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While it looked rather odd to expect that we can say anything interesting about
Cesàro type averaging knowing the convergence of logarithmic averages, it has been
proved in [12] that the logarithmic Chowla conjecture implies the validity of the
Chowla conjecture along a subsequence. In fact, the result was a consequence of
some general mechanism when a certain sequence (in a locally convex space) of
logarithmic averages2 converges to an extremal point. This approach seems to fail
if (what perhaps is natural), we would like to prove that the logarithmic Möbius or-
thogonality of a fixed system implies its Möbius orthogonality along a subsequence.
However, commenting on [12], Tao [18], using a different method (second moment
type argument), was able to prove a stronger result, namely, he proved that if
the logarithmic Chowla conjecture holds then the Chowla conjecture holds along a
subsequence of full logarithmic density; in particular, of upper density 1.

The aim of this note is to show how to adapt Tao’s argument (this is done in
Theorem 2.1 below) to be able to apply it to systems satisfying some (seemingly)
stronger condition than the logarithmic Möbius orthogonality and which allows one
to deduce Möbius orthogonality in full logarithmic density. In order to formulate
such a result we first recall the strong MOMO notion introduced in [3]. Namely, a
system pX,T q satisfies this property if for all increasing sequences pbkq Ă N with
bk`1 ´ bk Ñ 8, all pxkq Ă X and f P CpXq, we have

(1.3)
1

bK`1

ÿ

kďK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bkďnăbk`1

fpTn´bkxkqµpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

while if

(1.4)
1

log bK`1

ÿ

kďK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bkďnăbk`1

1

n
fpTn´bkxkqµpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

then we say that pX,T q satisfies the logarithmic strong MOMO property. It has
been proved in [3] that Sarnak’s conjecture is equivalent to the fact that all zero
entropy systems enjoy the strong MOMO property.

Note that (1.3) is equivalent to

(1.5) lim
KÑ8

1

bK`1

ÿ

kďK

›

›

›

›

›

›

ÿ

bkďnăbk`1

µpnqf ˝ Tn

›

›

›

›

›

›

CpXq

“ 0,

and (1.4) is equivalent to

(1.6) lim
KÑ8

1

log bK`1

ÿ

kďK

›

›

›

›

›

›

ÿ

bkďnăbk`1

µpnq

n
f ˝ Tn

›

›

›

›

›

›

CpXq

“ 0,

2The Chowla conjecture can be reformulated using the language of quasi-generic points for
invariant measures in a certain shift space; it is then equivalent to the fact that that the empiric
measures determined by µ converge to a certain natural measure which is ergodic, hence to an
extremal point, see e.g. the survey [9]. Similarly, we deal with the logarithmic Chowla conjecture.



MÖBIUS ORTHOGONALITY IN DENSITY 1359

for all increasing sequences pbkq Ă N with bk`1 ´ bk Ñ 8 and f P CpXq. From (1.5)
we obtain

lim
kÑ8

1

bk`1

›

›

›

›

›

›

ÿ

năbk`1

µpnqf ˝ Tn

›

›

›

›

›

›

CpXq

“ 0,

for bk`1 ´ bk Ñ 8, k Ñ 8, and then it is easy to see that it holds for bk :“ k,
such that the uniform convergence in Möbius orthogonality (1.1) holds. By analo-
gous way we obtain that logarithmic strong MOMO property implies the uniform
convergence in logarithmic Möbius orthogonality (1.2).

Here is our main result:

Theorem 1.1. Assume that a topological system pX,T q satisfies the logarithmic
strong MOMO property. Then there exists A “ ApX,T q Ă N with full logarithmic
density: δpAq “ 1, such that for each f P CpXq,

(1.7) lim
AQNÑ8

›

›

›

›

›

1

N

ÿ

nďN

µpnqf ˝ Tn

›

›

›

›

›

CpXq

“ 0.

In particular, Möbius orthogonality holds along a subsequence (of N) of full loga-
rithmic density.

One of the main results in [10] states that, if a system pX,T q has zero entropy and
if its set of ergodic measures is countable, then the system is logarithmic Möbius
orthogonal. We will show that such systems satisfy the strong logarithmic MOMO
property, hence obtaining the following:3

Corollary 1.2. Let pX,T q be a zero entropy ergodic dynamical system such that
the set M epX,T q of ergodic T -invariant measures is countable. Then, there exists
A “ ApX,T q Ă N with full logarithmic density along which Möbius orthogonality
holds uniformly in x P X.

