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Much less is known for d > 1. The analysis of tangent-like potentials was extended
to higher dimension in [5]. In [16], quasiperiodic potentials exhibiting pure point
spectrum were constructed using an inverse spectral procedure. In [11], Anderson
localisation at strong coupling was proved for analytic potentials and d = ν = 2;
this result is perturbative, meaning that for each ω localisation holds outside a set of
frequencies the measure of which tends to zero as g → ∞. In [12], the result of [11]
was extended to arbitrary d = ν. We also mention the work [28] on delocalisation,
i.e. the existence of absolutely continuous spectrum, at weak coupling (for an
operator in the continuum).

These results raised the question whether Anderson localisation persists when v is
less smooth, e.g. has a finite number of derivatives. Another question is whether lo-
calisation holds in the non-perturbative setting for d > 1, under a usual Diophantine
condition on the frequency. As these questions are yet to be answered for explicit
v such as v(θ) =

∑
j cos θj , it was suggested in [14, 15] to study the properties of

(1.1) for typical hull functions v: namely, v is chosen as a realisation of a stochastic
process on Tν . Related ideas appeared in the work [13]. In these works, Anderson
localisation was established for v sampled from a class of (non-stationary) stochas-
tic processes, constructed to ensure the required properties. Here, we extend these
results to the more natural class of stationary Gaussian processes on the torus:

(1.2) v(ω) =
∑

ℓ∈(2πZ)ν

gl cos⟨ω, ℓ⟩+ hℓ sin⟨ω, ℓ⟩√
W (ℓ)

, ω ∈ Tν ,

where gℓ and hℓ are jointly independent standard Gaussian random variables, and
W : 2πZν → R+ is a spectral weight. Denote the underlying probability space by
(Θ,BΘ,PΘ); to emphasise the dependence on θ, we write v(ω) = v(ω, θ). Denote
the operator corresponding to θ ∈ Θ by H(ω, θ; g).

Theorem 1.1. Assume that W : 2πZν → R+ is such that

c∥ℓ∥ν+δ ≤W (ℓ) ≤ CeC∥ℓ∥ζ , ℓ ∈ 2πZν ,

for some κ, ζ, δ > 0, and C, c > 0, and that α satisfies the Diophantine condition

(1.3) dist(αx,Zν) ≥ c′∥x∥−A , x ∈ Zd \ {0}
with some A > 0 and c′ > 0. If (A+1)ζ < 1, then there exists a map Θ+ : R+ → BΘ

such that PΘ(Θ+(g)) → 1 as g → +∞, and for every θ ∈ Θ+(g) and almost every
ω ∈ Tν , the spectrum of the operator H(ω, θ; g) constructed from (1.2) is pure point,
and every eigenfunction ψ of H(ω, θ; g) satisfies

(1.4) sup
x∈Zd

|ψ(x)|e∥x∥ <∞ .

Remark 1.2. According to a theorem of Groshev [6, 23], for α in a set of full
measure the condition (1.3) holds with any A > d/ν.

Remark 1.3. As part of the proof, we show in Lemma 2.11 that the number of
“resonances” is uniformly bounded. For processes with uniformly Lipschitz reali-
sation, our uniform bound kmax = ν + 1 is optimal, as ν + 1-fold resonances are
known to be topologically unavoidable. For a different class of Gaussian processes,
the same conclusion was established in [14].
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The main theorem follows from two propositions. The first one, Proposition 1.4,
establishes the conclusion of Theorem 1.1 in a more abstract setting, when ω+αx in
(1.1) is replaced with an orbit of an ergodic action of Zd on a metric probability space
Ω. The second one, Proposition 1.6, confirms that the assumptions are satisfied for
the process (1.2).
A general localisation theorem. In this section, we replace the torus Tν with a
metric probability space (Ω,BΩ,PΩ, dist) of finite metric dimension, i.e. we assume
that there exists ν > 0 (not necessarily integer) such that, for any ϵ ∈ (0, 1], Ω
admits an ϵ-net of cardinality at most (C/ϵ)ν . Let T : Ω × Zd → Ω be an ergodic
action of Zd on Ω satisfying the Diophantine property

(1.5) (UPA)A inf
ω

min
0<∥x∥≤L

dist(T xω, ω) ≥ cL−A , L ∈ N .

For the case of Tν with the action T xω = ω + αx, the condition (UPA)A boils
down to the Diophantine property (1.3).

Let (Θ,BΘ,PΘ) be an additional probability space, and let v(ω, θ) be a (modifica-
tion of a) stochastic process defined on Θ and taking values in the space of uniformly
κ-Hölder-continuous functions from Ω to R (for some fixed κ > 0), so that for any
ω ∈ Ω the conditional distribution of the random variable v(ω, ·) conditioned on
the values of the process in the complement to the ϵ-neighbourhood Qϵ(ω) of ω is
absolutely continuous and admits a density satisfying the local interpolation bound

(1.6) (LIB)η pω(t | Ω \Qϵ(ω)) ≤ exp(Cϵ−η) , ϵ ∈ (0, ϵ0] ,

Here and below, pω(t | A) withA ⊂ Ω denotes the conditional probability density of
the random variable v(ω, ·) on Θ conditioned on the sub-sample {v(ω′, ·), ω′ ∈ A}; a
similar notation is used, e.g., in (1.10) for the conditional variance. Then we replace
(1.1) with the more general metrically transitive operator

(1.7) (H(ω, θ; g)f)(x) =
∑

∥y−x∥=1

f(y) + gv(T xω, θ)f(x) .

