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It is believed that one has a sharp transition in the parameter λ. Namely, for
λ < λcr(α), there exists a smooth invariant curve (analytic if f is analytic), for λ =
λcr(α), an invariant curve still exists but it is not C∞ anymore (perhaps only C1+ϵ-
smooth), so that the conjugacy with the rigid rotation is only topological, and the
invariant measure is singular. Finally, for λ > λcr(α) the minimizers form a Cantor-
type set of zero Lebesgue measure. In fact it is even expected that the Hausdorff
dimension of such sets vanishes. It is also expected that the dynamical properties
of minimizing trajectories are very different before and after the transition. The
trajectories belonging to smooth invariant curves are elliptic with zero Lyapunov
exponents, while trajectories belonging to cantori are expected to be hyperbolic.
Although the above transition is confirmed by many numerical studies, at present
there are very few rigorous results in this direction, especially related to the critical
case λ = λcr(α).

Minimization of the Lagrangian action leads to the discrete Euler-Lagrange equa-
tion. In particular, any minimizing sequence (φn)n∈Z must be related to a trajectory
of the map ψλf . The second differential of the action functional can be written as
a quadratic form (Hu, u), where H is the 1D Schrödinger operator

H : (un)n∈Z 7→ (un+1 + un−1 + V0(φn)un)n∈Z,

with V0 := −f ′ − 2.
Since a minimizing trajectory is quasi-periodic, the corresponding Schrödinger

operator will be an operator with a quasi-periodic potential. In fact, this con-
struction leads to a one-parameter family of such potentials parametrized by the
coupling constant λ. It turns out that the potentials are smooth for λ < λcr(α) and
discontinuous in the case λ > λcr(α).

In this paper we propose to study the spectral properties of such families of
Schrödinger operators. We prove that in the KAM regime, when there exists an
analytic invariant curve, the Schrödinger operator has a component of absolutely
continuous spectrum. We construct such a component near the edge of the spec-
trum. More precisely the following Main Theorem holds.

Main Theorem. Let f be an analytic 1-periodic function with zero mean value.
Suppose the standard-type map ψλf has an analytic invariant curve homotopic to
the base with a rotation number α of Brjuno type (see (3.1) for a definition). Then
the energy E = 0 belongs to the spectrum of the Schrödinger operator H, E = 0
is the right edge of the spectrum: Σ(H) ∩ (0,+∞) = ∅, and there exists ε0(f) > 0
such that the spectral measures on [−ε0, 0] are purely absolutely continuous (and
positive).

A more technical formulation of the theorem will be given in Section 3. The proof
is based on a dynamical argument. It is easy to see that a Schrödinger cocycle for
the energy E = 0 is conjugated to the dynamical (Jacobi) cocycle associated to
ψλf . This allows us to show that it is, in fact, reducible to a constant parabolic
cocycle. Then, using the arguments developed by Avila [4], we can conclude that
the spectrum is absolutely continuous in a neighborhood of E = 0.
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This component of absolutely continuous spectrum comes from almost reducibil-
ity properties of Schrödinger cocycles for energies near E = 0. In [3], Avila showed
that almost reducibility is stable among analytic quasi-periodic SL(2,R)-cocycles
with irrational frequency. In a similar vein, the component of absolutely continuous
spectrum we obtain is also stable in the following sense: when the invariant curve
has Diophantine rotation number α, it persists under small analytic perturbations
of the potential. Moreover, by [13], this curve is also accumulated by other an-
alytic invariant curves with Diophantine rotation numbers close to α. Our Main
Theorem guarantees stability in both senses, namely, under small analytic pertur-
bations of the potential, and for these Diophantine rotation numbers, the associated
Schrödinger operator also has a component of absolutely continuous spectrum.

We view this theorem as a semi-global result. Namely we do not assume that
the potential in the Schrödinger operator is small. We only use the existence of
an analytic invariant curve. We also conjecture that the critical value λcr(α) is a
transition point. In other words, it is plausible that for all λ > λcr(α) the spectrum
will be pure point. This would mean that the dynamical transition from elliptic to
hyperbolic behavior in the weak KAM theory reflects in a related transition in the
spectral properties of the corresponding Schrödinger operators. It is an interesting
problem to analyze the spectrum at the critical value λ = λcr(α).

2. Aubry-Mather theory and Schrödinger operators

2.1. Conservative twist maps of the cylinder. Let Cω(T,R) be the set of one-
periodic analytic functions on R, and let Cω

0 (T,R) ⊂ Cω(T,R) be the subset of
functions with zero average. For any function f ∈ Cω

0 (T,R), we let Ψ = Ψf : R2 →
R2, (x, r) 7→ (x+ r+ f(x), r+ f(x)). It induces a map on the cylinder A := T×R:

ψ = ψf :

{
A → A,

(φ, r) 7→ (φ+ r + f(φ) mod 1, r + f(φ)).

The map ψ satisfies the twist property: for any (φ, r) ∈ A, we have ∂r(φ+r+f(φ)) =
1 > 0. For an arbitrary f ∈ Cω

0 (T,R), it is also natural to define a one-parameter
family of twist maps (ψλf )λ∈R, where λ is called the coupling constant.

An important case corresponds to the function f0 : φ 7→ 1
2π sin(2πφ). In this case,

for any λ ∈ R, the map ψλ := ψλf0 is the Standard Map with parameter λ.
Given a point (x, r) = (x0, r0) ∈ R2, we let ((xn, rn))n∈Z be its orbit under Ψ:

(2.1)

{
xn+1 = xn + rn+1,
rn+1 = rn + f(xn).

Similarly, for (φ, r) = (φ0, r0) ∈ A, we denote by ((φn, rn))n∈Z its orbit under ψ; for
x0 ∈ R such that x0 mod 1 = φ0, we have (φn, rn) = (xn mod 1, rn), for all n ∈ Z.

Let f ∈ Cω
0 (T,R). The matrix of the differential of ψ = ψf at (φ, r) ∈ A is

Dψ(φ,r) =

(
1 + f ′(φ) 1
f ′(φ) 1

)
∈ SL(2,R),

hence ψ is an analytic volume-preserving diffeomorphism with zero Calabi invariant:
ψ ∈ Diffω

m,0(A), where dm = dφdr is the Lebesgue measure.



1260 A. AVILA, K. KHANIN, AND M. LEGUIL

Let F ∈ Cω
0 (T,R) satisfy F ′ = f . For any a ∈ R, we define a function hf,a : R2 →

R by the formula

hf,a(x0, x1) :=
1

2
(x1 − x0 − a)2 + F (x0), ∀ (x0, x1) ∈ R2.

Let (φ0, r0) ∈ A, and let (φ1, r1) := ψ(φ0, r0). Given x0 ∈ R such that x0 mod 1 =
φ0, we set (x1, r1) := Ψf (x0, r0). The value hf,a(x0, x1) is independent of the choice
of the lift x0 ∈ R of φ0, and thus, we may define

hf,a(φ0, φ1) := hf,a(x0, x1).

In particular, given any two consecutive points (φn, rn), (φn+1, rn+1) in the orbit of
(φ, r) = (φ0, r0) ∈ A, the function hf,a(φn, φn+1) is well-defined.

Moreover, the function hf,a is generating for ψ = ψf in the following sense: for
(φ0, r0) ∈ A and (φ1, r1) := ψ(φ0, r0), we have{

∂1hf,a(φ0, φ1) = −(r0 − a),
∂2hf,a(φ0, φ1) = (r1 − a).

