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NON-VARIATIONAL ELLIPTIC EQUATIONS INVOLVING
(p,q)-LAPLACIAN, CONVECTION AND CONVOLUTION

DUMITRU MOTREANU AND VIORICA VENERA MOTREANU

ABSTRACT. The paper is devoted to a nonlinear elliptic Dirichlet problem whose
leading operator is the (p, ¢)-Laplacian and with a reaction term involving con-
vection (i.e., it depends on the solution and its gradient) and the convolution of
the solution with an integrable function considered as a parameter. The results
presented here establish existence, uniqueness and continuous dependence of the
solution with respect to the parameter.

1. INTRODUCTION

Let Q € RY be a bounded domain and let 99 be its boundary. Fix real numbers
P, q, p satisfying 1 < ¢ < p < N and g > 0. (The assumption p < N is made for
simplicity of the exposition; the complementary situation p > N can be handled
along the same lines.) In the sequel, corresponding to any real number r € (1, +00),
the notation 7’ will stand for the Holder conjugate of r, that is, ' = r/(r — 1).

By VVO1 P(Q2) we denote the usual Sobolev space, which will be equipped with the
norm

(1.1) ul| = (/Q |Vu|pdx)%.

The notation |Vu| means the Euclidean norm of the gradient Vu. Accordingly, the
space WO1 () will be also used. We recall that the negative p-Laplacian —A,, :
Wol’p(Q) — WL (Q) is given by

(—Apu,v) = / Vu(x)|P 2 V() Vo(z)de, Yo e WP(9Q).
Q
Similarly, —A, : Wy9(Q) — W14 () acts as
(—Aqu,v) :/ |Vu(z) |92 Vu(z) Vo(z)dz, Yo e Wol’q(Q).
Q
Since Q is bounded and p > ¢ > 1, the operator —A, — uA, : Wy P (Q) — W17 ()
is well defined. Important special cases are the p-Laplacian (for p = 0) and the
(p, q)-Laplacian (for p = 1).
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The Dirichlet problems driven by the operator —A, — uA, and depending on a
parameter )\ stated as

(1.2) —Apu — pAgu = F(x,u, Vu, \)

are fundamental. They include for instance the eigenvalue problem for the p-
Laplacian
—Apu = AulP™2u  in €,
{ u=20 on 0f)
for which we refer to [6]. Here A € R and g = 0. A more general problem is that of
the Fucik spectrum for the p-Laplacian

—Apu=a(uT)P —bu™)P7!  in Q,
u=20 on 0f)

(see, e.g., [4]), where u™ and u~ stand for the positive and negative parts of u,
respectively, whereas the parameter is (a,b) € R2.

In the present paper we focus on a problem of type (1.2) with a convection term
(i.e., depending on the solution u and its gradient Vu) and a completely different
choice of parameter, which is now a function p € L'(RY) appearing through the
convolution p * u with the solution u € VVO1 P(Q2). In this respect it is convenient
to consider the Sobolev space VVO1 P(Q) embedded in WHP(RY) by identifying every
u € Wol’p(Q) with its extension % € W1P(RN) equal to zero outside Q. Recall that
given p € LY(RY) and u € Wol’p(Q) C WIP(RN) the convolution p * u is defined by

pxu(z) = / p(x —y)u(y)dy for a.e. x € RV,
RN
Consequently, let us note that
(1.3) prxu=pxte WH(RY).
Notice also that
(1.4) supp p * u C 2 4 supp p.

The convection is described by a Carathéodory function f : Q x R x RY — R
(ie., f(-,5,€) is measurable on € for all (s,£) € R x RY and f(z,,-) is continuous
for a.e. x € Q) satisfying the following growth condition. Hereafter, p* stands for
the Sobolev critical exponent p* = Np/(N — p) (recall that we assume p < N).