In particular, the above holds for all zero entropy uniquely ergodic systems.
Corollary 1.2 is slightly surprising even for horocycle flows (in the cocompact case),
where we know that Möbius orthogonality holds [5] but it is open (see questions
in [9], [13]) whether Möbius orthogonality holds in its uniform form. By Corol-
lary 1.2, we have that a uniform version holds along a subsequence of logarithmic
density 1 (let alone the upper density of this subsequence is 1). A use of [11] shows
that Corollary 1.2 remains valid when µ is replaced by any multiplicative function
which is strongly aperiodic.

The rest of the note is devoted to give some illustrations how Theorem 2.1 (which
is an adaptation of Tao’s result) can be applied in other situations. For example,
we will show how in the main result in [12] we can achieve full logarithmic density.
Besides, we note that in the classical Davenport-Erdös theorem on the existence
of the logarithmic density [7] of sets of multiples, the upper asymptotic density is
achieved along a set of full logarithmic density. Finally, we note in passing the logical

3We were informed by N. Frantzikinakis during the workshop “Sarnak’s Conjecture” at the
American Institute of Mathematics in mid-December 2018 that, independently of us, he can prove
Corollary 1.2 by modifying some arguments in [10].
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implication: logarithmic Chowla conjecture of order 2 ñ PNT along a subsequence
of logarithmic density 1.

A few words on basic concepts and notation: Given a subset C Ă N, we de-
note by δpCq its logarithmic density: δpCq :“ limNÑ8p1{ logNq

ř

nďN,nPC
1
n , as-

suming that the limit exists. It is classical that dpCq ď δpCq ď dpCq, where
dpCq :“ lim supNÑ8

1
N |r1, N s X C| stands for the upper asymptotic density, and

similarly the lower (asymptotic) density dpCq is defined as the lim inf. In fact, these
inequalities are direct consequences of the classical relationship between Cesàro av-
erages and logarithmic averages: given a sequence panq and setting sn :“

ř

jďn aj ,
s0 :“ 0, we have:

ÿ

1ďnďN

an
n

“
ÿ

1ďnďN

1

n
psn ´ sn´1q “

ÿ

1ďnďN´1

sn

ˆ

1

n
´

1

n` 1

˙

`
sN
N

“
ÿ

nďN´1

sn
n

1

n` 1
`
sN
N

(1.8)

which basically says that the logarithmic averages of panq are the logarithmic av-
erages of Cesàro averages (sometimes, we only use the fact that the logarithmic
averages are convex combinations of Cesàro averages).

In what follows when we speak about subsequences of natural numbers, we always
mean increasing sequences of natural numbers (so that subsequences are the same as
infinite subsets). In Corollary 1.2, we find a subsequence of full logarithmic density
which depends however on the system pX,T q. The methods used in this note do
not seem to give one universal subsequence along which Sarnak’s conjecture (i.e.
Möbius orthogonality for zero entropy systems) holds. We could get such a universal
sequence (see Proposition 1.3 below) if we were able to prove Sarnak’s conjecture
along a full logarithmic density sequence for each zero entropy system, that is,
by [17], if the logarithmic Chowla conjecture holds. More precisely:

Proposition 1.3. Assume that for each zero entropy dynamical system pX,T q there
exists a subsequence pNkpX,T qqk of natural numbers with δptNkpX,T q : k ě 1uq “ 1
such that

(1.9) lim
kÑ8

1

NkpX,T q

ÿ

nďNkpX,T q

fpTnxqµpnq “ 0

for all f P CpXq and x P X. Then there exists a subsequence pNkq of natural
numbers, δptNk : k ě 1uq “ 1 such that for each zero entropy dynamical system
pX,T q, (1.9) holds along pNkq.