2.2. Action-minimizing Aubry Mather sets. Let f ∈ Cω
0 (T,R), and let F ∈

Cω
0 (T,R) be the anti-derivative of f with zero average. Given a ∈ R, we define the

action of a sequence u = (un)n∈Z ∈ RZ as a formal sum:

Af,a(u) :=
∑
n∈Z

hf,a(un, un+1) =
1

2

∑
n∈Z

(un+1 − un − a)2 +
∑
n∈Z

F (un).

The sequence u = (un)n∈Z is called a minimizer of the action Af,a if for any compact
perturbation ũ = (ũn)n∈Z of (un)n∈Z, the difference in action satisfies Af,a(ũ) −
Af,a(u) ≥ 0. Notice that the difference of actions is well defined although Af,a itself
is just a formal series.

Recall that minimizers of the action are associated to orbits of Ψf :

Lemma 2.1. Let a ∈ R, and assume that the sequence (xn)n∈Z ∈ RZ is a minimizer
of the action Af,a. We set rn := xn − xn−1, for all n ∈ Z. Then, ((xn, rn))n∈Z is
the orbit of (x0, r0) under Ψf , and its projection ((φn, rn))n∈Z on A is the orbit of
(φ0, r0) under ψf , with φn := xn mod 1, for all n ∈ Z.

Proof. Given any u = (un)n∈Z ∈ RZ and δ = (δn)n∈Z ∈ RZ satisfying δn = 0 for all

but finitely many integers n ∈ Z, with ∥δ∥ :=
√∑

k δ
2
k ≪ 1, we obtain

(2.2) Af,a(u+ δ)−Af,a(u) = −
∑
n∈Z

(un+1 − 2un + un−1 − f(un))δn +O(∥δ∥2),

where (u + δ)n := un + δn. Now, assume that the sequence (xn)n∈Z ∈ RZ is a
minimizer of the action Af,a, and set rn := xn − xn−1, for all n ∈ Z. Since δ can be
taken arbitrarily small, we deduce that

rn+1 = xn+1 − xn = xn − xn−1 + f(xn) = rn + f(xn),

xn+1 = 2xn − xn−1 + f(xn) = xn + rn+1,

for each n ∈ Z. As a result, (2.1) is satisfied, and ((xn, rn))n∈Z is the orbit of
(x0, r0) under Ψf . Then, ((φn, rn))n∈Z is the orbit of (φ0, r0) under ψf , with φn :=
xn mod 1, for all n ∈ Z. □
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Remark 2.2. The calculation above is just a derivation of the discrete Euler-
Lagrange equation associated with the action given by Af,a.

A ψf -invariant compact setA ⊂ A is said to be ψf -ordered if it projects injectively
on T, and the restriction ψf |A preserves the natural order given by the projection.
A classical result of Aubry-Mather theory [1, 2, 25] states that for each irrational
number α ∈ R \Q, there exist a = a(α) ∈ R and a minimal ordered set AMf,α ⊂ A
with rotation number α. It is comprised of orbits ((φn, rn))n∈Z under ψf associated
to sequences (xn)n∈Z which minimize the action Af,a. By some slight abuse of
notation, we denote Af,α := Af,a(α) in the following. In particular, the rotation
number α of AMf,α is the rotation number of any lifted orbit: for any (φ0, r0) =
(x0 mod 1, r0) ∈ AMf,α, we have

α = lim
n→+∞

xn − x0
n

= lim
n→+∞

1

n

n∑
k=1

rk.

The set AMf,α is called the minimizing Aubry-Mather set for the action Af,α.

Theorem 2.3 ( [1, 2, 9, 16, 19, 25]). For any α ∈ R \ Q, the associated minimiz-
ing Aubry-Mather set AMf,α is either an invariant graph Γγ for some Lipschitz
function γ : T → R, or it projects one-to-one to a nowhere-dense Cantor set of T.
Moreover, if Γ is an invariant curve for ψf homotopic to the base with irrational
rotation number α, it is a minimizing Aubry-Mather set: we have Γ = AMf,α.

Suppose that ψf leaves invariant the graph Γγ = {Γγ(φ) := (φ, γ(φ)) : φ ∈ T}1
with rotation number αmod 1 for some α ∈ R\Q. Then, the composition π1◦ψf ◦Γγ

yields a circle homeomorphism g = gγ : T → T, where π1 : A → T is the projection
on the first coordinate:

g(φ) := φ+ γ(φ) + f(φ) mod 1, ∀φ ∈ T.

The map G = Gγ : R ∋ x 7→ x+γ(x)+f(x) is a lift of g, and it has rotation number
α ∈ R \Q. Since g has rotation number α mod 1, it is uniquely ergodic. We denote
by ν its unique invariant probability measure. For any orbit ((φn, rn))n∈Z ⊂ AMf,α,

we have rk = γ(φk) = γ(gk(φ0)), for all k ∈ Z, hence

α = lim
n→+∞

1

n

n∑
k=1

rk = lim
n→+∞

1

n

n∑
k=1

γ(gk(φ0)) =

∫
T
γ(φ) dν(φ).

2.3. Dynamically defined quasi-periodic Schrödinger operators. Let f ∈
Cω
0 (T,R). Fix α ∈ R \ Q and let us consider the minimizing Aubry-Mather set

AMf,α. In the following, we choose a phase φ0 ∈ T such that (φ0, r0) ∈ AMf,α for
some r0 ∈ R. Given x0 ∈ R such that φ0 = x0 mod 1, we denote by ((xn, rn))n∈Z
the orbit of (x0, r0) under Ψf and let ((φn, rn))n∈Z be the corresponding ψf -orbit.
We also denote by (·, ·) the standard inner product on ℓ2(Z), and for u ∈ ℓ2(Z), we
set ∥u∥ :=

√
(u, u).

In the proof of Lemma 2.1, we have computed the first order term in the difference
of actions between a sequence and a compact perturbation of it. It turns out that

1We shall use the same notation Γγ for the natural map from T to A defined by the graph Γγ .
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the second order term in this difference is given by some quadratic form associated
to a Schrödinger operator, as shown by the next lemma.

Lemma 2.4. For any sequence δ = (δn)n∈Z ∈ RZ satisfying δn = 0 for all but
finitely many integers n ∈ Z and such that ∥δ∥ ≪ 1, we have

(2.3) Af,α((xn + δn)n∈Z)−Af,α((xn)n∈Z) = −1

2
(Hf,α,φ0δ, δ) +O(∥δ∥3),

where Hf,α,φ0 is the dynamically defined Schrödinger operator associated to the an-
alytic function V0 := −f ′ − 2 and the ψf -ordered sequence (φn)n∈Z:

Hf,α,φ0 :

{
ℓ2(Z) → ℓ2(Z),

(un)n∈Z 7→ (un+1 + un−1 + V0(φn)un)n∈Z.

Proof. Since ((xn, rn))n∈Z is a Ψf -orbit, we have xn+1−2xn+xn−1−f(xn) = 0, for
all n ∈ Z. Equivalently, (xn)n∈Z is a critical point for the action Af,α, and the first
order term in the difference (2.2) vanishes for (xn)n∈Z in place of (un)n∈Z. Given any
compact perturbation (xn + δn)n∈Z of (xn)n∈Z for some sequence δ = (δn)n∈Z ∈ RZ

with ∥δ∥ ≪ 1, the Taylor expansion of the difference in action is

Af,α((xn + δn)n∈Z)−Af,α((xn)n∈Z) =
∑
n∈Z

1

2
(δn+1 − δn)

2 + f ′(xn)
δ2n
2

+O(∥δ∥3)

= −1

2
(Hf,α,φ0δ, δ) +O(∥δ∥3).