(H) There are constants aj,as > 0, a, 8 € [0,p — 1), r € [1,p*), and a function
o € L (Q) such that

|f(@,5,6)] < o(x) + arls|* + azlé]”
for a.e. x € Q, all s € R and &€ € RV,
In the sequel, we will actually identify f with the function f : RY x R x RN — R

obtained by extending f(-,s,&) by 0 outside 2.
Corresponding to p € L*(RY), we formulate the Dirichlet problem

(1.5) —Apu — pAgu = f(z,pxu,V(pxu)) in Q,
' u=20 on 0.
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By a weak solution of problem (1.5) we mean any u € I/VO1 P(Q) satisfying

/ (|IVul[P~2 + p|Vu|??)Vu - Vodr — / flz,p*xu,V(pxu))vde =0
Q Q

for all v € VVO1 P(Q). This makes sense under the growth condition (H).

A relevant feature of problem (1.5) is the combined effect of convection and
convolution. We emphasize that the right-hand side of (1.5) depends not only on
the solution u but also on its gradient Vu. Hence, generally, this problem does not
have a variational structure, which makes the variational methods not applicable.
For different methods that can be employed in studying problems with convection
we cite [5, 8, 9]. Notice that in problem (1.5) in addition to convection we also have
convolution.

In Section 3, we establish the existence of a weak solution to problem (1.5) under
hypothesis (H). Our approach relies on the surjectivity theorem for pseudomono-
tone operators whose basic prerequisites are discussed in Section 2. Then, in Section

4, we show the uniqueness of solution to (1.5) in two situations: p > 2 and [|p| L1 (w~)

is sufficiently small or ¢ > 2 and || quLf(lR N

5, a continuity property of the solution u to (1.5) with respect to p € L'(RY) is
proved entailing the upper semicontinuity of the solution set upon p.

/p is sufficiently small. Finally, in Section

2. PRELIMINARY TOOLS

Given p € (1,N), in view of Rellich-Kondrachov theorem, the Sobolev space
VVO1 P(€2) is compactly embedded into L?(Q) if 1 < 6 < p*(= NN—_’;) and continuously
embedded for 6§ = p*. Thus for every r € [1,p*] there exists a positive constant S,
such that

(2.1) lulle < SiJull, V€ WyP(9),

where |u||, := [Jul|r) denotes the norm on L"(2). Likewise, there exists a con-
stant .S > 0 with

(2.2) lullg < SIIIVulllg,  Yu € Wy (92).

Let us recall that for every r > 2 we have
(23)  (=Avu+ Az, un =) > 227 [V = V[, Vour, w0 € Wy (9)

(see [7, §12]).
If p € LYRY) and u € W, P(5), the weak partial derivatives of the convolution
p * u are expressed by

9 )
3x,(P*u):p*8—;GLP(RN), Vi=1,...,N.

Based mainly on Tonelli’s and Fubini’s theorems as well as on Holder’s inequality
there hold the estimates

(2.4)

(2.5) o wll ey < llpll eyl
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whenever r € [1, p*] and

. Vi=1,...,N
P

<|lpllLr @y
Lr(RN)

ou
81‘Z‘

(}u
2.6 I” *

Ty

(see [2]). From (2.4)-(2.6) it follows that the linear mapping u € Wol’p(Q) —
p*u € WHP(RN) is continuous. Moreover, using (1.1), Minkowski’s inequality, the
convexity of the function ¢ — P on (0,+00), (2.4) and (2.6), observe that

N 5
(2.7) |||V(P*U)H\Lp RN) = /RN IV(pxu)lP do = /RN (Z(P* 22)2> du

N

P
ou ou ||?
< * —— *
- /IRN (2 T ) *" 0| o)
N
ou
< NP Hlpl}s oy > 9. <N”HPH &myllull”-
i=1 vlip

For easy reference we recall a few things about the pseudomonotone operators
that will be used later on. Let X be a reflexive Banach space with the norm || - ||, its
dual X* and the duality pairing (-, ) between X and X*. The norm convergence in
X and X* is denoted by —, while the weak convergence is denoted by —. A map
A : X — X* is called bounded if it maps bounded sets to bounded sets. It is said
to be coercive if

(Au, u)

lim
lull =400 ||

= +o0.