Proposition 1.4. Assume that the assumptions (UPA)A and (LIB)η hold with

A and η such that Aη < 1. Then there exists a map Θ+ : R+ → BΘ such that
PΘ(Θ+(g)) → 1 as g → +∞, and for every θ ∈ Θ+(g) and almost every ω ∈ Ω, the
spectrum of the operator H(ω, θ; g) is pure point, and every eigenfunction ψ satisfies

(1.8) sup
x

|ψ(x)|e∥x∥ <∞ .

Remark 1.5. Proposition 1.4 (and, accordingly, also Theorem 1.1) can be strength-
ened in several directions, without invoking new methods:

(1) the rate of exponential decay (1.4) can be improved to supx |ψ(x)|emg∥x∥ <
∞ for an arbitrary mg = o(g);

(2) on the event Θ+(g), the operator can be shown to exhibit dynamical lo-
calisation (our bounds on the eigenfunctions are sufficient to control the
eigenfunction correlators [1–3]);

(3) on the event Θ+(g), the spectrum of H can be shown to be simple (see [15],
building on the method of [29]).
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Interpolation of stationary processes. Consider a stationary Gaussian process

(1.9) v(ω) =
∑

ℓ∈(2πZ)ν

gℓ cos⟨ω, ℓ⟩+ hℓ sin⟨ω, ℓ⟩√
W (ℓ)

, ω ∈ Tν ,

as in (1.2). For 0 < ϵ ≤ 1/2 let

(1.10) V(ϵ) = Var
(
v(ω)

∣∣ {v(ω′) : ω′ ∈ Tν , ∥ω′ − ω∥ ≥ ϵ}
)

be the conditional variance of v(ω) conditioned on the complement to the
ϵ-neighbourhood of ω (here and forth ∥ · ∥ = ∥ · ∥∞ is the ℓ∞ distance from 0
on Tν).

Proposition 1.6. Assume that there exists a non-decreasing function M : R+ →
R+ such that

(1.11)

∫ ∞

t0

logM(t)

t2
dt <∞ , K =

∑
ℓ∈2πZν

W (ℓ)

M(∥ℓ∥)
<∞ .

Then for

0 < ϵ ≤ min

(
1

2
,
e

2

∫ ∞

0

logM(t)

t2
dt

)
the conditional variance V(ϵ) admits the lower bound

V(ϵ) ≥ 1

CνKϵ2ν M(S−1(2e ϵ))
, where S(t) =

∫ ∞

t

logM(τ)

τ2
dτ , Cν = e22ν .

Remark 1.7. The asymptotic behaviour of V(ϵ) as ϵ → +0 is an aspect of the
interpolation problem for stationary Gaussian processes, going back to [32]. The
interpolation problem was studied, for the ν = 1 case of the full-space process

(1.12) ṽ(ξ) =

∫
Rν

cos⟨ξ, λ⟩dB1(λ) + sin⟨ξ, λ⟩dB2(λ)√
(2π)dW (λ)

, ξ ∈ Rν ,

in [19, §4.13 and Ch. 6] (where B1 and B2 are Brownian motions). The connection
with the theory of de Branges spaces and Krein strings, established in these works,
allows, in particular, to compute V(ϵ) explicitly in several examples. A condition
of the form (1.11) is unavoidable: for sufficiently regular weights W , it holds for an
appropriately chosen majorant M whenever V (ϵ) ̸≡ 0.

Quantitative bounds for V(ϵ) in the ν = 1 case of (1.12) were obtained by [18],
building on the work [17]. When applied to (1.12), our method yields marginally
weaker bounds forW (λ) ∝ |λ|α and marginally stronger ones for any faster-growing
W , particularly, for W (λ) ∝ exp(∥λ∥ζ). Another advantage is that our estimate
is somewhat more explicit, and adjusts easily to the process on the torus Tν (for
arbitrary ν), as is required here. On the other hand, it is conceivable that a bound
sufficient for Theorem 1.1 can be also obtained by the method of [18].

Proof of Theorem 1.1. Assume that

c∥ℓ∥ν+δ ≤W (ℓ) ≤ C exp(C∥ℓ∥ζ) .
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Fix 0 < κ < δ; the lower bound ensures that the realisations of v are almost surely
uniformly κ-Hölder continuous. From the upper bound,∑

ℓ

W (ℓ)

M(∥ℓ∥)
<∞ , where M(t) = e2Ctζ .