□
In particular, for any ψf -ordered sequence (φn)n∈Z ⊂ AMf,α, H = Hf,α,φ0 is a

quasi-periodic Schrödinger operator whose potential is related to the dynamics of
ψf |AMf,α

. We denote by Σ = Σ(H) its spectrum; recall that it is the set of energies
E such that the operator H − E = H − E · I does not have a bounded inverse in
ℓ2(Z). For any u ∈ ℓ2(Z), we denote by µuH the spectral measure of H associated to
u. It is defined by the following formula:

((H− E)−1u, u) =

∫
R

1

E′ − E
dµuH(E

′),

for any energy E in the resolvent set C\Σ. The union of the supports of all spectral
measures is equal to Σ. We refer for instance to [10] for more details on dynamically
defined Schrödinger operators.

Lemma 2.5. For any u ∈ ℓ2(Z), we have

(2.4) (Hu, u) ≤ 0.

Equivalently,

(2.5) Σ(H) ⊂ (−∞, 0].

Proof. We first show (2.4). Let u ∈ ℓ2(Z). For any integer n0 ≥ 1, we define the
compact sequence un0 = (un0

n )n∈Z, where u
n0
n := un if n ∈ [−n0, n0], and un0

n := 0
otherwise. As (xn)n∈Z is a minimizer of Af,α, for any integer k ≥ 1, the following
expression is always nonnegative:

Af,α

((
xn +

1

k
un0
n

)
n∈Z

)
−Af,α((xn)n∈Z) = − 1

2k2
(
Hun0 , un0

)
+O

( 1

k3
∥un0∥3

)
.
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For k ≫ 1 large, and as the error term in the above Taylor expansion scales like 1
k3
,

we deduce that
(
Hun0 , un0

)
≤ 0. Letting n0 → +∞, we conclude that (Hu, u) ≤ 0.

We now prove the second statement (2.5) about the spectrum Σ = Σ(H). It
amounts to showing that for any E > 0, the operator H− E is invertible and that
its inverse is bounded. Fix E > 0. By (2.4), for any sequence u ∈ ℓ2(Z), we have

(2.6) ∥(H− E)u∥2 = ∥Hu∥2 − 2E(Hu, u) + E2∥u∥2 ≥ E2∥u∥2.

Therefore, if (H− E)u = 0, then ∥u∥ = 0, and thus, H− E is injective. Moreover,
(2.6) also implies that the inverse of H− E is bounded, since

sup
u∈ℓ2(Z)

∥(H− E)−1u∥
∥u∥

=

(
inf

u∈ℓ2(Z)

∥(H− E)u∥
∥u∥

)−1

≤ 1

E
.

Besides, H−E is automatically surjective. Indeed, it holds Im(H−E)⊥ = Ker(H−
E)∗ = Ker(H − E) = {0}, hence Im(H− E) = ℓ2(Z). By (2.6) and Cauchy’s
convergence test, we deduce that Im(H − E) = ℓ2(Z). We conclude that Σ ⊂
(−∞, 0].

Conversely, let us show that Σ ⊂ (−∞, 0] implies (2.4). Indeed, the spectrum
Σ is the union of the supports of the spectral measures {µuH}u∈ℓ2(Z), hence for any

u ∈ ℓ2(Z), the support of µuH is contained in (−∞, 0], and

(Hu, u) =
∫
R
E dµuH(E) =

∫ 0

−∞
E dµuH(E) ≤ 0.

□

3. Main Theorem

Let f ∈ Cω
0 (T,R), and let ψf : A → A be the associated twist map. Assume that

ψf leaves invariant an analytic curve Γ which is the graph Γ = Γγ := {(φ, γ(φ)) :
φ ∈ T} of some function γ ∈ Cω(T,R). We denote by

g : φ 7→ φ+ γ(φ) + f(φ) mod 1

the analytic diffeomorphism of T induced by ψf |Γγ , and assume that the rotation
number α of g satisfies the Brjuno condition, i.e.,

(3.1) B(α) :=
+∞∑
k=0

1

qk
log qk+1 < +∞,

where
(pk
qk

)
k≥0

denotes the sequence of convergents for α (corresponding to the

continued fraction algorithm). In particular, we can use the results of [3, 7, 24],
where it is assumed that β(α) := lim supk

1
qk

log qk+1 = 0.

As above, given φ0 ∈ T, we consider the Schrödinger operator

H : (un)n∈Z 7→ (un+1 + un−1 + V0(g
n(φ0))un)n∈Z,

with V0 := −f ′ − 2, and denote by Σ(H) its spectrum.
Our main result is:



1264 A. AVILA, K. KHANIN, AND M. LEGUIL

Main Theorem. Assume that the map ψf leaves invariant an analytic curve Γ
with Brjuno rotation number α, and let H be the associated Schrödinger operator.
Then there exists ε0 > 0 such that the following properties hold:

(1) the energy E = 0 is the right edge of the spectrum: 0 = maxΣ(H);
(2) the spectral measures of H restricted to [−ε0, 0] are absolutely continuous;
(3) there exists κ > 0 such that |(E − ε,E + ε) ∩ Σ(H)| > κε, for all energy

E ∈ Σ(H) ∩ (−ε0, 0), and for all 0 < ε < |E|.

The proof is based on the reducibility of the Schrödinger cocycle associated to H
for the energy E = 0. As we shall explain, this can be seen in two ways:

(1) in restriction to Γ, the Jacobi (differential) cocycle of the twist map ψf is
conjugate to some quasi-periodic Schrödinger cocycle (see Subsections 4.1-
4.2). Besides, in Subsection 4.3, we use a vector field tangent to Γ to reduce
these cocycles to a constant cocycle associated to some parabolic matrix.

(2) the energy E = 0 is in the pure point spectrum of some dual Schrödinger
operator (see Subsection 4.4). Actually, thanks to the existence of the in-
variant curve Γ, we construct an explicit eigenvector whose coefficients decay
exponentially fast.

By Avila’s results, this implies that for small energies, the corresponding
Schrödinger cocycles are almost reducible, i.e., they can be conjugated uniformly
in some strip to a cocycle which is arbitrarly close to a constant. Finally, we follow
the proof given by Avila in [4] to show the existence of a component of absolutely
continuous spectrum near the energy E = 0.

Remark 3.1. • Such properties are typical of the regime of small analytic potentials
(see [4,7,12] for instance). Our result replaces the usual smallness assumption with
the geometric assumption on the existence of an analytic invariant curve.

• Let us also recall that for maps ψf as above, the existence of analytic invariant
curves with a given Brjuno rotation number is guaranteed by the main result of
[17], provided that the analytic norm of f is sufficiently small. More precisely, by
Theorem 1.1 in [17], for any f0 ∈ Cω

0 (T,R) and for any α ∈ R satisfying the Brjuno
condition B(α) < +∞, there exists λ0 > 0 such that for |λ| < λ0, the map ψλf0

admits an analytic invariant curve with rotation number α.

4. Invariant curves & almost reducibility of Schrödinger cocycles

4.1. Invariant curves & Jacobi (differential) cocycle. Let f ∈ Cω
0 (T,R) be

an analytic function with zero average. For the map ψ = ψf one can define in a
usual way the Jacobi cocycle (ψ,Dψ) : A× C2 → A× C2, namely

(ψ,Dψ)((φ, r), v) := (ψ(φ, r), Dψ(φ,r) · v), ∀ ((φ, r), v) ∈ A× C2.