A map A: X — X* is called pseudomonotone if u,, — u in X and

(2.8) lim sup (A, up —u) <0

n——+o0o
imply
(Au,u — w) < liminf (Auy,u, —w), Vw e X.

n——+0o00
We state the surjectivity theorem for pseudomonotone operators. More details can
be found in [1, 10].

Theorem 2.1. Let X be a reflexive Banach space, let A : X — X* be a pseu-
domonotone, bounded and coercive operator, and let g € X*. Then there exists at
least a solution u € X of the equation Au = g.

A map A: X — X" satisfies the (S )-property if u, — v in X and (2.8) ensure
the strong convergence u,, — u in X.

A multivalued map T : X — 2¥ with nonempty values between the topological
spaces X and Y is called upper semicontinuous at the point zg € X if for every
neighborhood V' of the set S(zp) in Y there exists a neighborhood U of zp in X
such that S(z) C V for all # € U. The multivalued map S : X — 2Y is called upper
semicontinuous if it is upper semicontinuous at each point of X.
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3. EXISTENCE OF SOLUTIONS
Now we state our existence result on problem (1.5).

Theorem 3.1. Under hypothesis (H), problem (1.5) admits at least a (weak) solu-
tion.

Proof. Since ¢ < p and the domain €2 is bounded, one has the continuous embedding
Wol’p(Q) — Wol’q(Q), so it follows that the operator —A, — pA, : Wol’p(Q) —
W=7 (Q) is continuous (see, e.g., [3, Lemma 2.111]). Moreover, this operator is
bounded.

Due to the growth condition postulated in assumption (H), the Nemytskii op-
erator Ny : WHP(RN) — LE)(RN) ¢ WL (RY) associated with the function
f(x,s,6), that is

Ny(u) = f(x,u, Vu),
is well defined, continuous and bounded. The notation (p*)" and p’ is related to p*
and p, respectively, complying with the convention in Section 1.

Consider the inclusion map F : WO1 P(Q) — WHP(RY) given by the extension
outside  with 0, so E(u) = @ (see Section 1). Denoting by E* : WL (RV) —
W17 (Q) the adjoint map of F, we introduce the nonlinear operator A : Wol’p(Q) —
W=L7(Q) as

(3.1) Au = —Apu — pAgu — E*Ny(p* Eu), Yu € WyP(Q).

The above discussion (together with (2.7)) shows that the operator A : VVO1 P(Q) —
WP (Q) is continuous and bounded.

By (3.1) it is seen that u € Wol’p(Q) is a weak solution for problem (1.5) if and
only if it holds

(3.2) (Au,v) =0, Yv € WyP(Q).

Therefore if we can prove the surjectivity of the operator A : VVO1 Q) — WL (Q),
the existence of a weak solution ensues. In turn, to show that A is surjective, we
apply Theorem 2.1.

Our starting point is the following estimate

(3.3) / flx,pxu,V(p*u))wdx
Q
< llollllwle + a1 llo wl g gy lwll_p_ + aaflV (o= u)lllip(RN)lleﬁ
< llollellwle + axlllzs gy Spe llul*lwll_g-

+aa NP ]2, oo

for all u, w € WyP(Q), where as before u € Wy (Q) is identified with E(u) = 4.
The estimate in (3.3) is obtained from assumption (H) in conjunction with Holder’s
inequality, (2.5), (2.7), and (2.1).