We apply Proposition 1.6:

S(t) =

∫ ∞

t

2Cτ ζ

τ2
dτ ≤ C1t

−(1−ζ) , S−1(ϵ) ≤ C2ϵ
− 1

1−ζ ,

therefore

V(ϵ) ≥ 1

C3 exp(C4ϵ
− ζ

1−ζ )
,

i.e. (LIB)η holds with η = ζ/(1 − ζ). The assumption ζ(A + 1) < 1 ensures that
ηA < 1, hence we can apply Proposition 1.4. □

2. Multiscale analysis: Proof of Proposition 1.4

The proof of Proposition 1.4 is based on multi-scale analysis, originating in the
work [21] on random operators. Our version of the argument, building on [14, 15],
is organised as follows: a deterministic inductive procedure is established in Propo-
sition 2.4 of Section 2.1, and then, in Section 2.2, we verify that the conditions of
Proposition 2.4 are satisfied for our random operator (on an event of full proba-
bility). The main technical difference compared to the works [14, 15] is the use of
2L×L rectangles (and more generally 2L×L× · · · ×L cuboids) instead of squares
and cubes in the induction.

2.1. Scale induction. In this section, H is a fixed discrete Schrödinger operator
acting on ℓ2(Zd). For a finite B ⊂ Zd, denote by HB the restriction of H to B,
i.e. HB = PBHP

∗
B, where PB : ℓ2(Zd) → ℓ2(B) is the coordinate projection. For

E ∈ R, let GE [HB] = (HB − E)−1 be the resolvent of HB at E.
The multi-scale induction involves the parametersm > 0, b ∈ (0, 1), γ ∈ (2−b,∞)

and J ∈ N, which will be fixed throughout the argument (that is, one may choose
them tailored to the operator H). Their rôles are as follows:

• m is a “mass”, controlling the rate of exponential decay of the Green function
in infinite volume;

• b is responsible for the deterioration of the mass: on the scale L, the mass
will be m(1 + L−(1−b));

• γ is responsible for the growth of scales: we fix L0 (the scale of the box used
as the induction base), and let Lk+1 = ⌊Lγ

k⌋;
• J ≥ 1 controls the number of “resonances”.

Definition 2.1. A box is a product of d intervals: B = I1 × · · · × Id ⊂ Zd. We
denote by B the collection of all boxes, and by B2 the collection of sets b1 \ b2,
where b1, b2 are boxes.

A box R ⊂ Zd is called an L-rectangle if d− 1 of the intervals in the product are
of cardinality 2L+1 (i.e. of length 2L) and one is of cardinality L+1 (i.e. of length
L).
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The boundary of s ⊂ Zd is the set ∂s ⊂ Zd × Zd of pairs (u, u′) ∈ s × (Zd \ s)
such that ∥u − u′∥ = 1. The projection of ∂s onto the first coordinate is denoted
∂ins(⊂ s).

Definition 2.2. Given E ∈ R, an L-rectangle R is called E-regular if

(2.1) ∀x, y ∈ ∂inR s.t. ∥x− y∥ ≥ L : |GE [HR](x, y)| ≤ e−m(L+Lb) .

Otherwise, R is called E-singular.
A set B ⊂ Zd is called (E,L)-resonant if there exists s ∈ B2 ∩ 2B such that

∥GE [Hs]∥ > exp(mLb

16J ); otherwise, B is called (E,L)-nonresonant.

Definition 2.3. Let J ≥ 1. A collection S ⊂ 2Z
d \ {∅} is said to be J-sparse in

B ⊂ Zd if S ∩ 2B does not contain J pairwise disjoint sets. We colloquially write,
for example, “E-resonant L-rectangles are 2-sparse in s” as a shorthand for “the
collection of all E-resonant L-rectangles is 2-sparse in the set s”.

Proposition 2.4. For any m > 0, b ∈ (0, 1), γ ∈ (2− b,∞) and J ≥ 1 there exists
L∗ = L∗(m, b, γ, J, d) such that the following holds whenever L0 ≥ L∗. Assume that
for any E ⊂ R

(1) for any k ≥ 0, (E,Lk)-resonant Lk+1-rectangles are J-sparse in any Lk+2-
rectangle, and 2-sparse in the box [−Lk+2, Lk+2]

d;
(2) E-singular L0-rectangles are J-sparse in any L1 rectangle.

Then

(a) the spectrum of H is pure point;
(b) for any eigenfunction ψ, supx |ψ(x)| exp(m16∥x∥) <∞.

Remark 2.5. The denominator 16 in (b) can be replaced with any number greater
than 1.

In this section we prove Proposition 2.4, which will be derived from

Proposition 2.6. For any m > 0, b ∈ (0, 1) and J ≥ 1 the following holds for
L ≥ L∗(m, b, J, d). Fix E ∈ R, and suppose R′ is an L′-rectangle such that

(1) E-singular L-rectangles are J-sparse in R′;
(2) R′ is (E,L)-nonresonant;

(3) L ≤ L′ ≤ exp( mLb

100dJ ).

Then

(a) for any x, y ∈ R′ with ∥x− y∥ ≥ 4JL

(2.2) |GE [HR′ ](x, y)| ≤ e−
m
2
∥x−y∥ ;

(b) if 100JL2−b ≤ L′ ≤ exp( mLb

100νJ ), then R
′ is E-regular.