Assume that Γ ⊂ A is an invariant curve for ψ homotopic to the base. As recalled
in Theorem 2.3, by Birkhoff Theorem, Γ is the graph Γγ = {Γγ(φ) = (φ, γ(φ)) :
φ ∈ T} of some Lipschitz function γ : T → R. As above, we let g = gγ : φ 7→
φ + γ(φ) + f(φ) mod 1 be the circle map obtained by projecting ψ|Γγ on the first
coordinate. For any φ ∈ T, we have

(4.1) ψ(Γγ(φ)) = ψ(φ, γ(φ)) = (g(φ), γ(φ) + f(φ)) = (g(φ), γ ◦ g(φ)) ∈ Γγ .
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Clearly, g is a homeomorphism of T; moreover, g and γ have the same regularity.
In particular, in the case we consider, γ and g are analytic.

As the curve Γ is invariant under ψf , the restriction of the Jacobi cocycle to Γ
reduces to the derivative cocycle (g,Dψ) : T× C2 → T× C2:

(4.2) (g,Dψ)(φ, v) := (g(φ), Dψ(φ) · v), ∀ (φ, v) ∈ T× C2,

where Dψ(φ) := Dψ(φ,γ(φ)). Let us denote by v0 a vector field tangent to the
invariant curve:

v0 : φ 7→
(

1
γ′(φ)

)
∈ T(φ,γ(φ))Γ.

It is easy to see that v0 is an invariant section for the derivative cocycle in the
directional sense.

Lemma 4.1. The action of the cocycle (g,Dψ) on the vector field v0 is given by

(4.3) Dψ(φ) · v0(φ) = g′(φ) · v0(g(φ)), ∀φ ∈ T,

with g′(φ) = 1 + γ′(φ) + f ′(φ) = (1− γ′ ◦ g(φ))−1.
Moreover, there exists an analytic conjugacy map Z1 ∈ Cω(T,SL(2,R)) such that

(4.4) (Z1 ◦ g(φ))−1Dψ(φ)Z1(φ) =

(
g′(φ) 1
0 g′(φ)−1

)
, ∀φ ∈ T.

Proof. As we have seen in (4.1), the fact that Γ is invariant means that f can be
written as a coboundary, i.e., it satisfies the cohomological equation

(4.5) f(φ) = γ ◦ g(φ)− γ(φ), ∀φ ∈ T.

Differentiating with respect to φ in (4.5), we obtain:

(4.6) γ′ ◦ g(φ) · g′(φ) = γ′(φ) + f ′(φ),

with g′(φ) = 1 + γ′(φ) + f ′(φ). It also follows that g′(φ) · (1− γ′ ◦ g(φ)) = 1.
By (4.6), we deduce that(

1 + f ′(φ) 1
f ′(φ) 1

)
·
(

1
γ′(φ)

)
= g′(φ)

(
1

γ′ ◦ g(φ)

)
,

i.e., Dψ(φ) · v0(φ) = g′(φ) · v0(g(φ)).
Now, let us set

Z1(φ) :=

(
1 0

γ′(φ) 1

)
, ∀φ ∈ T.

Then, by (4.3), and since (g′(φ))−1 = 1−γ′◦g(φ), we see that the map Z1 conjugates
(g,Dψ) to the upper-triangular cocycle as in (4.4). □

4.2. Schrödinger cocycle associated to an invariant curve. Let f , ψ = ψf ,
Γ and g be as in the previous subsection. As we have seen above, one can define a
natural family of dynamically generated Schrödinger operators, the phase φ0 ∈ T
being a parameter:

Hf,α,φ0 : (un)n∈Z 7→ (un+1 + un−1 + V0(g
n(φ0))un)n∈Z,
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where V0 := −f ′ − 2. For an arbitrary energy E ∈ R, one can define a Schrödinger
cocycle (g, SV0

E ), with

SV0
E (φ) :=

(
E − V0(φ) −1

1 0

)
, ∀φ ∈ T.

It acts on T× C2 by the following formula:

(g, SV0
E )(φ, v) := (g(φ), SV0

E (φ) · v), ∀ (φ, v) ∈ T× C2.

It turns out that the Schrödinger cocycle and the derivative cocycle are conjugate
to each other for the energy E = 0: for any φ ∈ T, we have

(4.7)

(
1 0
1 −1

)(
1 + f ′(φ) 1
f ′(φ) 1

)(
1 0
1 −1

)
=

(
2 + f ′(φ) −1

1 0

)
.

We next show that both cocycles (g, SV0
0 ) and (g,Dψ) are conjugate to a constant

parabolic cocycle (g,B0), for some matrix B0 :=

(
1 ν0
0 1

)
. This conjugation holds

only along the invariant curve. To proceed, we need some facts from the Herman-
Yoccoz theory.

Assume that the rotation number α of Γ satisfies the Brjuno condition B(α) :=∑+∞
k=0

1
qk

log qk+1 < +∞, where
(pk
qk

)
k≥0

denotes the sequence of continued fraction

convergents for α. We shall also assume that Γ = Γγ is the graph of some analytic
function γ ∈ Cω(T,R). It follows that the circle diffeomorphism g = gγ is also
analytic. Hence, by the theorem of Yoccoz (see [28] and also [14,15] for a reference),
g is analytically conjugate to the rigid rotation rα by angle α. Namely, there exists
an analytic circle diffeomorphism ϕ = ϕγ ∈ Cω(T,T) such that

(4.8) ϕ−1 ◦ g ◦ ϕ(φ) = φ+ α mod 1, ∀φ ∈ T.
The following lemma says that both f and γ can be expressed in terms of the

conjugacy map ϕ.

Lemma 4.2. It holds

(4.9) f = γ ◦ g − γ = γ ◦ ϕrαϕ−1 − γ.

Moreover, we have

(4.10) γ = I− g−1 = I− ϕr−1
α ϕ−1,

where I denotes the identity map, which implies that

(4.11) f = g − 2I + g−1 = ϕrαϕ
−1 − 2I + ϕr−1

α ϕ−1.

Proof. The identity in (4.9) follows directly from (4.5). As g = gγ is the circle
diffeomorphism induced by ψf |Γγ , for all φ ∈ T, we have g(φ) = φ + γ(g(φ)),

which implies γ = I− g−1, and hence, (4.10). Finally, (4.11) follows from (4.9) and
(4.10). □

Conversely, given an irrational frequency α̃ and an analytic circle diffeomorphism
ϕ̃, one can produce an analytic function f̃ with zero average such that the associated
twist map ψf̃ has an analytic invariant curve with rotation number α̃. Moreover, ϕ̃

conjugates the corresponding circle diffeomorphism g̃ to the rigid rotation rα̃.
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Lemma 4.3. Let α̃ ∈ R \ Q and let ϕ̃ ∈ Cω(T,T) be an analytic circle diffeomor-

phism. We define two functions γ̃ = γ̃α̃,ϕ̃ ∈ Cω(T,R) and f̃ = f̃α̃,ϕ̃ ∈ Cω
0 (T,R):

γ̃ := I− ϕ̃r−1
α̃ ϕ̃−1,

f̃ := γ̃ ◦ ϕ̃rα̃ϕ̃−1 − γ̃ = ϕ̃rα̃ϕ̃
−1 − 2I + ϕ̃r−1

α̃ ϕ̃−1.

Then, the analytic graph Γγ̃ := {Γγ̃(φ) = (φ, γ̃(φ)) : φ ∈ T} is invariant under ψf̃

with a rotation number α̃, and ϕ̃−1 ◦ g̃ ◦ ϕ = rα̃.

Let f, ψ,Γ = Γγ , g = gγ and ϕ = ϕγ be as previously. For any map A ∈
Cω(T,SL(2,R)), we denote by (α,A) the associated cocycle over the rigid rotation
by angle α. It acts on T× C2 as follows:

(α,A)(φ, v) := (φ+ α,A(φ) · v), ∀ (φ, v) ∈ T× C2.