To see the proof of Proposition 1.3, we have:
a) By assumption and the classical Lemma 2.5, we obtain that for each zero en-

tropy dynamical system pX,T q, we have limNÑ8p1{ logNq
ř

nďN
1
nfpTnxqµpnq “ 0

for each f P CpXq and x P X.
(b) By (a) and Tao’s result (“logarithmic Sarnak implies logarithmic Chowla”)

[17], in the space MpXµq of measures on Xµ, we obtain that p1{ logNq
ř

nďN p1{nqδSnµ Ñ pνS , where we consider the Möbius subshift pXµ, Sq and pνS
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stands for the relatively independent extension of the Mirsky measure νS of the
square-free system pXµ2 , Sq.4

(c) By (b) and Theorem 5.1, we obtain that there exists a subsequence pNkq with
δptNk : k ě 1uq “ 1 such that p1{Nkq

ř

nďNk
δSnµ Ñ pνS .

(d) By (c) and the proof of the implication “Chowla implies Sarnak” in [2], it fol-
lows that for each zero entropy pX,T q, we have limkÑ8p1{Nkq

ř

nďNk
fpTnxqµpnq “

0 for all f P CpXq and x P X, so Proposition 1.3 follows.

2. Functional formulation of Tao’s result

Our aim in this section is to prove a slight extension of Tao’s result from [18]:

Theorem 2.1. Let pBj , } ¨ }jq, j “ 1, 2, be normed vector spaces and assume that
B1 is separable. Let pSkqkě1 be a sequence of linear bounded operators from B1 to
B2, such that for some M we have, for each f P B1 and each k ě 1,

(2.1) }Skf}2 ď M}f}1.
5

Let ϕ be a continuous, positive, strictly increasing and convex function on r0,8q

with ϕp0q “ 0. Suppose that there exists a subsequence pNsq Ă N such that for any
f P B1, setting

(2.2) Rf pHq :“ lim sup
sÑ8

1

logNs

ÿ

1ďnďNs

1

n
ϕ

˜›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

,

we have

(2.3) lim
HÑ8

Rf pHq “ 0.

Then there exists a set N of natural numbers with the property

(2.4) lim
sÑ8

1

logNs

ÿ

NQNďNs

1

N
“ 1,

such that, for any f P B1, we have

(2.5) lim
NÑ8, NPN

›

›

›

›

›

1

N

ÿ

1ďnďN

Snf

›

›

›

›

›

2

“ 0.

Moreover, if pNsq “ N, then δpN q “ 1 and

(2.6) lim
NÑ8

›

›

›

›

›

1

logN

ÿ

1ďnďN

Snf

n

›

›

›

›

›

2

“ 0.

The proof of the above theorem requires a few lemmas.

4The measure-theoretic investigations of the square-free system pXµ2 , νS , Sq have been orig-
inated by Sarnak [14] and Cellarosi and Sinai [6]: the Mirsky measure is ergodic and so is its
relatively independent extension.

5Assuming that B1 is Banach and using the Uniform Boundedness Principle, we only need to
assume that in (2.1) we have supkPN }Skf}2 ă `8.
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Lemma 2.2. Let G : N Ñ R`. Suppose that for some γ P p0, 1q and for some
subsequence pNsq Ă N, we have

(2.7) lim sup
sÑ8

1

logNs

ÿ

1ďnďNs

Gpnq

n
ď γ.

Then, for the set M Ă N given by M :“
␣

n : Gpnq ă
?
γ
(

, we have

(2.8) lim inf
sÑ8

1

logNs

ÿ

nďNs, nPM

1

n
ě 1 ´

?
γ.

Proof. Let Q “ NzM , so that Q “
␣

n : Gpnq ě
?
γ
(

. By Markov’s inequality, we
obtain

1

logNs

ÿ

1ďnďNs

Gpnq

n
ě

?
γ

logNs

ÿ

nPQ,nďNs

1

n
“

?
γ

logNs

ÿ

nďNs

1

n
´

?
γ

logNs

ÿ

nPM,nďNs

1

n
,

hence
1

logNs

ÿ

nPM,nďNs

1

n
ě

1

logNs

ÿ

nďNs

1

n
´

1
?
γ logNs

ÿ

1ďnďNs

Gpnq

n
,

and (2.8) holds in view of (2.7). □

Lemma 2.3. Assume that F : N Ñ R` is bounded and satisfies

(2.9) lim sup
sÑ8

1

logNs

ÿ

1ďnďNs

F pnq

n
ď γ, γ P p0, 1q,

for a subsequence pNsq. Then, for the set T Ă N given by

(2.10) T :“

#

N :
1

N

ÿ

1ďnďN

F pnq ď
?
γ

+

,

we have

(2.11) lim inf
sÑ8

1

logNs

ÿ

nPT,nďNs

1

n
ě 1 ´

?
γ.