Proof of Proposition 2.4. First, we fix E and prove by induction that, for any k ≥
0, E-singular Lk-rectangles are J-sparse in any Lk+1-rectangle. By the second
assumption, this property holds for k = 0. Assume that the property holds for
some k and fails for k+1. Then there is an Lk+2-rectangle R

′′ containing J disjoint
singular Lk+1-rectangles R

′
j , j = 1, · · · , J . By the induction hypothesis, E-singular

Lk-rectangles are J-sparse in each of the R′
j . By the first assumption, at least one
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of them, say, R′
1, is (E,Lk)-nonresonant. Also, if L0 is large enough, then L = Lk

and L′ = Lk+1 = ⌊Lγ⌋ satisfy the inequalities

100JL2−b ≤ L′ ≤ exp(
mLb

100dJ
) .

Thus R′
1 satisfies all the conditions of part (b) of Proposition 2.6, and is therefore

E-regular, in contradiction to our assumption.
Second, we show that for any E and k ≥ 0, and any (E,Lk)-nonresonant Lk+1

rectangle R′,
(2.3)

∀x, y ∈ R′ :
(
∥x− y∥ ≥ 4JLk =⇒ |GE [HR′ ](x, y)| ≤ exp(−m

2
∥x− y∥)

)
.

This follows from part (a) of Proposition 2.6, using the first step of the current
proof to verify the first condition of the proposition.

Now we are in position to prove the proposition. Schnol’s lemma [7] implies
that for almost any E with respect to the spectral measure of H there exists a
non-trivial formal solution ψ of the eigenfunction equation Hψ = Eψ such that
|ψ(x)| ≤ (∥x∥+ 1)d. By the first assumption, (E,Lk)-resonant Lk+1-rectangles are
2-sparse in the box [−Ld

k+2, L
d
k+2]. By the second step of the current proof, any

(E,Lk)-nonresonant Lk+1-rectangle R
′ satisfies (2.3), hence for any point x ∈ R′

with dist(x, ∂inR
′) ≥ 4JLk

|ψ(x)| ≤
∑

uu′∈∂R′

|GE [HR′ ](x, u)||ψ(u′)|

≤ (3Lk+1)
de−2mJLk(1 + Lk+2)

d ≤ e−mJLk .

(2.4)

The right-hand side of (2.4) tends to zero as k → ∞. Fix a point x∗ such that
ψ(x∗) ̸= 0, then for k ≥ k0 = k0(x∗) the inequality has to fail, i.e. every Lk+1-
rectangle R′ ∋ x∗ such that dist(x∗, ∂inR

′) ≥ 4JLk has to be (E,Lk)-resonant.
1

Let R̃′ ⊂ [−Lk+2, Lk+2]
d \ [x∗ − 4JLk, x∗ + 4JLk]

d be an Lk+1-rectangle. Then

there exists an Lk+1-rectangle R′ disjoint from R̃′ such that R′ ∋ x∗ and

dist(x∗, ∂inR
′) ≥ 4JLk. As R′ is (E,Lk)-resonant, we conclude that R̃′ is (E,Lk)-

nonresonant. This implies that

(2.5) ∀k ≥ k0(x∗) ∀x
(
∥x∥ ∈ [8JLk, Lk+2 − 3Lk+1] =⇒ |ψ(x)| ≤ e−mJLk

)
.

In particular, ψ lies in ℓ2(Zd). This holds for every ψ, hence the spectrum of H is
pure point.

Consider the function ϕ(x) = |ψ(x)|e
m
16

∥x∥. From (2.5), ϕ is bounded by 1 on the
set ∪

k≥k0

{
x ∈ Zd | ∥x∥ ∈ [8JLk, 16JLk]

}
.

Applying the first inequality in (2.4), we obtain that ϕ is bounded by 1 on {∥x∥ ≥
8JLk0}. Thus ϕ is bounded, as claimed. □

1We may assume that for all k Lk+1 ≥ (10J)100Lk.
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Figure 1. Illustration to Lemma 2.8. In this case d = 2, L = 2
and L′ = 8; y can be any vertex on ∂inR except for x and the two
vertices adjacent to it.

The proof of Proposition 2.6 relies on two lemmata. The first one asserts that
the Green function GE [HR] in (2.1) can be replaced with GE [HS ] for S ⊃ R, as
long as x is not very close to the boundary of R in S (in particular, it is required
that x ∈ ∂inR ∩ ∂inS). The following definition will be convenient:

Definition 2.7. Let B be a box. An L-strip S ⊂ B is a product S = I ′1 × · · · × I ′d
of intervals, where I ′j = Ij for j ̸= j0, and #I ′j0 = L. A set is called a strip if it is
an L-strip for some value of L.

Lemma 2.8. In the setting of Proposition 2.6, let R ⊂ R′ be an E-regular L-
rectangle, and let R ⊂ S ⊂ R′ be a strip (see Figure 1). Then

(2.6) ∀x, y ∈ ∂inR s.t.dist(x, {y} ∪ (S \R)) ≥ L : |GE [HS ](x, y)| ≤ e−m(L+ 1
2
Lb) .