After conjugation by ϕ, the derivative cocycle and the Schrödinger cocycle yield
cocycles (α,Dψ ◦ ϕ) and (α, SV

E ), E ∈ R, where V := V0 ◦ ϕ = −f ′ ◦ ϕ − 2 ∈
Cω(T,R). Besides, according to (4.7), these cocycles are conjugated by the matrix

M :=

(
1 0
1 −1

)
=M−1 ∈ GL(2,R) for the energy E = 0:

(4.12) M−1 ·Dψ(ϕ(φ)) ·M = SV
0 (φ), ∀φ ∈ T.

The Schrödinger cocycles {(α, SV
E )}E∈R are associated to the family of

Schrödinger operators {HV,α,φ0}φ0∈T over the dynamics of the rigid rotation rα:

HV,α,φ0 : (un)n∈Z 7→ (un+1 + un−1 + V (φ0 + nα)un)n∈Z.

The spectrum Σ(HV,α,φ0) does not depend on the phase φ0. Recall that Γ = AMf,α,
and note that HV,α,ϕ−1(φ0) = Hf,α,φ0 . In particular, Σ(HV,α,φ0) = Σ(Hf,α,φ0).

4.3. Parabolic reducibility of the Schrödinger cocycle. We keep the nota-
tions of the previous subsection. As a consequence of Lemma 4.1, we obtain:

Corollary 4.4. Let Z2 :=M · Z1 ◦ ϕ ∈ Cω(T,GL(2,R)). Then, we have

(4.13) Z2(φ+ α)−1SV
0 (φ)Z2(φ) =

(
κ(φ) 1
0 κ(φ)−1

)
, ∀φ ∈ T,

with κ(φ) := ϕ′(φ+α)
ϕ′(φ) .

Proof. Recall that ϕ = ϕγ satisfies g ◦ ϕ(φ) = ϕ(φ + α), for all φ ∈ T. Therefore,

g′ ◦ ϕ(φ) = ϕ′(φ+α)
ϕ′(φ) =: κ(φ). Set Z̃1 := Z1 ◦ ϕ. By (4.4), we deduce that

Z̃1(φ+ α)−1Dψ(ϕ(φ))Z̃1(φ) =

(
κ(φ) 1
0 κ(φ)−1

)
, ∀φ ∈ T.

Set Z2 :=M · Z̃1 =M · Z1 ◦ ϕ. By (4.12), we thus conclude that

Z2(φ+ α)−1SV
0 (φ)Z2(φ) =

(
κ(φ) 1
0 κ(φ)−1

)
, ∀φ ∈ T.

□



1268 A. AVILA, K. KHANIN, AND M. LEGUIL

As a consequence of the above result, we show that for the energy E = 0, the
Schrödinger cocycle (α, SV

0 ) can be reduced to a parabolic cocycle.

Proposition 4.5. There exist a negative number ν0 < 0 and an analytic conjugacy
Z ∈ Cω(T, SL(2,R)) homotopic to the identity such that

Z(φ+ α)−1SV
0 (φ)Z(φ) = B0 :=

(
1 ν0
0 1

)
, ∀φ ∈ T.

Proof. For any φ ∈ T, and for κ(φ) = ϕ′(φ+α)
ϕ′(φ) as in (4.13), we see that(

ϕ′(φ+ α) 0
0 −ϕ′(φ+ α)−1

)(
1 ν(φ)
0 1

)(
ϕ′(φ)−1 0

0 −ϕ′(φ)

)
=

(
κ(φ) 1
0 κ(φ)−1

)
,

with ν(φ) := −(ϕ′(φ)ϕ′(φ+ α))−1 < 0.
For all φ ∈ T, we let Z3(φ) := Z2(φ) · diag(ϕ′(φ),−(ϕ′)−1(φ)), such that Z3 ∈

Cω(T,SL(2,R)). By (4.13), we thus get

Z3(φ+ α)−1SV
0 (φ)Z3(φ) =

(
1 ν(φ)
0 1

)
.

Set ν0 :=
∫
T ν(φ) dφ < 0, so that ν − ν0 ∈ Cω

0 (T,R). Since B(α) < +∞ and ν is
analytic, the following cohomological equation has a solution µ ∈ Cω(T,R):

µ(φ+ α)− µ(φ) = ν(φ)− ν0, ∀φ ∈ T.

We set Z := Z3

(
1 µ
0 1

)
∈ Cω(T, SL(2,R)). By the successive definitions of

Z1, Z2, Z3, and by Lemma 4.3, for φ ∈ T, we obtain the following expression of
the matrix Z(φ):

Z(φ) =

(
ϕ′(φ) µ(φ)ϕ′(φ)

(ϕ(φ)− γ ◦ ϕ(φ))′ (ϕ′(φ))−1 + µ(φ)(ϕ(φ)− γ ◦ ϕ(φ))′
)

=

(
ϕ′(φ) µ(φ)ϕ′(φ)

ϕ′(φ− α) (ϕ′(φ))−1 + µ(φ)ϕ′(φ− α)

)
.(4.14)

As ϕ is a circle diffeomorphism, the first coefficient in the matrix does not vanish,
and hence the conjugacy map Z is homotopic to the identity. Moreover, for all
φ ∈ T, we have

Z(φ+ α)−1SV
0 (φ)Z(φ) =

(
1 ν(φ)− µ(φ+ α) + µ(φ)
0 1

)
=

(
1 ν0
0 1

)
.

□

4.4. Pure point spectrum of dual Schrödinger operators. Since the reduc-
tion to the parabolic cocycle (α,B0) is a key point in the proof of our Main Theorem,
we shall provide another proof of this fact based on dual Schrödinger operators and
Aubry duality. In general, Aubry duality is based on the fact that the localiza-
tion properties of the dual Schrödinger operators can be used to show that certain
Schrödinger cocycles are reducible. One may consult [7] for more references.
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Let (v̂n)n∈Z be the Fourier coefficients of the analytic potential V := −f ′ ◦ϕ− 2,
i.e., V : φ 7→

∑
n∈Z v̂ne

2πinφ. For any phase φ0 ∈ T, we define the dual Schrödinger

operator ĤV,α,φ0 . It acts on û = (ûn)n∈Z ∈ ℓ2(Z) in the following way:

(4.15) (ĤV,α,φ0(û))n :=
∑
k∈Z

v̂n−kûk + 2 cos(2π(φ0 + nα))ûn, ∀n ∈ Z.

Let us denote by ϕ̂′ = (ϕ̂′n)n∈Z the Fourier coefficients of the function ϕ′ ∈
Cω(T,R). In other words, ϕ : φ 7→

∑
n∈Z ϕ̂ne

2πinφ, with ϕ̂′n = 2πinϕ̂n, for n ∈ Z.

Lemma 4.6. We have

(4.16) V (φ) = −ϕ
′(φ+ α) + ϕ′(φ− α)

ϕ′(φ)
, ∀φ ∈ T,

which yields

(4.17) ĤV,α,0(ϕ̂′) = 0.

By analyticity, the sequence (ϕ̂′n)n∈Z decays exponentially fast. In particular, we

have (ϕ̂′n)n∈Z ∈ ℓ2(Z), and the energy E = 0 is in the point spectrum Σpp(ĤV,α,0)

of the dual operator ĤV,α,0.

Proof. By the second identity obtained in (4.11), for all φ ∈ T, it holds
f ◦ ϕ(φ) = ϕ(φ+ α)− 2ϕ(φ) + ϕ(φ− α),

and then, by taking the derivative of the previous expression, we get

f ′ ◦ ϕ(φ) · ϕ′(φ) = ϕ′(φ+ α)− 2ϕ′(φ) + ϕ′(φ− α).

