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Figure 1. The unfolding process.

transition may occur [10]. In particular, it has been shown that classical Ehren-
fests’ Wind-Tree gas has richer dynamics than the Lorentz gas if a moving particle
is real (physical) [1]. In the present paper, we show that typical physical billiard in
polygons is chaotic for an arbitrarily small size (radius) of a moving particle. The
last means that physical billiards in generic polygons are hyperbolic on a subset of
positive measure and, particularly, have a positive Kolmogorov-Sinai entropy to the
contrary to mathematical billiards in polygons, which have zero KS-entropy.

2. Billiards in polygons

Let P be the space of all closed polygons in R2 and Pn ⊂ P denote the space
of all polygons with n vertices. Let {v0, v1, . . . , vn−1} be the set of vertices of a
polygon in Pn. If we fix one side of this polygon on the x-axis and one of the vertices
of that side at the origin (e.g. v0 = (0, 0) and vn−1 = (x, 0)) then the embedding
Pn → R2n−3 induces a topology in Pn such that its corresponding metric makes the
space Pn complete [27]. If all angles of a polygon are commensurate with π, then it
is called a rational polygon. It is well-known that rational polygons are dense in P.

A billiard in a polygon P ∈ P is a dynamical system generated by the motion of
a point particle along a straight line inside P with unit speed and elastic reflections
off its boundary ∂P .

The phase space of this dynamical system is

ΛP = {(x, φ) ∈ ∂P × (
−π

2
,
π

2
) : x is not a vertex of P},

where φ is the reflection angle with respect to the inward normal vector n(x) to the
boundary at reflection point x ∈ ∂P .

Let γ be a billiard orbit in the polygon P . If the orbit γ hits a side of the boundary
∂P then instead of reflecting the orbit γ off that side of P , one may reflect P about
that side. Denote the reflected polygon by P1. The unfolded orbit γ is a straight
line as the continuation of γ in P1. In the geometric optics this procedure is called
the method of images or unfolding [19]. Continuing this procedure for n consecutive
reflections of the orbit γ, we obtain a sequence of polygons P, P1, P2, . . . , Pn where
the unfolded orbit γ is a straight segment through P1 to Pn (Fig. 1).

The unfolding process can also be done backward in time. A trajectory stops
when it hits a vertex. The unfolded orbit γ is a finite segment if it hits vertices of P
both in the future and in the past. Such trajectories are called generalized diagonals.
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In [19,27], it is shown that the set of generalized diagonals of the polygon P ∈ P is
countable.

Consider (x, φ) ∈ ΛP . A direction φ at point x is called an exceptional direction
if its trajectory hits a vertex of P . It is not difficult to see that the number of these
exceptional directions is countable at each point x.

3. Physical billiards in non-convex polygons

A physical billiard in a domain (billiard table) is generated by the motion of a
hard ball (disc) of radius r > 0 in that domain with unit speed and elastic reflections
off the boundary. To represent the dynamics of such ball (a physical particle) of
radius r > 0, it is enough to follow the motion of its center. We can see that the
center of particle moves within a smaller billiard table, which one gets by moving
any point x of the boundary by r to the interior of the billiard table along the
internal normal vector n(x) [10].

It is easy to see that dynamics of a physical billiard in a convex simply connected
polygon is completely equivalent to dynamics of a mathematical billiard in this
polygon [10]. However, the situation is totally different for non-convex polygons
(more precisely, polygons with at least one reflex angle, see Fig. 2). In this case,
the boundary of the equivalent mathematical billiard acquires some dispersing parts,
which are arcs of a circle of radius r (see e.g. [12, 13]).

Figure 2. To have dispersing parts in the boundary of mathemati-
cal billiards equivalent to physical billiards in non-convex polygons,
the particle has to be small enough and the polygon has to have at
least one reflex angle.

Let Pref be the set of all polygons that they have at least one reflex angle. To
show that Pref is dense in P, we use the metric d(., .) on P which is defined as:

(3.1) d(P,Q) =

∫
R2

|χP (x)− χQ(x)|dx,

where P,Q ∈ P and,

χP (x) =

{
1 x ∈ P,
0 otherwise.

The topology induced by the metric d(., .) in Pn is equivalent to the induced topol-
ogy in Pn by the embedding Pn → R2n−3. Thus, rational polygons are dense in P
with respect to the metric d(., .).