Proof. By assumption (2), the rectangle R′ is (E,L)-nonresonant, hence by the
resolvent identity

|GE [HS ](x, y)| ≤ |GE [HR](x, y)|+
∑

uu′∈∂R\∂S

|GE [HR](x, u)||GE [HS ](u
′, y)|

≤ exp(−m(L+ Lb))

[
1 + (CL)d−1 exp(

mLb

16J
)

]
≤ exp(−m(L+

1

2
Lb))

if L is sufficiently large, L ≥ L∗(m, b, J, d). □

Lemma 2.9. In the setting of Proposition 2.6, suppose B ⊂ R′ is a box. Let
x, y ∈ ∂inB, and let S ⊂ B be an L-strip such that x ∈ ∂inS and y /∈ S. Construct
an L-rectangle R ⊂ S as in Figure 2, left, so that x is the centre of a large face of
R (if x is close to the boundary of S, align R with the boundary, as in Figure 2,
right). Then

(1) if R is regular, then

|GE [HB](x, y)| ≤ e−m(L+ 1
3
Lb) max

vv′∈∂S\∂B
|GE [HB\S ](v

′, y)| ;
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Figure 2. Illustration to Lemma 2.9: d = 2, L = 3. Note that the
strip S could also be horizontal.

(2) if R is singular, then

|GE [HB](x, y)| ≤ e+
mLb

8J max
vv′∈∂S\∂B

|GE [HB\S ](v
′, y)| .

Proof. If R is regular, by the resolvent identity,

|GE [HB](x, y)| ≤
∑

uu′∈∂R\∂B

|GE [HB](x, u)||GE [HB\R](u
′, y)|

≤
∑

uu′∈∂R\∂B

∑
vv′∈∂S\∂B

|GE [HB](x, u)||GE [HB\R](u
′, v)||GE [HB\S ](v

′, y)| .
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According to Lemma 2.8, |GE [HB](x, u)| ≤ e−m(L+ 1
2
Lb), hence

|GE [HB](x, y)| ≤ (2L)ν−1(2L′)νe−m(L+ 1
2
Lb)e

mLb

8J max
vv′∈∂S\∂B

|GE [HB\S ](v
′, y)|

≤ e−m(L+ 1
3
Lb) max

vv′∈∂S\∂B
|GE [HB\S ](v

′, y)| .

If R is singular, we argue similarly, starting from the estimate

|GE [HB](x, y)| ≤
∑

vv′∈∂S\∂B

|GE [HB](x, v)||GE [HB\S ](v
′, y)| .

□
Proof of Proposition 2.6. Suppose x, y ∈ ∂inR

′, ∥x− y∥ ≥ L′. Iterating Lemma 2.9,
we obtain

|GE [HR′ ](x, y)| ≤ e
mLb

16J e−m(L+ 1
3
Lb)(L

′
L
−J)e

mLb

8J

≤ exp

[
m

{
−L′ + Lb

(
1

5J
+

1

3
J

)
− 1

3
L′Lb−1 + JL

}]
≤ exp

[
m(−L′ − 1

3
L′Lb−1 + 2JL)

]
.

(2.7)

If L′ ≥ 100JL2−b, then
1

3
Lb−1L′ ≥ 2JL+ L′b ,

hence
(2.7) ≤ exp(−m(L′ + L′b)) .

For arbitrary L′ and x, y ∈ R′ with ∥x− y∥ ≥ 4JL, a similar argument yields

|GE [HR′ ](x, y)| ≤ e−
m
2
∥x−y∥ .

□

2.2. Wegner estimate, and Proof of Proposition 1.4. Let H(ω, θ; g) be an
operator of the form

(2.8) (H(ω, θ; g)f)(x) =
∑

∥y−x∥=1

f(y) + gv(T xω, θ)f(x) .

We recall our basic assumptions:

(UPA)A inf
ω

min
0<∥x∥≤L

dist(T xω, ω) ≥ cL−A(2.9)

(LIB)η pω(t | Ω \Qϵ(ω)) ≤ exp(Cϵ−η) , ϵ ∈ (0, 1/2](2.10)

(NET)ν min#(ϵ-net in Ω) ≤ (C/ϵ)ν , ϵ ∈ (0, 1](2.11)

(UHöl)κ lim
R→∞

PΘ(HR) = 1 ,(2.12)

where HR is the collection of θ ∈ Θ such that ∥v(·, θ)∥∞ ≤ R and v(·, θ) is uniformly
κ-Hölder with constant R:

(2.13) sup
ω

|v(ω, θ)|+ sup
ω′ ̸=ω

|v(ω′, θ)− v(ω, θ)|
dist(ω′, ω)κ

≤ R .
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Proposition 2.10. Assume that (UPA)A, (LIB)η, (NET)ν and (UHöl)κ hold
with Aη < 1. Let

m = 16 , J = min(Z ∩ (
ν

κ
+ 1,∞)) ,

and choose b ∈ (0, 1) and γ ∈ (2 − b,∞) so that Aη < b/γ2. Then there exist two
measurable functions Lmin(ω, θ) and gmin(ω, θ) that are Θ-almost-everywhere finite
for each ω ∈ Ω, such that for L0 ≥ Lmin, g ≥ gmin the assumptions (1)–(2) of
Proposition 2.4 hold for the operator H(ω, θ; g).