Next we claim that the operator A : Wol’p(Q) — W=(Q) in (3.1) is pseu-
domonotone. In order to show this, let a sequence (u,,) satisfy u, — u in VVO1 P(Q)

E
el llwll 2
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and (2.8). Since the sequence (uy) is bounded in VVO1 P(Q)), we infer that there is a
constant C' > 0 such that

(3-4) Nlpll @y llunll < €, Y n.
Then (3.3) and (3.4) yield
[ 100, 9 (0 wn) o — )

Q

< Nlollyllun —ull» + ang*Co‘Hun - UHfi" + agCﬁHun - U,H#, v n.
p¥F—a

Using that u, — u in Wy*(Q) and the compact embeddings of W, (Q) into L" (),
LP" /0" =2)(Q) and LP/®P=H)(Q), it turns out that
(3.5) lim / fz,pxun, V(p*up))(u, —u)dx = 0.

Q

n—+00
On the basis of (2.8), (3.1) and (3.5) we derive

lim sup (—Apuy, — gy, uy —u) < 0.
n—-+4o0o

At this point the (54 )-property of the operator —A, —uA, on Wol’p(Q) (see, e.g., [3,
Chapter 2]) implies the strong convergence u, — u in VVO1 P(Q2). Then the continuity
of A: WyP(Q) — WL (Q) implies Au,, — Au in W~ (Q). This enables us to
confirm the claim that the operator A : I/VO1 P(Q) — W7 (Q) is pseudomonotone.

The next step in the proof is to check that the operator A : Wol’p(Q) — WP (Q)
defined in (3.1) is coercive. By (3.3), Sobolev embedding theorem, and the inequal-
itlesa+1<pand 8+ 1< p, we get

(3.6) / flx,pxu,V(p*u))udz
Q

< llollrllellr + axlllzs gy Spe el *lll_p-
+asNP ol gl ] s
ol lally + By el @ 4 a7
Slull” + ¢,
for all u € Wol’p(Q), with constants by,b2,c > 0 and § € (0,1). On account of (3.1)
and (3.6), we are able to find

() = (=Byu = pgu,w) = [ flop s, V(o w)udo
Q
> (I=)ulP —c

for all u € VVO1 P(Q)). We deduce that the operator A in (3.1) is coercive because
p> 1.

In view of the above arguments we conclude that the operator A in (3.1) fulfills
all the hypotheses of Theorem 2.1. Therefore Theorem 2.1 guarantees that the
operator A is surjective, whence (3.2) holds for some u € WO1 P(Q), which completes
the proof. O

VARV
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Remark 3.2. The proof of Theorem 3.1 reveals that the operator A in (3.1) has
the (S5 )-property. Furthermore, the (S )-property and the pseudomonotonicity of
A are valid under the growth condition
(H*) There are aj,a2 >0, € [0,p*—1), 8 € [0,p—1],r € [1,p*),and 0 € L’"/(Q)
such that

|f(z,5,€)| < o(x) + ais|* + azf¢]®
forae. z€Q, all seR, £ € RV,

which is more general than (H).

Remark 3.3. Theorem 3.1 remains true if assumption (H) is replaced by the more
general growth condition

(H) There are aj,az >0, r € [1,p*), and o € L™ (Q) such that
[f(x,5,6)| < o) +ar|s]"~" + asf€ P~

forae. z€Q, all seR, £ € RV,

and the parameter p € L!(RY) is assumed to be small enough, in the sense that

(3.7) ol any (1S5S e +azNPT1S,) < 1.
P

—pH1

Indeed this condition ensures that the constants by, be arising in (3.6) satisfy by +by <
1, which is sufficient for guaranteeing the coercivity of A.

Remark 3.4. (a) Note that the conditions (H), (H*), and (H) imply in particular
that f(-,0,0) € L™ ().

(b) The conclusions of Theorem 3.1 and Remarks 3.2 and 3.3 remain valid if the
corresponding growth conditions ((H), (H*), and (H), respectively) are required
only for a.e. x € QN Q +suppp (see (1.4)) and if we assume independently that
f(-,0,0) € L™ (Q) for some r € [1,p*).

Remark 3.5. (a) In fact the result stated in Theorem 3.1 remains valid if the
operator u — p * u is replaced by a continuous (possibly nonlinear) operator T :

Wol’p(Q) — WLP(RY) such that
VT (@)l Loy < erllull, Vu € WyP(Q),

for some constant ¢y > 0. The corresponding problem is

{ —Apu — pAgu = f(z,T(u), V(T (u))) inQ,
u=20 on 0f2.

