


1206 D. MOTREANU AND V. V. MOTREANU

The Dirichlet problems driven by the operator −∆p − µ∆q and depending on a
parameter λ stated as

(1.2) −∆pu− µ∆qu = F (x, u,∇u, λ)

are fundamental. They include for instance the eigenvalue problem for the p-
Laplacian {

−∆pu = λ|u|p−2u in Ω,
u = 0 on ∂Ω

for which we refer to [6]. Here λ ∈ R and µ = 0. A more general problem is that of
the Fučik spectrum for the p-Laplacian{

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,
u = 0 on ∂Ω

(see, e.g., [4]), where u+ and u− stand for the positive and negative parts of u,
respectively, whereas the parameter is (a, b) ∈ R2.

In the present paper we focus on a problem of type (1.2) with a convection term
(i.e., depending on the solution u and its gradient ∇u) and a completely different
choice of parameter, which is now a function ρ ∈ L1(RN ) appearing through the

convolution ρ ∗ u with the solution u ∈ W 1,p
0 (Ω). In this respect it is convenient

to consider the Sobolev space W 1,p
0 (Ω) embedded in W 1,p(RN ) by identifying every

u ∈ W 1,p
0 (Ω) with its extension ũ ∈ W 1,p(RN ) equal to zero outside Ω. Recall that

given ρ ∈ L1(RN ) and u ∈ W 1,p
0 (Ω) ⊂ W 1,p(RN ) the convolution ρ ∗ u is defined by

ρ ∗ u(x) =
∫
RN

ρ(x− y)u(y)dy for a.e. x ∈ RN .

Consequently, let us note that

(1.3) ρ ∗ u = ρ ∗ ũ ∈ W 1,p(RN ).

Notice also that

(1.4) supp ρ ∗ u ⊂ Ω+ supp ρ.

The convection is described by a Carathéodory function f : Ω × R × RN → R
(i.e., f(·, s, ξ) is measurable on Ω for all (s, ξ) ∈ R× RN and f(x, ·, ·) is continuous
for a.e. x ∈ Ω) satisfying the following growth condition. Hereafter, p∗ stands for
the Sobolev critical exponent p∗ = Np/(N − p) (recall that we assume p < N).

(H) There are constants a1, a2 ≥ 0, α, β ∈ [0, p − 1), r ∈ [1, p∗), and a function

σ ∈ Lr′(Ω) such that

|f(x, s, ξ)| ≤ σ(x) + a1|s|α + a2|ξ|β

for a.e. x ∈ Ω, all s ∈ R and ξ ∈ RN .

In the sequel, we will actually identify f with the function f̃ : RN ×R×RN → R
obtained by extending f(·, s, ξ) by 0 outside Ω.

Corresponding to ρ ∈ L1(RN ), we formulate the Dirichlet problem

(1.5)

{
−∆pu− µ∆qu = f(x, ρ ∗ u,∇(ρ ∗ u)) in Ω,
u = 0 on ∂Ω.
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By a weak solution of problem (1.5) we mean any u ∈ W 1,p
0 (Ω) satisfying∫

Ω
(|∇u|p−2 + µ|∇u|q−2)∇u · ∇v dx−

∫
Ω
f(x, ρ ∗ u,∇(ρ ∗ u))v dx = 0

for all v ∈ W 1,p
0 (Ω). This makes sense under the growth condition (H).

A relevant feature of problem (1.5) is the combined effect of convection and
convolution. We emphasize that the right-hand side of (1.5) depends not only on
the solution u but also on its gradient ∇u. Hence, generally, this problem does not
have a variational structure, which makes the variational methods not applicable.
For different methods that can be employed in studying problems with convection
we cite [5, 8, 9]. Notice that in problem (1.5) in addition to convection we also have
convolution.