Since V = −f ′ ◦ ϕ− 2, this can also be rewritten as

(4.18) V (φ) · ϕ′(φ) + ϕ′(φ+ α) + ϕ′(φ− α) = 0,

which gives (4.16).
Therefore, in Fourier series, (4.18) yields∑

n∈Z

∑
k∈Z

v̂n−kϕ̂
′
ke

2πinφ +
∑
n∈Z

ϕ̂′n(e
2πinα + e−2πinα)e2πinφ = 0.

Equivalently, we have

(ĤV,α,0(ϕ̂′))n =
∑
k∈Z

v̂n−kϕ̂
′
k + 2 cos(2πnα)ϕ̂′n = 0, ∀n ∈ Z,

which concludes the proof. □
As in classical Aubry duality, we may then define a Bloch wave U : φ 7→(
ϕ′(φ)

ϕ′(φ− α)

)
. It provides an invariant section, in the following sense:2

(4.19) SV
0 (φ) · U(φ) = U(φ+ α), ∀φ ∈ T.

In our case, the phase is equal to 0 and the frequency α satisfies B(α) < +∞, hence
by point (2) of the precise version of Aubry-duality given in Avila-Jitomirskaya [7,

2This can also be checked directly using (4.18).
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Theorem 2.5], this provides another proof of the reducibility result that we obtained
previously in Proposition 4.5.

Note that (4.19) gives another way to see why the connection between existence
of analytic invariant curves and parabolic reducibility of Schrödinger cocycles can
only happen on the edge of the spectrum: indeed, U is associated to the vector field
tangent to the invariant curve, hence should have zero degree. But the latter is
directly related to the rotation number of the Schrödinger cocycle (as U can be uti-
lized to reduce the cocycle), which should thus vanish as well; but this corresponds
precisely to the right edge of the spectrum.

4.5. Proof of the Main Theorem. We remain in the setting of the previous
section. Namely, we let f ∈ Cω

0 (T,R) and assume that the twist map ψ = ψf

leaves invariant an analytic graph Γγ , for some function γ ∈ Cω(T,R). We let
g : φ 7→ φ+ γ(φ)+ f(φ) mod 1 be the induced diffeomorphism, and assume that its
rotation number α satisfies the Brjuno condition B(α) < +∞. We take ϕ = ϕγ ∈
Cω(T,T) such that ϕ−1 ◦ g ◦ ϕ = rα, set V := −f ′ ◦ ϕ − 2, and let B0 ∈ SL(2,R),
Z ∈ Cω(T, SL(2,R)) be as in Proposition 4.5. We also letHV,α,φ0 be the Schrödinger
operator corresponding to action minimizing trajectories of ψ on Γγ .

In this section we will conclude the proof of our Main Theorem on the existence
of a component of absolutely continuous spectrum. The idea of the proof is to
use Proposition 4.5 together with the openness of the almost reducibility property
proved by Avila in [3]. Following the arguments of Avila [4], it implies the existence
of a component of absolutely continuous spectrum.

Let us recall a few concepts which will be useful in the following.
Given a frequency α̃ ∈ R \ Q and a map A ∈ Cω(T, SL(2,R)), the SL(2,R)-

cocycle (α̃, A) is called subcritical if there exists ε > 0 such that the associated
Lyapunov exponent satisfies L(α̃, A(· + iδ)) = 0 for any |δ| < ε. The cocycle

(α̃, A) is called almost reducible if there exists ε > 0 and a sequence (B(n))n≥0 of

maps B(n) : T → SL(2,R) admitting holomorphic extensions to the common strip

{|ℑz| < ε} such that B(n)(· + α̃)−1A(·)B(n)(·) converges to a constant SL(2,R)-
matrix uniformly in {|ℑz| < ε}. Let us recall that by Avila’s proof of the almost
reducibility conjecture (see [3, 5, 6]), subcriticality implies almost reducibility.

By [7], almost reducibility is related to the notion of almost localization which
we now recall. For any x ∈ R, we set |x|T := infj∈Z |x − j|. Fix ϵ0 > 0 and

φ0 ∈ T. An integer k ∈ Z is called an ϵ0-resonance of φ0 if |2φ0 − kα|T ≤ e−ϵ0|k|

and |2φ0 − kα|T = min|l|≤|k| |2φ0 − lα|T.

Definition 4.7 (Almost localization). Given α̃ ∈ R \ Q and Ṽ ∈ Cω(T,R),
we say that the family {ĤṼ ,α̃,φ}φ∈T is almost localized if there exist constants

C0, C1, ϵ0, ϵ1 > 0 such that for all φ0 ∈ T, any generalized solution u = (uk)k∈Z
to the eigenvalue problem ĤṼ ,α̃,φ0

u = Eu with u0 = 1 and |uk| ≤ 1 + |k| satisfies

(4.20) |uk| ≤ C1e
−ϵ1|k|, ∀C0|nj | ≤ |k| ≤ C−1

0 |nj+1|,

where {nj}j is the set of ϵ0-resonances of φ0.
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By Lemma 2.5 and Proposition 4.5, our Main Theorem is a consequence of the
following result.

[Parabolicity ⇒ ac] Lemma. Let α ∈ R \Q and V ∈ Cω(T,R). Suppose that for
some E0 ∈ R the Schrödinger cocycle (α, SV

E0
) is analytically reducible to a constant

parabolic cocycle, i.e., there exist Z ∈ Cω(T,SL(2,R)) and ν0 ∈ R such that

(4.21) Z(φ+ α)−1SV
E0
(φ)Z(φ) = B0 =

(
1 ν0
0 1

)
, ∀φ ∈ T.

Assume that ν0 < 0. Then there exists ε0 > 0 such that for all φ0 ∈ T,

(1) Σ(HV,α,φ0) ∩ [E0 − ε0, E0 + ε0] ⊂ [E0 − ε0, E0];

(2) for any E ∈ Σ(HV,α,φ0) ∩ [E0 − ε0, E0], the Schrödinger cocycle (α, SV
E ) is

almost reducible and subcritical;
(3) the restriction of the spectral measures to the interval [E0 − ε0, E0] is abso-

lutely continuous and positive.

Here we state the lemma for ν0 < 0 but of course, a symmetric result holds for
ν0 > 0. It is well known (see for instance [26, 27]) that reducibility at E = E0 to a
parabolic matrix different from the identity implies that locally on one side of E0

the cocycle (α, SV
E ) will be uniformly hyperbolic, and on another side the fibered

rotation number will change monotonically (by strict monotonicity of the second
iterate of the Schrödinger cocycle with respect to E). In our case, we assume that
ν0 < 0, hence the cocycle (α, SV

E ) is uniformly hyperbolic for E ∈ (E0, E0 + ε)
and its fibered rotation number for E ∈ (E0 − ε,E0) will be strictly larger than at
E = E0. This proves the first statement of the [Parabolicity ⇒ ac] Lemma. In the
following, we will give the proof of points (2) and (3) in this lemma.

We take α, V,E0, Z,B0, ν0 as in the [Parabolicity ⇒ ac] Lemma. To ease the
notation, we assume that E0 = 0. Point (3) in the [Parabolicity ⇒ ac] Lemma
follows from the next result.

Proposition 4.8. There exists ε1 > 0 such that for any E ∈ (−ε1, ε1), the
Schrödinger cocycle (α, SV

E ) is almost reducible, and for any E ∈ (−ε1, 0) ∩
Σ(HV,α,φ0), the cocycle (α, SV

E ) is subcritical.