The proof is based on the following lemma. For r > 0, E ∈ R, ω ∈ Ω and
s1, · · · , sk ⊂ Zd, define the following events in Θ:

ResonL,r(s1, · · · , sk;ω;E) =

{
∀j = 1, · · · , k ∥GE [Hsj (ω, θ; g)]∥ >

eL
r

g

}
(2.14)

ResonL,r(s1, · · · , sk;ω) =
∪
E∈R

ResonL,r(s1, · · · , sk;ω;E)(2.15)

ResonL,r(s1, · · · , sk) =
∪
ω∈Ω

ResonL,r(s1, · · · , sk;ω)(2.16)

Lemma 2.11. Assume that (UPA)A, (LIB)η, (NET)ν hold with Aη < 1. Let

m, b, γ, J be as in Proposition 2.10, and let r > Aη, R ≥ 1.2 Then

(1) for k ≥ 2,

sup
ω∈Ω

sup
s1,··· ,sk

PΘ(ResonL,r(s1, · · · , sk;ω) ∩ HR) ≤ R exp(−(k − 1)Lr − o(Lr)) ;

(2) for k > ν
κ + 1,

sup
s1,··· ,sk

PΘ(ResonL,r(s1, · · · , sk) ∩ HR) ≤ R
ν
κ
+1 exp

(
−
(
k − ν

κ
− 1
)
Lr − o(Lr)

)
,

where the supremum in the first formula and the interior one in the second formula
are over k-tuples of pairwise disjoint subsets of [−L,L]d.

Proof. Fix ω ∈ Ω and E ∈ R. From (UPA)A and (LIB)η , the joint probability

density (in Θ) of (V (x;ω))x∈B, B ⊂ [−L,L]d, is bounded by(
exp(C(cL−A)−η)

g

)#B

,

therefore by the usual Wegner argument [3, 44], we obtain that for M > 0

PΘ
{
∀j = 1, · · · , k ∥GE [Hsj (ω, θ)]∥ > M

}
≤
(
exp(C(cL−A)−η)

gM

)k k∏
j=1

#sj ≤
(
(3L)d exp(C1L

Aη)

gM

)k

.
(2.17)

Let M = 1
4g exp(L

r); then

RHS of (2.17) ≤
[
4(3L)d exp(C1L

Aη − Lr)
]k

≤ exp(−kLr + o(Lr)) ;

2Eventually, r will be taken to be slightly greater than Aη, however, no upper bound is formally
required in the current lemma. R will eventually play the same rôle as in (2.13).
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here and in the sequel the implicit constants are uniform in sj and ω. Let NΩ be an

(4gMR)−1/κ-net in Ω, and NR – a (4M)−1-net in [−10dgR, 10dgR], chosen so that

#NΩ ≤ (CgMR)ν/κ , #NR ≤ CdgMR .

Then

PΘ
{
∃E ∈ NR : ∀j = 1, · · · , k ∥GE [Hsj (ω, θ)]∥ ≥M

}
≤ CdgMR exp(−kLr + o(Lr)) ≤ R exp(−(k − 1)Lr + o(Lr))

(2.18)

for any ω ∈ Ω, and

PΘ
{
∃E ∈ NR, ω ∈ NΩ : ∀j = 1, · · · , k ∥GE [Hsj (ω, θ)]∥ ≥M

}
≤ (CgMR)

ν
κR exp(−(k − 1)Lr + o(Lr))

≤ R
ν
κ
+1 exp(−(k − ν

κ
− 1)Lr + o(Lr)) .

(2.19)

If ∥GE [Hs(ω, θ)]∥ ≤ M , θ ∈ HR, |E′ − E| ≤ 1
4M , and dist(ω′, ω) ≤ (4gMR)−1/ν ,

then

(2.20) ∥GE′ [Hs(ω
′, θ)]∥ ≤ 2M .

Also note that on HR the bound (2.20) holds for all |E| ≥ 10dgR: indeed, such
energies are at distance ≥ 1 from the spectrum of H, Therefore (2.18) and (2.19)
imply the first and second assertions of the lemma, respectively. □
Proof of Proposition 2.10. Fix ω0 ∈ Ω. Denote by BadL(ω0) the event (in Θ-space)
that either there exist E ∈ R and ω ∈ Ω such that (E,L)-resonant ⌊Lγ⌋-rectangles
are not J-sparse in

BL = [−⌊⌊Lγ⌋γ⌋, ⌊⌊Lγ⌋γ⌋]d ,
for H(ω, θ), or there exists E such that (E,L)-resonant ⌊Lγ⌋-rectangles are not
2-sparse in BL for H(ω0, θ). According to Lemma 2.11 applied with an arbitrary
r ∈ (Aη, b/γ2) and with ⌊⌊Lγ⌋γ⌋ in place of L,

P(BadL ∩HR) ≤ R
ν
κ
+1 exp(−cLr + o(Lr)) ,

where c = min(J − ν
κ − 1, 1) > 0. Thus for every R ≥ 1

P(lim sup
L→∞

BadL ∩HR) = 0 .