In Section 3, we establish the existence of a weak solution to problem (1.5) under
hypothesis (H). Our approach relies on the surjectivity theorem for pseudomono-
tone operators whose basic prerequisites are discussed in Section 2. Then, in Section
4, we show the uniqueness of solution to (1.5) in two situations: p ≥ 2 and ∥ρ∥L1(RN )

is sufficiently small or q ≥ 2 and ∥ρ∥q−1
L1(RN )

/µ is sufficiently small. Finally, in Section

5, a continuity property of the solution u to (1.5) with respect to ρ ∈ L1(RN ) is
proved entailing the upper semicontinuity of the solution set upon ρ.

2. Preliminary tools

Given p ∈ (1, N), in view of Rellich-Kondrachov theorem, the Sobolev space

W 1,p
0 (Ω) is compactly embedded into Lθ(Ω) if 1 ≤ θ < p∗(= Np

N−p) and continuously

embedded for θ = p∗. Thus for every r ∈ [1, p∗] there exists a positive constant Sr

such that

∥u∥r ≤ Sr ∥u∥, ∀u ∈ W 1,p
0 (Ω),(2.1)

where ∥u∥r := ∥u∥Lr(Ω) denotes the norm on Lr(Ω). Likewise, there exists a con-
stant S > 0 with

∥u∥q ≤ S∥|∇u|∥q, ∀u ∈ W 1,q
0 (Ω).(2.2)

Let us recall that for every r ≥ 2 we have

(2.3) ⟨−∆ru1 +∆ru2, u1 − u2⟩ ≥ 22−r∥|∇u1 −∇u2|∥rr, ∀u1, u2 ∈ W 1,r
0 (Ω)

(see [7, §12]).
If ρ ∈ L1(RN ) and u ∈ W 1,p

0 (Ω), the weak partial derivatives of the convolution
ρ ∗ u are expressed by

(2.4)
∂

∂xi
(ρ ∗ u) = ρ ∗ ∂u

∂xi
∈ Lp(RN ), ∀ i = 1, . . . , N.

Based mainly on Tonelli’s and Fubini’s theorems as well as on Hölder’s inequality
there hold the estimates

(2.5) ∥ρ ∗ u∥Lr(RN ) ≤ ∥ρ∥L1(RN )∥u∥r
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whenever r ∈ [1, p∗] and

(2.6)

∥∥∥∥ρ ∗ ∂u

∂xi

∥∥∥∥
Lp(RN )

≤ ∥ρ∥L1(RN )

∥∥∥∥ ∂u∂xi
∥∥∥∥
p

, ∀i = 1, . . . , N

(see [2]). From (2.4)–(2.6) it follows that the linear mapping u ∈ W 1,p
0 (Ω) 7→

ρ ∗ u ∈ W 1,p(RN ) is continuous. Moreover, using (1.1), Minkowski’s inequality, the
convexity of the function t 7→ tp on (0,+∞), (2.4) and (2.6), observe that

∥|∇(ρ ∗ u)|∥p
Lp(RN )

=

∫
RN

|∇(ρ ∗ u)|p dx =

∫
RN

(
N∑
i=1

(ρ ∗ ∂u

∂xi
)2

) p
2

dx(2.7)

≤
∫
RN

(
N∑
i=1

∣∣∣∣ρ ∗ ∂u

∂xi

∣∣∣∣
)p

dx ≤ Np−1
N∑
i=1

∥∥∥∥ρ ∗ ∂u

∂xi

∥∥∥∥p
Lp(RN )

≤ Np−1∥ρ∥p
L1(RN )

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
p

≤ Np∥ρ∥p
L1(RN )

∥u∥p.

For easy reference we recall a few things about the pseudomonotone operators
that will be used later on. Let X be a reflexive Banach space with the norm ∥ ·∥, its
dual X∗ and the duality pairing ⟨·, ·⟩ between X and X∗. The norm convergence in
X and X∗ is denoted by →, while the weak convergence is denoted by ⇀. A map
A : X → X∗ is called bounded if it maps bounded sets to bounded sets. It is said
to be coercive if

lim
∥u∥→+∞

⟨Au, u⟩
∥u∥

= +∞.