The proof follows the same scheme. In particular, (3.3) holds with ¢y in place of
ol L1~y and where Sy (the best constant in (2.1) for the domain ) is replaced
by the analogous constant S, gn for the domain RN,
(b) Remark 3.3 also holds for the operator 7', in which case (3.7) becomes

AN (a1S” IS +aaNPTLS,) < 1.

* RN
PR p*—p+1
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4. UNIQUENESS
Our uniqueness result on problem (1.5) is as follows.

Theorem 4.1. (a) Assume that p > 2 and there exist constants c1,dy > 0 such that

(41) \f(ac,sl,fl) - f(x7527€2)‘ < 01|81 - 52‘;071 + dl’él - €2|p71
for a.e. € Q, all 51,59 €R, &1,& € RN, If p € LY(RY) is such that
) o = :
(42 | P |L1 RN < - )
E s+ ant)s,

then, for every u > 0, problem (1.5) has at most one weak solution.
(b) Assume that ¢ > 2 and there exist constants ca,do > 0 such that

(4.3) |f(,51,&1) — flx,52,6)| < calsy — sa|T7" + doféy — &7
for a.e. £ €Q, all 51,59 €R, &1,& € RN, If 4> 0 and p € LY(RY) satisfy
oIl v, 224
< =1
K (CQSq_l —I—dgNT)S
(see (2.2)), then problem (1.5) has at most one weak solution.

Proof. (a) Let uy,ug € Wol’p(Q) be weak solutions to problem (1.5). From (2.3) and
(4.1) we can derive

227p||u1 —wg||? < (=Apur + Apug, ur — ug) + p (—Agur + Aqua, ug — ug)

—/Q<f<x,p*u1,v<p*u1>>—f(w,p*uz,wp*uz)))(m—u2>dx

(4.4)

< /Q (01|,0 kU — ok u2]p_1 + d1|V(p*xup — px* uz)|p_1) |up — ua| de.
Then Hoélder’s inequality and (2.5) imply
(4.5) 2P |luy —uglP < cl”/)”];;(lRN)Hul — ug||p
+d1 |||V (p* (u1 — U2))|||I£;(1RN)||U1 — uz|lp-

Through the convexity of the function ¢ — ¢2 on (0, +00) (note p > 2) and (2.5)
we see that

(4.6) 1960 = (o1 = w) vy = [ IV (0% (w2 = ) d

- L (5 ul_wy) e

M|

N
p
< N5~ Z/ ze ul—u2)‘ dx
b 1 N 8 p
< Nl 3 [ [t = )| do
i=1 v
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p
< N HPHI[)/I(RN)HUI - UQHP-
Combining (4.5), (4.6) and (2.1) results in
(2777 = c1llpllr gy S5 — N ol vy Sp) lun = uz[? < 0.

In view of (4.2), the desired conclusion ensues.
(b) As in part (a), on the basis of (2.3) and (4.3) we get

22 / IV (ur — u2)|? d
Q
(—Apu1 + Apug, up — uz) + o (—Aquy + Agua, ug — ug)

< /(02|p*u1—p*u2]q_1+d2|V(p*u1—p*u2)|q_1)|u1—u2|dm.
Q

IN

Through Hélder’s inequality and (2.5) this leads to

(4.7) ,u22_q/ |V (up — ug)|?dx
-1
< cllpllty, eyl = wal[§ + dall|V (o (ur = ug)) |7y vy llua — wzllg-
We can argue along the lines of (4.6) because ¢ > 2, which leads to
(4.8) IV (o % (ur = w2 )14y gy < N21oIE s g 11V (1 = 2) 13-

Inserting (4.8) and (2.2) in (4.7) gives

_ -1
(12270 = ol 7 — doNZ oy 8) [ (91— w9 <0
Then (4.4) renders u; = us. The proof is thus complete. O

Corollary 4.2. Assume that f(-,0,0) € L" () for some r € [1,p*).