Combining this with (UHöl)κ, we obtain that almost every θ lies in HR \BadL for
all sufficiently large R and L (i.e. R ≥ Rmin(θ) and L ≥ Lmin(θ)).

Then for L0 ≥ Lmin(θ) each H(ω, θ) satisfies that for all k ≥ 0 (E,Lk)-resonant
Lk+1-rectangles are J-sparse in any Lk+2-rectangle. Indeed, the restriction of
H(ω, θ) to any Lk+2-rectangle coincides with the restriction of H(ω′, θ) to
[−Lk+2, Lk+2]

d−1 × [1, Lk+2] for an appropriately chosen ω′. Also, for H(ω0, θ),
(E,Lk)-resonant Lk+1-rectangles and 2-sparse in [−Lk+2, Lk+2]

d. Thus the first
half of assumption (1) of Proposition 2.4 holds.

Next, let g ≥ 1010deL
r
. For any L1-rectangle R

′ and any disjoint L0-rectangles
R1, · · · , RJ ⊂ R′, there exists j ∈ {1, · · · , J} such that

∥GE [HRj ]∥ ≤ exp(Lr)

g
, i.e. dist(E, σ(HRj )) ≥

g

exp(Lr)
≥ 1010d ,
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therefore Rj is E-regular by the Combes–Thomas bound [3]. Hence also asumption
(2) of Proposition 2.4 holds. □

Proof of Proposition 1.4. For every ω and almost every θ there exist Lmin and gmin

such that the assumptions of Proposition 2.4 hold for L ≥ Lmin and g ≥ gmin.
Denote by Assumg,L the set of (ω, θ) for which these assumptions hold with the
given values g and L. Then for any δ > 0 there exist Lδ and gδ such that for L ≥ Lδ

and g ≥ gδ
PΩ×Θ(Assumg,L) ≥ 1− δ .

Denote

Assumθ
g,L = {ω : (ω, θ) ∈ Assumg,L} .

Then

PΘ

({
θ : PΩ(Assum

θ
g,L) ≤

1

2

})
≤ 2δ .

If θ does not lie in this set, then by ergodicity there exists a shift of the operator
H(ω, θ) for which the the assumptions of Proposition 2.4 hold. Invoking Proposi-
tion 2.4, we obtain the result. □

3. Interpolation of Gaussian processes

The general strategy is as follows. A lemma of [27], which we reproduce in
Section 3.1, reduces the proof of Proposition 1.6 to the construction of a compactly
supported function with prescribed decay of the Fourier transform. In Section 3.2
we construct such a function by adjusting the arguments of [34,40,41].

3.1. A formula of Karhunen. We use the conventions

ĝ(λ) =

∫
g(ξ) exp(−i⟨ξ, λ⟩)dξ(3.1)

ȟ(ξ) =

∫
h(λ) exp(i⟨ξ, λ⟩) dλ

(2π)ν
(3.2)

for the Fourier transform of g : Rν → C and its inverse, and

ĝ(ℓ) =

∫
Tν

g(ω) exp(−i⟨ω, ℓ⟩)dξ(3.3)

ȟ(ω) =
∑

ℓ∈2πZν

h(ℓ) exp(i⟨ω, ℓ⟩)(3.4)

for the Fourier transform of g : Tν → C and its inverse. With these conventions,∫
Rν

|ĝ(λ)|2dλ = (2π)ν
∫
Rν

|g(ξ)|2dξ (Rν)(3.5) ∑
ℓ∈2πZν

|ĝ(ℓ)|2 =
∫
Tν

|g(ξ)|2dξ (Tν) .(3.6)

The following lemma goes back to the work of [27] (see further [19, §4.13, Test
2]).
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Lemma 3.1 (Karhunen). For v(ω) as in (1.2),

V(ϵ)
def
= Var

(
v(ω)

∣∣ {v(ω′) : ∥ω′ − ω∥ ≥ ϵ}
)

= sup

{
|g(0)|2∑

ℓ |ĝ(ℓ)|2W (ℓ)

∣∣ supp g ⊂ {∥ω∥ < ϵ}
}
.

Proof. We prove the inequality “≥”, as this is the direction we use in the sequel.
Let ṽ be an independent copy of v, and let

X(ω) =
v(ω) + ṽ(ω)√

2
=

∑
ℓ∈2πZν

Gℓe
i⟨ω,ℓ⟩√
W (ℓ)

,

where Gℓ are independent standard complex Gaussian variables. It suffices to prove
the equality for V(ϵ) defined for X in place of v. We start from the relation

V(ϵ) = inf

{
E
∣∣∣∣X(0)−

∫
X(ω)ρ(ω)dω

∣∣∣∣2 ∣∣ ρ ∈ L2(Tν) , supp ρ ⊂ {∥ξ∥ ≥ ϵ}

}
.