A map A : X → X∗ is called pseudomonotone if un ⇀ u in X and

lim sup
n→+∞

⟨Aun, un − u⟩ ≤ 0(2.8)

imply

⟨Au, u− w⟩ ≤ lim inf
n→+∞

⟨Aun, un − w⟩ , ∀ w ∈ X.

We state the surjectivity theorem for pseudomonotone operators. More details can
be found in [1, 10].

Theorem 2.1. Let X be a reflexive Banach space, let A : X → X∗ be a pseu-
domonotone, bounded and coercive operator, and let g ∈ X∗. Then there exists at
least a solution u ∈ X of the equation Au = g.

A map A : X → X∗ satisfies the (S+)-property if un ⇀ u in X and (2.8) ensure
the strong convergence un → u in X.

A multivalued map T : X → 2Y with nonempty values between the topological
spaces X and Y is called upper semicontinuous at the point x0 ∈ X if for every
neighborhood V of the set S(x0) in Y there exists a neighborhood U of x0 in X
such that S(x) ⊂ V for all x ∈ U . The multivalued map S : X → 2Y is called upper
semicontinuous if it is upper semicontinuous at each point of X.



(p, q)-LAPLACIAN EQUATIONS 1209

3. Existence of solutions

Now we state our existence result on problem (1.5).

Theorem 3.1. Under hypothesis (H), problem (1.5) admits at least a (weak) solu-
tion.

Proof. Since q < p and the domain Ω is bounded, one has the continuous embedding
W 1,p

0 (Ω) ↪→ W 1,q
0 (Ω), so it follows that the operator −∆p − µ∆q : W 1,p

0 (Ω) →
W−1,p′(Ω) is continuous (see, e.g., [3, Lemma 2.111]). Moreover, this operator is
bounded.

Due to the growth condition postulated in assumption (H), the Nemytskii op-

erator Nf : W 1,p(RN ) → L(p∗)′(RN ) ⊂ W−1,p′(RN ) associated with the function
f(x, s, ξ), that is

Nf (u) = f(x, u,∇u),

is well defined, continuous and bounded. The notation (p∗)′ and p′ is related to p∗

and p, respectively, complying with the convention in Section 1.
Consider the inclusion map E : W 1,p

0 (Ω) → W 1,p(RN ) given by the extension

outside Ω with 0, so E(u) = ũ (see Section 1). Denoting by E∗ : W−1,p′(RN ) →
W−1,p′(Ω) the adjoint map of E, we introduce the nonlinear operator A : W 1,p

0 (Ω) →
W−1,p′(Ω) as

Au = −∆pu− µ∆qu− E∗Nf (ρ ∗ Eu), ∀u ∈ W 1,p
0 (Ω).(3.1)

The above discussion (together with (2.7)) shows that the operator A : W 1,p
0 (Ω) →

W−1,p′(Ω) is continuous and bounded.

By (3.1) it is seen that u ∈ W 1,p
0 (Ω) is a weak solution for problem (1.5) if and

only if it holds

⟨Au, v⟩ = 0, ∀ v ∈ W 1,p
0 (Ω).(3.2)

Therefore if we can prove the surjectivity of the operator A : W 1,p
0 (Ω) → W−1,p′(Ω),

the existence of a weak solution ensues. In turn, to show that A is surjective, we
apply Theorem 2.1.

Our starting point is the following estimate∣∣∣∣∫
Ω
f(x, ρ ∗ u,∇(ρ ∗ u))w dx

∣∣∣∣(3.3)

≤ ∥σ∥r′∥w∥r + a1 ∥ρ ∗ u∥αLp∗ (RN )
∥w∥ p∗

p∗−α

+ a2∥|∇(ρ ∗ u)|∥β
Lp(RN )

∥w∥ p
p−β

≤ ∥σ∥r′∥w∥r + a1∥ρ∥αL1(RN )S
α
p∗∥u∥α∥w∥ p∗

p∗−α

+a2N
β∥ρ∥β

L1(RN )
∥u∥β∥w∥ p

p−β

for all u, w ∈ W 1,p
0 (Ω), where as before u ∈ W 1,p

0 (Ω) is identified with E(u) = ũ.
The estimate in (3.3) is obtained from assumption (H) in conjunction with Hölder’s
inequality, (2.5), (2.7), and (2.1).

