_p' + o(1) \text{ as } n \to \infty,$$

$$(2.26) |\widetilde{V}_n|_{W^{1/p,p}}^p \le c - c_p' + o(1),$$

(2.27)
$$\deg \widetilde{U}_n = \deg U_n - \deg U \neq \deg V_n - \deg U = \deg \widetilde{V}_n, \ \forall n.$$

Claim 2. We have

(2.28)
$$|\widetilde{U}_n - \widetilde{V}_n|_{W^{1/p,p}} \to 0 \text{ as } n \to \infty.$$

Granted Claim 2 and using (2.25)–(2.27) together with the fact that $c-c_p' < L c_p'$, we find that the sequences (\widetilde{U}_n) , (\widetilde{V}_n) contradict, for large n, the induction hypothesis.

In order to complete the proof of the theorem, it thus remains to justify Claims 1 and 2.

Proof of Claim 1. Since |U| = 1 and |V| = 1 a.e., (2.19) implies that U takes values, a.e., in the set $\mathbb{S}^1 \cap (C + \mathbb{S}^1)$. When $C \neq 0$, this set contains at most two points. Since the essential range of U is connected [5, Section I.5, Comment 2], we find that U is constant a.e. Thus T_U is a constant of modulus 1, which is impossible, by (2.20).

Proof of Claim 2. Let us note that $\overline{U} \in W^{1/p,p} \cap L^{\infty}$. Claim 2 is then a consequence of (2.21) and Lemma 2.1, applied with $u_n = U_n - V_n$, $v_n = \overline{U}$, u = 0 and $v = \overline{U}$. \square

Remark 2.2. The idea of "extracting" information concerning a map $u : \mathbb{S}^1 \to \mathbb{S}^1$ from the behavior of an appropriate extension of u to \mathbb{D} (which is at the heart of the asymptotic analysis in Step 2) originates in [1], where the harmonic extension is considered; see also [2] for an extension by averages.

References

- [1] J. Bourgain, H. Brezis and P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math. **58** (2005), 529–551.
- [2] J. Bourgain, H. Brezis and H.-M. Nguyen, A new estimate for the topological degree, C. R. Math. Acad. Sci. Paris 340 (2005), 787-791.
- [3] A. Boutet de Monvel-Berthier, V. Georgescu, and R. Purice, A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys. 142 (1991), 1–23.
- [4] H. Brezis, P. Mironescu and I. Shafrir, Distances between homotopy classes of $W^{s,p}(\mathbb{S}^N;\mathbb{S}^N)$, ESAIM COCV **22** (2016), 1204–1235.
- [5] H. Brezis and L. Nirenberg, Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 (1995), 197–263.
- [6] P. Mironescu, Profile decomposition and phase control for circle-valued maps in one dimension,
 C. R. Math. Acad. Sci. Paris 353 (2015), 1087–1092.

Manuscript received June 8 2019 revised September 2 2019

P. Mironescu

Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France

E-mail address: mironescu@math.univ-lyon1.fr

I SHAFRIR

Department of Mathematics, Technion - I.I.T., 32000 Haifa, Israel & Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, France

E-mail address: shafrir@math.technion.ac.il