Lemma 3.1. Pref is dense in P.

Proof. Let P ∈ P be a polygon with n vertices {v0, v1, . . . , vn−1}. Without loss
of generality, we assume that the randomly chosen edge of P is v0vn−1. On the
perpendicular bisector of v0vn−1 in the interior of P , we choose a sequence of points
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{vnk
}∞k=k0

such that the reflex angle ∠v0vnk
vn−1 = π + π

k (k0 is big enough to have
vnk

for k ≥ k0 in the interior of P , see Fig. 3).

Figure 3. Replacing one edge of a polygon by a reflex angle.

If we denote the non-convex polygons with vertices {v0, v1, . . . , vn−1, vnk
} by

Pk then it follows that Pk ∈ Pref and

d(P, Pk) → 0,

as k → ∞. □
Lemma 3.2. Pref is open in P.

Proof. It is easy to see that any perturbation of P ∈ Pref will have at least one
reflex angle. This means Pref is open in P. □

Continued fractions for billiards were introduced in Sinai’s fundamental paper
[23]. They serve as a basic tool for analysis of billiards dynamics. Let 0 = t0 <
t1 < t2 < . . . be the reflection times of the trajectory γ off the boundary ∂Q where
Q is an arbitrary billiard table. Denote by κi the curvature of the boundary at
the ith reflection point with respect to the inward unit normal vectors n(x) to the
boundary at x ∈ ∂Q, and by φi the ith reflection angle such that −π

2 < φi <
π
2 .

The corresponding continued fraction of this trajectory is given by

κ =
1

τ1 +
1

2κ1

cosφ1
+

1

τ2 +
1

2κ2

cosφ2
+

1

τ3 +
1

. . .

,

where τi = ti − ti−1 for i = 1, 2, . . . .
Let P ∈ Pref , then the curvature of boundary components of the mathematical

billiard equivalent to the physical billiard in P is either 0 or 1
r . If an orbit hits the

dispersing components infinitely many times where reflection numbers on dispersing



BRIDGE TO HYPERBOLIC POLYGONAL BILLIARDS 1253

parts are given by the sequence {ik}∞k=1, then the continued fraction of this orbit
will have the following form between ijth and ij+1th reflections,

. . . +
1

2

r cosφij

+
1

(τij+1 + · · ·+ τij+1) +
1

2

r cosφij+1

+
1

. . .

.

All elements of continued fractions in this case are positive. Also, almost any orbit
has finitely many reflections within any finite time interval, since the boundary
components are C∞ (they are line segments or arcs of a circle of radius r). Therefore,

(3.2)
∞∑
k=0

(
(τik+1 + · · ·+ τik+1

) +
2

r cosφik+1

)
= ∞,

where i0 = 0.
Let P̂ denote the space of all non-convex simply connected rational polygons.

Then, P̂ ⊂ Pref .

Theorem 3.3. For any P ∈ P̂, there exists rP > 0 such that the physical billiard
in P is hyperbolic for all r < rP .

Proof. Let P ∈ P̂ have n vertices. Assume {v0, v1, . . . , vn−1} and {e1 = v0v1, e2 =
v1v2, . . . , en = vn−1v0} are sets of its vertices and edges, respectively. Let

rk = min{|vk − x| : x ∈ ei for i ̸= k and i ̸= k + 1},
where |.| is the euclidean distance in R2 and k = 0, 1, . . . , n − 1 (if k = 0 then
i = 2, 3, . . . , n− 1). It is easy to see that rk is well-defined since it is the minimum
value of a continuous function on a compact set. Moreover, rk > 0. If we let

(3.3) rP = min{r0
2
,
r1
2
, . . . ,

rn−1

2
},

then the hard ball of radius r < rP will be able to hit all edges of P . Therefore, when
r < rP the boundary of the equivalent mathematical billiard has some dispersing
components.

In fact, if a radius of the particle is sufficiently large then some parts of the
boundary of a billiard table become “non-visible” to the particle. Therefore it does
not matter for dynamics what is the exact structure of this “non-visible” boundary.
Such situation may occur e.g. for polygons [2].

As long as a trajectory does not hit dispersing parts, it can be considered as
a trajectory in the rational polygon P ′ that shapes by replacing the dispersing
components of the boundary by flat segments (Fig. 4). More precisely, angles θ
and α satisfy the equation α = π+θ

2 and θ is commensurate with π, therefore, α is
commensurate with π.