Next we claim that the operator A : W 1,p
0 (Ω) → W−1,p′(Ω) in (3.1) is pseu-

domonotone. In order to show this, let a sequence (un) satisfy un ⇀ u in W 1,p
0 (Ω)
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and (2.8). Since the sequence (un) is bounded in W 1,p
0 (Ω), we infer that there is a

constant C > 0 such that

N∥ρ∥L1(RN )∥un∥ ≤ C, ∀n.(3.4)

Then (3.3) and (3.4) yield∣∣∣∣∫
Ω
f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx

∣∣∣∣
≤ ∥σ∥r′∥un − u∥r + a1S

α
p∗C

α∥un − u∥ p∗
p∗−α

+ a2C
β∥un − u∥ p

p−β
, ∀ n.

Using that un ⇀ u in W 1,p
0 (Ω) and the compact embeddings of W 1,p

0 (Ω) into Lr(Ω),

Lp∗/(p∗−α)(Ω) and Lp/(p−β)(Ω), it turns out that

lim
n→+∞

∫
Ω
f(x, ρ ∗ un,∇(ρ ∗ un))(un − u) dx = 0.(3.5)

On the basis of (2.8), (3.1) and (3.5) we derive

lim sup
n→+∞

⟨−∆pun − µ∆qun, un − u⟩ ≤ 0.

At this point the (S+)-property of the operator −∆p−µ∆q on W 1,p
0 (Ω) (see, e.g., [3,

Chapter 2]) implies the strong convergence un → u in W 1,p
0 (Ω). Then the continuity

of A : W 1,p
0 (Ω) → W−1,p′(Ω) implies Aun → Au in W−1,p′(Ω). This enables us to

confirm the claim that the operator A : W 1,p
0 (Ω) → W−1,p′(Ω) is pseudomonotone.

The next step in the proof is to check that the operator A : W 1,p
0 (Ω) → W−1,p′(Ω)

defined in (3.1) is coercive. By (3.3), Sobolev embedding theorem, and the inequal-
ities α+ 1 < p and β + 1 < p, we get∫

Ω
f(x, ρ ∗ u,∇(ρ ∗ u))u dx(3.6)

≤ ∥σ∥r′∥u∥r + a1∥ρ∥αL1(RN )S
α
p∗∥u∥α∥u∥ p∗

p∗−α

+a2N
β∥ρ∥β

L1(RN )
∥u∥β∥u∥ p

p−β

≤ ∥σ∥r′∥u∥r + b1∥u∥α+1 + b2∥u∥β+1

≤ δ∥u∥p + c,

for all u ∈ W 1,p
0 (Ω), with constants b1, b2, c > 0 and δ ∈ (0, 1). On account of (3.1)

and (3.6), we are able to find

⟨Au, u⟩ = ⟨−∆pu− µ∆qu, u⟩ −
∫
Ω
f(x, ρ ∗ u,∇(ρ ∗ u))u dx

≥ (1− δ)∥u∥p − c

for all u ∈ W 1,p
0 (Ω). We deduce that the operator A in (3.1) is coercive because

p > 1.
In view of the above arguments we conclude that the operator A in (3.1) fulfills

all the hypotheses of Theorem 2.1. Therefore Theorem 2.1 guarantees that the
operator A is surjective, whence (3.2) holds for some u ∈ W 1,p

0 (Ω), which completes
the proof. □
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Remark 3.2. The proof of Theorem 3.1 reveals that the operator A in (3.1) has
the (S+)-property. Furthermore, the (S+)-property and the pseudomonotonicity of
A are valid under the growth condition

(H∗) There are a1, a2 ≥ 0, α ∈ [0, p∗−1), β ∈ [0, p−1], r ∈ [1, p∗), and σ ∈ Lr′(Ω)
such that

|f(x, s, ξ)| ≤ σ(x) + a1|s|α + a2|ξ|β

for a.e. x ∈ Ω, all s ∈ R, ξ ∈ RN ,

which is more general than (H).