(a) Assume p > 2 and (4.1). Then, there is \y > 0 such that problem (1.5) has a
unique solution whenever |[p||p1@ny < A1

(b) Assume q > 2 and (4.3). Then, there is Ao > 0 such that problem (1.5) has a
unique solution whenever ||p||7; RN)/,u < M.

Proof. (a) Combining the assumption on f(-,0,0) with (4.1), we get that f fulfills
the growth condition (H) of Remark 3.3. We choose A; > 0 small enough so that
(3.7) and (4.2) hold whenever [|p[[1gvy < A1. Then the conclusion follows from
Theorem 4.1 and Remark 3.3.

(b) The assumption on f(+,0,0) and (4.3) imply that f fulfills the growth condition
(H) (recall that ¢ < p). Then the conclusion follows from Theorems 3.1 and 4.1. O

5. DEPENDENCE ON p € LY(RY)

The following statement deals with the dependence on the parameter p € L'(R")
in problem (1.5).



1214 D. MOTREANU AND V. V. MOTREANU

Theorem 5.1. Assume that condition (H) is satisfied. If p, — p in L*(RYN) and
Up € Wol’p(Q) is a weak solution of the equation
(5.1) —Apty, — pAquy = f(x, pr * Un, V(pp * up)) in €,

) Up =0 on 012,
then there is a subsequence of (uy) still denoted (uy,) such that uy, — u in Wol’p(Q),
for some weak solution u € Wol’p(Q) of problem (1.5).

Proof. The existence of a solution u, to problem (5.1) is guaranteed by Theorem
3.1. Proceeding as in (3.6) and using the boundedness of the sequence (p,) in
LY(RY) entail that there exist constants ¢ > 0 and § € (0, 1) independent of n such
that

(5.2) /Qf(x,pn x 0, V(pp *xv))vdr < §|v||P+ ¢ forall ve Wol’p(Q), all n.

Acting with w,, as test function in (5.1), by means of (5.2), we infer that the sequence
(uy) is bounded in WO1 P(Q)). Along a relabeled subsequence we may suppose that
Up — U in I/VO1 P(Q). Then as for (3.5), using the boundedness of the sequence (py,)
in LY(RY), we can prove that

n—-+o0o

(5.3) lim /Qf(x,,on % Up, V(pn * up))(up —u)dx = 0.

Acting on (5.1) with u,, — u, by (5.3) we arrive at
lim (—Apup — pAgup, u, —u) = 0.

n—+o0o
Through the (S )-property of the operator —A, — pA, on Wol’p(Q) (see, e.g., [3]) it
follows that u,, — u in Wol’p(Q). Then from (2.5) and (2.7) we see that p,*u, — pxu
in W1P(RY). Hence the continuity of the operators —A, — uA, and Ny allows us
to pass to the limit in equation (5.1) as n — +oo getting that u is a solution of
(1.5). The proof is complete. O

Corollary 5.2. Assume that condition (H) holds. Then the multivalued map S :

LYQ) — 2o " (@) assigning to every p € LY(Q) the solution set S(p) of problem
(1.5) is upper semicontinuous.

Proof. Arguing by contradiction suppose that one can find py € L!'(Q) such that
the multivalued map S : L'(Q) — 2Wo (D) is not upper semicontinuous at pg. Then
there exist a neighborhood V) of the set S(pp) in VVO1 P(Q), a sequence p, — po
in LY(Q) and a sequence u,, € Wol’p(Q) with u, € S(pn) and u, & Vp for every
n. Theorem 5.1 ensures that a subsequence (py,) of (p,) can be found such that
Up,, — Yo in Wol’p(Q) as k — +oo, with ug € S(po). Therefore u,, € Vp provided k
is sufficiently large, thus reaching a contradiction, which completes the proof. [
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helpful comments.
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