It is well-known that almost all orbits of billiards in rational polygons are spatially
dense inside the billiard table [4, 21, 27]. Thus, all non-exceptional trajectories in
P ′ will hit all edges of P ′, including those replaced the dispersing parts of the
boundary. This implies that almost all trajectories (full measure in phase space)



1254 H. ATTARCHI AND L. A. BUNIMOVICH

Figure 4. Replacing a dispersing part with a line segment.

in the mathematical billiard equivalent to the physical billiard in P will hit at
least one dispersing component. Note that after the first reflection off a dispersing
component, the forward trajectory is not the same as the one in P ′. Thus, we
cannot use density of almost all orbits in P ′ to show that the trajectory will hit
dispersing parts of the boundary infinitely many times.

So, there is a full measure subset of points in the phase space such that their
trajectories hit at least one dispersing component. Let (x, θ) be a point in that sub-
set. By the continuity of the system on initial conditions, there is a neighborhood
of positive measure of the point (x, θ) such that trajectories of all points in that
neighborhood hit the same dispersing part as the trajectory of (x, θ) hits for the first
time. Then the Poincare recurrence theorem implies that almost all trajectories in
this neighborhood will return and hit that dispersing part infinitely many times.
The convergence of continued fractions of such trajectories that hit dispersing com-
ponents follows from the Seidel-Stern theorem and (3.2). Hence, for a full measure
subset of the phase space of the physical billiard in non-convex simply connected
rational polygons, we have hyperbolicity. Moreover, it implies there are at most
countable number of ergodic components such that the Kolmogorov-Sinai entropy
is positive on each of them [7,9, 23]. □

It follows from Lemma 3.1 and 3.2 that Pref is an open dense set in P. Therefore,
being a polygon with at least one reflex angle in P is topologically generic.

Theorem 3.4. There is an open dense subset of P such that the physical billiard
in the polygons of this subset (when the radius of the hard ball is small enough) is
hyperbolic on a subset of positive measure of their phase spaces.

Proof. Let P ∈ Pref and rP > 0 be the maximum radius of the hard ball defined
in (3.3) such that the particle can hit all edges of P . Then the boundary of the
mathematical billiard equivalent to the physical billiard in P has some dispersing
components which are arcs of a circle of radius r < rP . Let,

A = {(x, φ) : For all x in a dispersing component and φ ∈ (
−π

2
,
π

2
)}.

It follows from the definition of A that it is a subset of positive measure in the
phase space (one can exclude the exceptional directions which form a measure zero
set in the phase space). The Poincare recurrence theorem implies that almost all
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points of A will return to A infinitely many times under the action of the billiard
map. That means almost all trajectories of points in A will hit a dispersing part
infinitely many times. Then the convergence of continued fractions of trajectories
of almost all points of A follows from the Seidel-Stern theorem and (3.2). Hence a
physical billiard in a polygon with a reflex angle is hyperbolic at least on a subset
of positive measure of its phase space. □

We conjecture that in fact generically a physical billiard in a polygon is ergodic
for any radius of a moving particle (which is of course not that large that the
particle cannot move within a polygon). To prove our conjecture one instead needs
to show that almost all orbits in a physical billiard in a polygon will eventually hit
any segment which is a part of any side of a polygon. Hence a “large” physical
particle must hit all (rather than one) vertices of a polygon. For instance, if each
vertex of a convex polygon gets replaced by a focusing arc it is possible to prove
ergodicity [11]. In this case the mechanism of defocusing [8] ensures hyperbolicity
of such semi-focusing billiards on entire phase space. The current theory of billiards
in polygons establishes only that any billiard orbit in a polygon is either periodic
or its closer contains just one vertex of this polygon, which is by far not enough.
We are confident though that our conjecture holds.

References

[1] H. Attarchi, M. Bolding and L. A. Bunimovich, Ehrenfests’WindTree Model is Dynamically
Richer than the Lorentz Gas, J. Stat. Phys. (2019), doi:10.1007/s10955-019-02460-8

[2] P. Balint and S. Troubetzkoy, Ergodicity of two hard balls in integrable polygons, Nonlinearity
17 (2004), 2069–2090.