Remark 3.3. Theorem 3.1 remains true if assumption (H) is replaced by the more
general growth condition

(H̄) There are a1, a2 ≥ 0, r ∈ [1, p∗), and σ ∈ Lr′(Ω) such that

|f(x, s, ξ)| ≤ σ(x) + a1|s|p−1 + a2|ξ|p−1

for a.e. x ∈ Ω, all s ∈ R, ξ ∈ RN ,

and the parameter ρ ∈ L1(RN ) is assumed to be small enough, in the sense that

(3.7) ∥ρ∥p−1
L1(RN )

(
a1S

p−1
p∗ S p∗

p∗−p+1

+ a2N
p−1Sp

)
< 1.

Indeed this condition ensures that the constants b1, b2 arising in (3.6) satisfy b1+b2 <
1, which is sufficient for guaranteeing the coercivity of A.

Remark 3.4. (a) Note that the conditions (H), (H∗), and (H̄) imply in particular

that f(·, 0, 0) ∈ Lr′(Ω).
(b) The conclusions of Theorem 3.1 and Remarks 3.2 and 3.3 remain valid if the
corresponding growth conditions ((H), (H∗), and (H̄), respectively) are required
only for a.e. x ∈ Ω ∩ Ω+ supp ρ (see (1.4)) and if we assume independently that

f(·, 0, 0) ∈ Lr′(Ω) for some r ∈ [1, p∗).

Remark 3.5. (a) In fact the result stated in Theorem 3.1 remains valid if the
operator u 7→ ρ ∗ u is replaced by a continuous (possibly nonlinear) operator T :

W 1,p
0 (Ω) → W 1,p(RN ) such that

∥|∇T (u)|∥Lp(RN ) ≤ cT ∥u∥, ∀u ∈ W 1,p
0 (Ω),

for some constant cT > 0. The corresponding problem is{
−∆pu− µ∆qu = f(x, T (u),∇(T (u))) in Ω,
u = 0 on ∂Ω.

The proof follows the same scheme. In particular, (3.3) holds with cT in place of
∥ρ∥L1(RN ) and where Sp∗ (the best constant in (2.1) for the domain Ω) is replaced

by the analogous constant Sp∗,RN for the domain RN .
(b) Remark 3.3 also holds for the operator T , in which case (3.7) becomes

cp−1
T

(
a1S

p−1
p∗,RNS p∗

p∗−p+1

+ a2N
p−1Sp

)
< 1.
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4. Uniqueness

Our uniqueness result on problem (1.5) is as follows.

Theorem 4.1. (a) Assume that p ≥ 2 and there exist constants c1, d1 > 0 such that

|f(x, s1, ξ1)− f(x, s2, ξ2)| ≤ c1|s1 − s2|p−1 + d1|ξ1 − ξ2|p−1(4.1)

for a.e. x ∈ Ω, all s1, s2 ∈ R, ξ1, ξ2 ∈ RN . If ρ ∈ L1(RN ) is such that

∥ρ∥L1(RN ) <

(
22−p

(c1S
p−1
p + d1N

p−1
2 )Sp

) 1
p−1

,(4.2)

then, for every µ ≥ 0, problem (1.5) has at most one weak solution.
(b) Assume that q ≥ 2 and there exist constants c2, d2 > 0 such that

|f(x, s1, ξ1)− f(x, s2, ξ2)| ≤ c2|s1 − s2|q−1 + d2|ξ1 − ξ2|q−1(4.3)

for a.e. x ∈ Ω, all s1, s2 ∈ R, ξ1, ξ2 ∈ RN . If µ > 0 and ρ ∈ L1(RN ) satisfy

∥ρ∥q−1
L1(RN )

µ
<

22−q

(c2Sq−1 + d2N
q−1
2 )S

(4.4)

(see (2.2)), then problem (1.5) has at most one weak solution.