Proof. By [3, Corollary 1.3], almost reducibility is an open property in the set
of cocycles R \ Q × Cω(T, SL(2,R)). Hence, we have almost reducibility for all
E ∈ (−ε, ε) assuming that ε > 0 is sufficiently small. As recalled above, for positive
energies E ∈ (0, ε), the cocycle (α, SV

E ) is almost reducible to a hyperbolic SL(2,R)-
cocycle (in fact, it is even reducible when β(α) = 0). Besides, for negative energies
E ∈ (−ε, 0) ∩ Σ(HV,α,φ0), the cocycle (α, SV

E ) is almost reducible to a parabolic
cocycle or a cocycle of rotations.

As the potential V and the conjugacy map Z are analytic, formula (4.21) implies
that the cocycle (α, SV

0 ) is subcritical. By [6], subcriticality is also an open prop-
erty in the spectrum (outside of uniform hyperbolicity), which implies the second
statement of Proposition 4.8. □
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Given an analytic function F ∈ Cω(T, ∗) with ∗ = R or M2(R), we set ∥F∥T :=
supφ∈T ∥F (φ)∥, and for any h > 0 such that F has a bounded analytic extension to
the strip {|ℑz| < h}, we set ∥F∥h := sup|ℑz|<h ∥F (z)∥.

In the following, we will give the proof of point (3) in the
[Parabolicity ⇒ ac] Lemma. Although the result holds for any irrational fre-
quency α ∈ R \Q, here we present the proof in the case that β(α) = 0, as it is the
one which is related to our problem about the existence of invariant curves.3 We
refer to [4] for the case β(α) > 0 (see [4, pp. 16–20]).

It was shown in [7, Theorem 3.2] that there exist absolute constants c0, k0 > 0

with the following property: for any analytic potential Ṽ ∈ Cω(T,R) such that

∥Ṽε∥h0 < c0h
k0
0 for some h0 ∈ (0, 1], the family of dual Schrödinger operators

{ĤṼ ,α,φ0
}φ0∈T is almost localized. In the following, we let h0 ∈ (0, 1) be such

that the potential V and the conjugacy map Z have a bounded analytic extension
to the strip {|ℑz| < h0}.

Lemma 4.9. There exists ε0 ∈ (0, ε1) such that for any ε ∈ (−ε0, ε0), there exist

Ṽε ∈ Cω(T,R) and Z̃ε ∈ Cω(T, SL(2,R)) such that ∥Ṽε∥h0 < c0h
k0
0 ,

(4.22) Z̃ε(φ+ α)−1SV
ε (φ)Z̃ε(φ) = SṼε

0 (φ), ∀φ ∈ T,

and such that the family of dual Schrödinger operators {ĤṼε,α,φ0
}φ0∈T is almost

localized.

Proof. Take ν0 < 0 as above, let ν1 :=
√
−ν0 > 0, and set Q0 :=

(
−1

2ν1 −1
2ν1

ν−1
1 −ν−1

1

)
∈

SL(2,R). The matrix Q0 conjugates the parabolic cocycle (α,B0) to the Schrödinger
cocycle (α, S0

0 ) associated with a vanishing potential 0 and the energy E = 0, i.e.,

Q−1
0 B0Q0 = S0

0 =

(
2 −1
1 0

)
. Let Z0 := ZQ0 ∈ Cω(T,SL(2,R)), so that

Z0(φ+ α)−1SV
0 (φ)Z0(φ) = S0

0 =

(
2 −1
1 0

)
, ∀φ ∈ T.

For any ε ∈ R, we thus obtain

Z0(φ+ α)−1SV
ε (φ)Z0(φ) = S0

0 + εP1(φ), ∀φ ∈ T,
for some analytic map P1 ∈ Cω(T,M2(R)). Then, by [8, Lemma 2.2], for any τ > 0,

there exists δ = δ(τ) > 0 such that if |ε|·∥P1∥h0 < δ, then there exists Ṽε ∈ Cω(T,R)
such that ∥Ṽε∥h0 < τ , and Z̃ε ∈ Cω(T,SL(2,R)) with a bounded analytic extension

to the strip {|ℑz| < h0}, such that ∥Z0 − Z̃ε∥h0 < τ , and

Z̃ε(φ+ α)−1SV
ε (φ)Z̃ε(φ) = SṼε

0 (φ), ∀φ ∈ T.

Now, let us take τ = τ0 := c0h
k0
0 and let ε0 > 0 be such that ε0 · ∥P1∥h0 < δ(τ0).

Then, for any ε ∈ (−ε0, ε0), the potential Ṽε satisfies ∥Ṽε∥h0 < c0h
k0
0 , hence by

the definition of c0, k0, the family of dual Schrödinger operators {ĤṼε,α,φ0
}φ0∈T is

almost localized. □
3We need B(α) < +∞ to guarantee the existence of the conjugacy ϕ to the rigid rotation by

angle α.
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For any u ∈ ℓ2(E), any φ0 ∈ T, we let µuV,α,φ be the spectral measure of H =

HV,α,φ0 associated to u, i.e., such that ((H − E)−1u, u) =
∫
R

1
E′−Edµ

u
H(E′), for all

E ∈ C\Σ. In what follows, we consider the canonical spectral measure corresponding

to u = e−1 + e0, and denote it by µV,α,φ := µ
e−1+e0
V,α,φ . The support of µV,α,φ is equal

to the spectrum Σ(H).
Let us also recall the definition of the integrated density of states NV,α : R → [0, 1]:

NV,α(E) :=

∫
T
µV,α,φ(−∞, E] dφ, ∀E ∈ R,

where for i ∈ Z, we let ei := (δij)j∈Z ∈ ℓ2(Z).
To conclude the proof of the [Parabolicity ⇒ ac] Lemma, it remains to show the

following.

Proposition 4.10. The restriction of the spectral measure µV,α,φ0 to the interval
[−ε0, 0] is absolutely continuous and positive.

Proposition 4.10 is proved by repeating the proof of the main result in [4] in the
case β(α) = 0 (see [4, p. 15]). We denote by B the set of energies E ∈ R such that
the iterates (kα,Ak) = (α, SV

E )k of the cocycle (α, SV
E ) are uniformly bounded, i.e.,

sup
k≥0

∥Ak∥T < +∞.

Let us recall the following classical characterization (see [18]).

Theorem 4.11. The restriction µV,α,φ0 |B is absolutely continuous for all φ0 ∈ R.

In fact, Theorem 4.11 is implied by the following very general estimate contained
in [20,21] and [4].

Lemma 4.12 (Lemma 2.5 in [4]). For all φ0 ∈ T, we have

µV,α,φ0(E − ϵ, E + ϵ) ≤ Cϵ sup
0≤k≤Cϵ−1

∥Ak∥2T,

for some universal constant C > 0.

Proof of Proposition 4.10. Let Σε0 := Σ(HV,α,φ0) ∩ [−ε0, 0], let B be the set of

energies E ∈ Σε0 such that the cocycle (α, SV
E ) is bounded, and let R be the set

of energies E ∈ Σε0 such that (α, SV
E ) is reducible. By Theorem 4.11 recalled

above, it is sufficient to prove that for every φ0 ∈ T, the canonical spectral measure
µ = µV,α,φ0 satisfies µ(Σε0 \ B) = 0.

As noted in [4], for any E ∈ R \ B, we have NV,α(E) ∈ Z ⊕ αZ, and (α, SV
E )

is analytically reducible to a parabolic cocycle; in particular, R \ B is countable.
Moreover, there are no eigenvalues in R (if HV,α,φ0u = Eu with E ∈ R and u ̸= 0,
then infn∈Z |un|2+ |un+1|2 > 0 hence u /∈ ℓ2(Z)), and then, µ(R\B) = 0. Therefore,
it is enough to prove that µ(Σε0 \ R) = 0.