[3] J. Bobok and S. Troubetzkoy, Code & Order in polygonal billiards, Topology Appl. 159 (2012),
236–247.

[4] C. Boldrighini, M. Keane and F. Marchetti, Billiards in polygons, Ann. Probab. 6 (1978),
532–540.

[5] L. Boltzmann, Weitere Studien uber das Warme gleichgenicht unfer Gasmolakular, Sitzungs-
berichte der Akademie der Wissenschaften 66 (1872), 275–370.

[6] M. Boshernitzan, G. Galperin, T. Kruger and S. Troubetzkoy, Periodic billiard orbits are dense
in rational polygons, Transactions AMS 350 (1998), 3523–3535.

[7] L. A. Bunimovich and Y. G. Sinai, On the main theorem of the ergodic theory of dispersing
billiards, Math. USSR Sbornik 19 (1973), 407–423.

[8] L. A. Bunimovich, On billiards close to dispersing, Mat. USSR Sbornik 23 (1974), 45–67.
[9] L. A. Bunimovich, A theorem on ergodicity of two-dimensional hyperbolic billiards, Comm.

Math. Phys. 130 (1990), 599–621.
[10] L.A. Bunimovich, Physical versus mathematical billiards: From regular dynamics to chaos and

back, Chaos 29 (2019), 091105.
[11] N. Chernovy and S. Troubetzkoy, Ergodicity of billiards in polygons with pockets, Nonlinearity

11 (1998), 1095–1102.
[12] C. Cox and R. Feres, Differential geometry of rigid bodies collisions and non-standard billiards,

Discrete & Continuous Dynamical Systems-A 36 (2016), 6065–6099.
[13] C. Cox, R. Feres and H. K. Zhang, Stability of periodic orbits in no-slip billiards, Nonlinearity

31 (2018), 4443–4471.
[14] C. P. Dettmann, E. G. D. Cohen and H. Van Beijeren, Statistical mechanics: microscopic

chaos from Brownian motion?, Nature 401 (1999), 875–875.
[15] K. Fraczek and C. Ulcigrai, Ergodic directions for billiards in a strip with periodically located

obstacles, Comm. Math. Phys. 327 (2014), 643–663.



1256 H. ATTARCHI AND L. A. BUNIMOVICH

[16] K. Fraczek, R. Shi and C. Ulcigrai, Genericity on curves and applications: pseudo-integrable
billiards, Eaton lenses and gap distributions, J. Mod. Dyn. 12 (2018), 55–122.

[17] G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes, Comm. Math. Phys. 38 (1974),
83–101.

[18] G. A. Galperin, Nonperiodic and not everywhere dense billiard trajectories in convex polygons
and polyhedrons, Comm. Math. Phys. 91 (1983), 187–211.

[19] E. Gutkin, Billiards in polygons, Phys. D 19 (1986), 311–333.
[20] E. H. Hauge and E. G. D. Cohen, Normal and abnormal diffusion in Ehrenfests’ windtree

model, J. Math. Phys. 10 (1969), 397–414.
[21] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials,

Ann. Math. 124 (1986), 293–311.
[22] H. A. Lorentz, The motion of electrons in metallic bodies, Proc. Amst. Acad. 7 (1905), 438–453,

585–593, 684–691.
[23] Y. G. Sinai, Dynamical systems with elastic reflections, Russian Math. Surveys 25 (1970),

137–189.
[24] A. Skripchenko and S. Troubetzkoy, Polygonal billiards with one sided scattering, Ann. Inst.

Fourier 65 (2015), 1881–1896.
[25] Ya. Vorobets, Ergodicity of billiards in polygons, Sb. Math. 188 (1997), 389–434.
[26] W. Wood and F. Lado, Monte Carlo calculation of normal and abnormal diffusion in Ehrenfest’

s windtree model, J. Comput. Phys. 7 (1971), 528–546.
[27] A. N. Zemlyakov and A. B. Katok, Topological transitivity of billiards in polygons, Math. Notes

18 (1975), 760–764.

Manuscript received December 19 2019

revised January 24 2020

H. Attarchi
School of Mathematics, Georgia Institute of Technology, Atlanta, US

E-mail address: hattarchi@gatech.edu

L. A. Bunimovich
School of Mathematics, Georgia Institute of Technology, Atlanta, US

E-mail address: leonid.bunimovich@math.gatech.edu