Proof. (a) Let u1, u2 ∈ W 1,p
0 (Ω) be weak solutions to problem (1.5). From (2.3) and

(4.1) we can derive

22−p∥u1 − u2∥p ≤ ⟨−∆pu1 +∆pu2, u1 − u2⟩+ µ ⟨−∆qu1 +∆qu2, u1 − u2⟩

=

∫
Ω
(f(x, ρ ∗ u1,∇ (ρ ∗ u1))− f(x, ρ ∗ u2,∇ (ρ ∗ u2)))(u1 − u2) dx

≤
∫
Ω

(
c1|ρ ∗ u1 − ρ ∗ u2|p−1 + d1|∇(ρ ∗ u1 − ρ ∗ u2)|p−1

)
|u1 − u2| dx.

Then Hölder’s inequality and (2.5) imply

22−p∥u1 − u2∥p ≤ c1∥ρ∥p−1
L1(RN )

∥u1 − u2∥pp(4.5)

+d1∥|∇(ρ ∗ (u1 − u2))|∥p−1
Lp(RN )

∥u1 − u2∥p.

Through the convexity of the function t 7→ t
p
2 on (0,+∞) (note p ≥ 2) and (2.5)

we see that

∥|∇(ρ ∗ (u1 − u2))|∥pLp(RN )
=

∫
RN

|∇(ρ ∗ (u1 − u2))|p dx(4.6)

=

∫
RN

(
N∑
i=1

(
ρ ∗ ∂

∂xi
(u1 − u2)

)2) p
2

dx

≤ N
p
2
−1

N∑
i=1

∫
RN

∣∣∣ρ ∗ ∂

∂xi
(u1 − u2)

∣∣∣p dx
≤ N

p
2
−1∥ρ∥p

L1(RN )

N∑
i=1

∫
Ω

∣∣∣∣ ∂

∂xi
(u1 − u2)

∣∣∣∣p dx
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≤ N
p
2 ∥ρ∥p

L1(RN )
∥u1 − u2∥p.

Combining (4.5), (4.6) and (2.1) results in

(22−p − c1∥ρ∥p−1
L1(RN )

Sp
p − d1N

p−1
2 ∥ρ∥p−1

L1(RN )
Sp)∥u1 − u2∥p ≤ 0.

In view of (4.2), the desired conclusion ensues.
(b) As in part (a), on the basis of (2.3) and (4.3) we get

µ22−q

∫
Ω
|∇(u1 − u2)|q dx

≤ ⟨−∆pu1 +∆pu2, u1 − u2⟩+ µ ⟨−∆qu1 +∆qu2, u1 − u2⟩

≤
∫
Ω

(
c2|ρ ∗ u1 − ρ ∗ u2|q−1 + d2|∇(ρ ∗ u1 − ρ ∗ u2)|q−1

)
|u1 − u2| dx.

Through Hölder’s inequality and (2.5) this leads to

µ22−q

∫
Ω
|∇(u1 − u2)|q dx(4.7)

≤ c2∥ρ∥q−1
L1(RN )

∥u1 − u2∥qq + d2∥|∇(ρ ∗ (u1 − u2))|∥q−1
Lq(RN )

∥u1 − u2∥q.

We can argue along the lines of (4.6) because q ≥ 2, which leads to

∥|∇(ρ ∗ (u1 − u2))|∥qLq(RN )
≤ N

q
2 ∥ρ∥q

L1(RN )
∥|∇(u1 − u2)|∥qq.(4.8)

Inserting (4.8) and (2.2) in (4.7) gives

(µ22−q − c2∥ρ∥q−1
L1(RN )

Sq − d2N
q−1
2 ∥ρ∥q−1

L1(RN )
S)

∫
Ω
|∇(u1 − u2)|q dx ≤ 0.

Then (4.4) renders u1 = u2. The proof is thus complete. □

Corollary 4.2. Assume that f(·, 0, 0) ∈ Lr′(Ω) for some r ∈ [1, p∗).
(a) Assume p ≥ 2 and (4.1). Then, there is λ1 > 0 such that problem (1.5) has a
unique solution whenever ∥ρ∥L1(RN ) < λ1.