Rewrite

E
∣∣∣∣X(0)−

∫
X(ω)ρ(ω)dω

∣∣∣∣2

= E

∣∣∣∣∣∣
∑

ℓ∈2πZd

Gℓ√
W (ℓ)

(
1−

∫
ei⟨ω,ℓ⟩ρ(ω)dω

)∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
∑

ℓ∈2πZd

Gℓ√
W (ℓ)

(1− ρ̂(ℓ))

∣∣∣∣∣∣
2

=
∑

ℓ∈2πZd

|1− ρ̂(ℓ))|2

W (ℓ)
.

For an arbitrary ρ supported in {∥ω∥ ≥ ϵ} and an arbitrary g supported in {∥ω∥ ≤
ϵ},

g(0) = g(0)−
∫
g(ω)ρ(ω)dω =

∑
ĝ(ℓ)(1− ρ̂(ℓ)) ,

whence by Cauchy–Schwarz

|g(0)|2 ≤
(∑

|ĝ(ℓ)|2W (ℓ)
)
×

(∑ |1− ρ̂(ℓ)|2

W (ℓ)

)
.

Thus

V(ϵ) ≥ |g(0)|2∑
ℓ |ĝ(ℓ)|2W (ℓ)

. □

3.2. Functions with prescribed Fourier decay. The following proposition is
a quantitative version of a result proved in [40] and [34] in dimension ν = 1, and
in [41] in arbitrary dimension. The method of convolutions used in the proof was
applied for similar purpose already in [34], and for the proof of necessity in the
Denjoy–Carleman theorem – in [35] (where an earlier unpublished work of Bray is
quoted) and in [4]; see further [24, §1.3 and Notes] and [33, §25].
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Proposition 3.2. Let M : R+ → R+ be a nondecreasing function such that

M(0) = 1 ,

∫ ∞ logM(t)

t2
dt <∞ .

Then for any ν ≥ 1 and ϵ ∈ (0, 1] there exists g : Rν → R+ such that

supp g ∈ [−ϵ, ϵ]ν , g(0) = max g , ĝ(0) = 1 ,(3.7)

|ĝ(λ)| ≤ eM(S−1(ϵ/e))

M(∥λ∥)
, where S(t) =

∫ ∞

t

logM(τ)

τ2
dτ .(3.8)

Proof. Let u(ξ) = 2−ν
1[−1,1]ν (ξ), so that û(λ) =

∏ν
r=1

sinλr
λr

. Then

(3.9) |û(λ)| ≤ min(1, ∥λ∥−1) .

We may assume that M is continuous. Let

Rj = min
{
t ≥ 0 | M(t) = ej

}
,

and choose k0 so that

S(Rk0) ≤
ϵ

e
, S(Rk0−1) >

ϵ

e
.

Define

ĝ(λ) =

∞∏
j=k0

û(
eλ

Rj
) .

Then max ĝ = g(0) and ĝ(0) = 1, and

supp g ⊂ [−
∞∑

j=k0

e

Rj
,

∞∑
j=k0

e

Rj
] ⊂ [−ϵ, ϵ]ν ,

since
∞∑

j=k0

1

Rj
=

∫ ∞

Rk0

dt

t2
# {k0 ≤ j ≤ t}

≤
∑
j≥k0

∫ Rj+1

Rj

dt

t2
(j − k0 + 1)+

≤
∑
j≥k0

∫ Rj+1

Rj

logM(t)

t2
dt = S(Rk0) ≤

ϵ

e
.

This proves (3.7), and we turn to the proof of (3.8). By (3.9), we have for Rk ≤
∥λ∥ < Rk+1:

|ĝ(λ)| ≤
∏
j≥k0

min(1,
Rj

e∥λ∥
)

≤
k∏

j=k0

1

e
= exp(−(k − k0 + 1)+) .

On the other hand,

M(∥λ∥) ≤M(Rk+1) ≤ exp(k + 1) .
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Hence
|ĝ(λ)| ≤ ek0/M(∥λ∥) ≤ eM(S−1(ϵ/e))/M(∥λ∥) ,

as claimed. □
3.3. Proof of Proposition 1.6. We apply Proposition 3.2 with M1(t) =

√
M(t),

and S1(t) =
1
2S(t). The function g thus obtained satisfies

|ĝ(ℓ)| ≤ eM1(S
−1
1 (ϵ/e))

M1(∥ℓ∥)
=
e
√
M(S−1(2e ϵ)√
M(∥ℓ∥)

,

whence ∑
|ĝ(ℓ)|2W (ℓ) ≤ Kmax |ĝ(ℓ)|2M(ℓ) ≤ e2KM

(
S−1

(
2

e
ϵ

))
.

On the other hand,

|g(0)|2 = max
ω

|g(ω)|2 ≥
[

1

(2ϵ)ν

∫
g(ω)dω

]2
=

1

(2ϵ)2ν
.

Thus by Lemma 3.1

V(ϵ) ≥ 1

e222νKϵ2νM(S−1(2e ϵ))
,

as claimed. □
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