By (4.22), for any energy ε ∈ (−ε0, ε0), the cocycle (α, SV
ε ) is (almost) reducible

if and only the cocycle (α, SṼε
0 ) is. Moreover, by Theorem 2.5 and Theorem 4.1

in [7], (almost) reducibility of (α, SṼε
0 ) is related to the (almost) localization of the

family of dual Schrödinger operators {ĤṼε,α,φ
}φ∈T. We know by [7, Theorem 3.3]
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that there exist a phase φ0 ∈ T and a sequence û = (ûj)j∈Z, with û0 = 1 and

|ûj | ≤ 1 for all j ∈ Z, such that ĤṼε,α,φ0
û = 0. As explained in [7], û can be utilized

to (almost) reduce the cocycle (α, SṼε
0 ). By almost localization of ĤṼε,α,φ0

, û decays

exponentially fast between the resonances as in (4.20). If φ0 is not resonant, then

by [7, Remark 3.3], the sequence (ûj)j∈Z decays exponentially fast and (α, SṼε
0 ) is

actually reducible. In the following, we consider the case where we have resonances.
Following [4], for any integerm ≥ 0, we letKm ⊂ Σε0 be the set of energies E such

that for some φ0 ∈ T, the dual operator Ĥ = ĤṼE ,α,φ0
has a bounded normalized

solution Ĥû = 0 with a resonance 2m ≤ |nj | < 2m+1. By the Borel-Cantelli lemma,

to conclude the proof, it is enough to show that
∑

m µ(Km) < +∞. Indeed, by

Theorem 3.3 in [4], we have Σε0 \ R ⊂ lim supmKm, and then,
∑

m µ(Km) < +∞
implies that µ(Σε0 \ R) ≤ µ(lim supmKm) = 0.

By [4, Theorem 3.8], there exist constants C1, c1 > 0 such that for each inte-
ger m ≥ 0 and each energy E ∈ Km, there exists an open neighborhood Jm(E)
of E of size ϵm := C1e

−c12m so that the iterates of (α,A) = (α, SV
E ) satisfy

sup0≤k≤10ϵ−1
m

∥Ak∥T ≤ eo(2
m). By Lemma 4.12, we thus get

(4.23) µ(Jm(E)) ≤ Ceo(2
m)|Jm(E)|,

where | · | is the Lebesgue measure. Take a finite subcover Km ⊂ ∪rm
j=0Jm(Ej) such

that every x ∈ R is contained in at most 2 different Jm(Ej).
By [4, Lemma 3.11], the integrated density of states NV,α satisfies

|NV,α(Jm(E))| ≥ c|Jm(E)|2, for some constant c > 0. Besides, by [4, Lemma
3.13], there exist constants C2, c2 > 0 such that for any E ∈ Km, it holds
∥NV,α(E) − kα∥T ≤ C2e

−c22m for some integer k with |k| < C22
m. Therefore,

the set NV,α(Km) can be covered by C22
m+1 intervals (T k

m)0≤k≤C22m+1 of length

C2e
−c22m . For some constant C3 > 0, we have |T k

m| < C3|NV,α(Jm(E))|, for any
integers m ≥ 0, 0 ≤ k ≤ C22

m+1, and any energy E ∈ Km. Hence, for a given
interval T k

m, there are at most 2C3 + 4 intervals Jm(Ej) such that NV,α(Jm(Ej))

intersects T k
m. We deduce that for each integer m ≥ 0, it holds rm ≤ C42

m, with
C4 := 4C2(C3 + 2). Then, by (4.23), we obtain

µ(Km) ≤
rm∑
j=0

µ(Jm(Ej)) ≤ C42
m · Ceo(2m) · C1e

−c12m = O
(
e−c12m−1)

,

which gives
∑

m µ(Km) < +∞, and concludes the proof of Proposition 4.10. □

As a consequence of point (2) in the [Parabolicity ⇒ ac] Lemma and of [24, The-
orem 7.1] for a frequency α satisfying the weak Diophantine condition β(α) = 0
and in the subcritical regime, we also get some result about the homogeneity of the
spectrum near its right edge:

Proposition 4.13. Under the same assumptions as in the [Parabolicity ⇒ ac]
Lemma, if α moreover satisfies β(α) = 0, then there exists κ > 0 such that
|(E − ε,E + ε) ∩ Σ(HV,α,φ0)| > κε, for all E ∈ Σ(HV,α,φ0) ∩ (E0 − ε0, E0), and
for all 0 < ε < E0 − E.
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5. Concluding remarks

The main result of this paper is the existence of a component of absolutely con-
tinuous spectrum whenever there exists an analytic invariant curve. This is a semi-
global result, which does not require explicitely the smallness of the potential. We
finish this paper with several conjectures and questions related to the effect that
the transitions from KAM to weak KAM regime has on the spectrum of the corre-
sponding Schrödinger operators.

As in the introduction we consider a one-parameter family of twist maps
{ψλf}λ∈R. For a fixed typical rotation number α it is believed that

(1) for 0 ≤ λ < λcr(α), there exists a smooth invariant curve such that the
restricted dynamics is conjugated to a rigid rotation by α;

(2) for λ = λcr(α), the invariant curve still exists but it is not analytic anymore
(the critical curve, possibly, is only C1+ϵ-smooth);

(3) for λ > λcr(α), there exists an invariant cantori with rotation number α.
The dynamics on the cantori is hyperbolic.

Below, we discuss how the above dynamical transition from elliptic dynamics
(KAM) to hyperbolic dynamics (weak KAM) may affect the spectral type of the
corresponding Schrödinger operators.

It is likely that in the weak KAM regime λ > λcr(α) there will be no absolutely
continuous spectrum. This case corresponds to rather rough discontinuous poten-
tials. The case where the potential has just one jump discontinuity was considered
in [11]. It was shown there that the spectrum has no absolutely continuous compo-
nent. The proof is based on the non-deterministic argument and Kotani approach
which imply that the set of energies at which the Lyapunov exponent vanishes
has zero Lebesgue measure. In the weak KAM case the Kotani theorem should be
extended in the direction of asymptotic non-determinism. It follows from the hyper-
bolicity of the dynamics that one can find two different sequences {V 1,2

0 (n), n ∈ Z}
of values of potentials which exponentially converge to each other as n → ±∞. It
is natural to ask whether the Kotani argument can be extended to this case.

We have shown that an absolutely continuous component exists for λ < λcr(α).
It is an interesting question whether the spectrum is mixed. Since dynamical prop-
erties are related only to the edge of the spectrum it is natural to expect coexistence
of absolutely continuous spectrum and point spectrum for 0 ≤ λcr(α)− λ≪ 1.

As was said above we do not expect absolutely continuous spectrum in the super-
critical case λ > λcr(α). Again one can ask whether the spectrum is mixed in this
case. Notice that for λ > λcr(α) the edge of the spectrum is expected to move to
the left. Namely, Σ(H) ⊂ (−∞, E(λ)] with E(λ) < 0, and E(λ) → 0 as λ→ λcr(α).

Finally, it is natural to ask what is the spectral type near the edge of the spectrum
E = 0 in the critical case λ = λcr(α). It is tempting to think that there a singular
continuous component is created.
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land, & IMPA, Estrada Dona Castorina 110, Rio de Janeiro, Brazil

E-mail address: artur.avila@math.uzh.ch

Konstantin Khanin
Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St, Toronto, ON
M5S 2E4 Canada & IITP RAN, Bolshoy Karetny per. 19, Moscow 127051 Russia

E-mail address: khanin@math.utoronto.ca

Martin Leguil
Department of Mathematics, University of Toronto, Bahen Centre, 40 St. George St, Toronto,
ON M5S 2E4 Canada & CNRS-Laboratoire de Mathématiques d’Orsay, UMR 8628, Université
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