(b) Assume q ≥ 2 and (4.3). Then, there is λ2 > 0 such that problem (1.5) has a

unique solution whenever ∥ρ∥q−1
L1(RN )

/µ < λ2.

Proof. (a) Combining the assumption on f(·, 0, 0) with (4.1), we get that f fulfills
the growth condition (H̄) of Remark 3.3. We choose λ1 > 0 small enough so that
(3.7) and (4.2) hold whenever ∥ρ∥L1(RN ) < λ1. Then the conclusion follows from
Theorem 4.1 and Remark 3.3.
(b) The assumption on f(·, 0, 0) and (4.3) imply that f fulfills the growth condition
(H) (recall that q < p). Then the conclusion follows from Theorems 3.1 and 4.1. □

5. Dependence on ρ ∈ L1(RN )

The following statement deals with the dependence on the parameter ρ ∈ L1(RN )
in problem (1.5).
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Theorem 5.1. Assume that condition (H) is satisfied. If ρn → ρ in L1(RN ) and

un ∈ W 1,p
0 (Ω) is a weak solution of the equation

(5.1)

{
−∆pun − µ∆qun = f(x, ρn ∗ un,∇(ρn ∗ un)) in Ω,
un = 0 on ∂Ω,

then there is a subsequence of (un) still denoted (un) such that un → u in W 1,p
0 (Ω),

for some weak solution u ∈ W 1,p
0 (Ω) of problem (1.5).

Proof. The existence of a solution un to problem (5.1) is guaranteed by Theorem
3.1. Proceeding as in (3.6) and using the boundedness of the sequence (ρn) in
L1(RN ) entail that there exist constants c > 0 and δ ∈ (0, 1) independent of n such
that

(5.2)

∫
Ω
f(x, ρn ∗ v,∇(ρn ∗ v))v dx ≤ δ∥v∥p + c for all v ∈ W 1,p

0 (Ω), all n.

Acting with un as test function in (5.1), by means of (5.2), we infer that the sequence

(un) is bounded in W 1,p
0 (Ω). Along a relabeled subsequence we may suppose that

un ⇀ u in W 1,p
0 (Ω). Then as for (3.5), using the boundedness of the sequence (ρn)

in L1(RN ), we can prove that

lim
n→+∞

∫
Ω
f(x, ρn ∗ un,∇(ρn ∗ un))(un − u) dx = 0.(5.3)

Acting on (5.1) with un − u, by (5.3) we arrive at

lim
n→+∞

⟨−∆pun − µ∆qun, un − u⟩ = 0.

Through the (S+)-property of the operator −∆p−µ∆q on W 1,p
0 (Ω) (see, e.g., [3]) it

follows that un → u inW 1,p
0 (Ω). Then from (2.5) and (2.7) we see that ρn∗un → ρ∗u

in W 1,p(RN ). Hence the continuity of the operators −∆p − µ∆q and Nf allows us
to pass to the limit in equation (5.1) as n → +∞ getting that u is a solution of
(1.5). The proof is complete. □

Corollary 5.2. Assume that condition (H) holds. Then the multivalued map S :

L1(Ω) → 2W
1,p
0 (Ω) assigning to every ρ ∈ L1(Ω) the solution set S(ρ) of problem

(1.5) is upper semicontinuous.

Proof. Arguing by contradiction suppose that one can find ρ0 ∈ L1(Ω) such that

the multivalued map S : L1(Ω) → 2W
1,p
0 (Ω) is not upper semicontinuous at ρ0. Then

there exist a neighborhood V0 of the set S(ρ0) in W 1,p
0 (Ω), a sequence ρn → ρ0

in L1(Ω) and a sequence un ∈ W 1,p
0 (Ω) with un ∈ S(ρn) and un ̸∈ V0 for every

n. Theorem 5.1 ensures that a subsequence (ρnk
) of (ρn) can be found such that

unk
→ u0 in W 1,p

0 (Ω) as k → +∞, with u0 ∈ S(ρ0). Therefore unk
∈ V0 provided k

is sufficiently large, thus reaching a contradiction, which completes the proof. □
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