Proof. Set Gpnq :“ 1
n

ř

1ďmďn F pmq. By (1.8), we have

ÿ

1ďnďN´1

Gpnq

n` 1
“

ÿ

1ďnďN

F pnq

n
´

1

N

ÿ

1ďnďN

F pnq,

so that, by (2.9), we have

lim sup
sÑ8

1

logNs

ÿ

1ďnďNs

Gpnq

n
“ lim sup

sÑ8

1

logNs

ÿ

1ďnďNs´1

Gpnq

n` 1
ď γ.

Then, by Lemma 2.2, we obtain (2.11) for the set T defined by (2.10). □
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Lemma 2.4 (see Tao [18]). Assume that Mk Ă N, k P N, and that there exists an
increasing sequence pNsq Ă N such that, for each k,

lim
sÑ8

1

logNs

ÿ

nPMk, nďNs

1

n
“ 1, k P N.

Then there exists a subset M Ă N such that

(2.12) lim
sÑ8

1

logNs

ÿ

nPM,nďNs

1

n
“ 1,

and such that, for any k P N, there exists sk with

(2.13) M X tn : n ě Nsku Ă Mk.

Proof. Replacing, if necessary, eachMk byMkX
Ş

k1ăkMk1 , we may assume without
loss of generality that Mk`1 Ă Mk, k P N.

Let us choose an increasing sequence pskq such that, for each k,

s ě sk ñ
1

logNs

ÿ

nPMk, nďNs

1

n
ě 1 ´

1

k
.

We set M :“ M1 X r1, Ns1s Y
Ť8

k“2

`

Mk X
`

Nsk´1
, Nsk

‰˘

and verify that M satisfies
the desired properties (2.12) and (2.13). □

The following is classical.

Lemma 2.5. Let panqně1 be a bounded sequence in a normed vector space pB, } ¨ }q.
Suppose that there exists a subsequence N Ă N, δpN q “ 1, such that

(2.14) lim
NÑ8,NPN

›

›

›

›

›

1

N

ÿ

1ďnďN

an

›

›

›

›

›

“ 0.

Then

(2.15) lim
NÑ8

›

›

›

›

›

1

logN

ÿ

1ďnďN

an
n

›

›

›

›

›

“ 0.

Proof. Let M “ NzN , so that

(2.16) lim
NÑ8

1

logN

ÿ

nďN,nPM

1

n
“ 0.

By (1.8), we have
ÿ

1ďnďN

an
n

“ EN `
ÿ

1ďnďN´1

En
n` 1

, where En :“
1

n

ÿ

1ďmďn

am.

Setting C :“ supn }En}, we obtain
›

›

›

›

›

1

logN

ÿ

1ďnďN

an
n

›

›

›

›

›

ď
C

logN
`

›

›

›

›

›

1

logN

ÿ

nďN,nPM

En
n` 1

›

›

›

›

›

`

›

›

›

›

›

1

logN

ÿ

nďN,nPN

En
n` 1

›

›

›

›

›

ď

C

logN
`

C

logN

ÿ

nďN,nPM

1

n
`

›

›

›

›

›

1

logN

ÿ

nďN,nPN

En
n` 1

›

›

›

›

›

,
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and then assertion (2.15) follows from (2.16) and (2.14). □

Proof of Theorem 2.1. Let f P B1. By (2.2), (2.3) and Lemma 2.3, we obtain that
for any fixed large H P N, there exists a set Nf,H with the property

lim inf
sÑ8

1

logNs

ÿ

Nf,HQNďNs

1

N
ě 1 ´

b

Rf pHq,

and such that, for N P Nf,H , we have

1

N

ÿ

1ďnďN

ϕ

˜›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

ď

b

Rf pHq.

By deleting at most finitely many elements, we may assume that Nf,H consists only
of elements of size at least H2. For any H0, if we set Nf,ěH0 :“

Ť

HěH0
Nf,H , then

Nf,ěH0 satisfies limsÑ8p1{ logNsq
ř

Nf,ěH0
QNďNs

1
N “ 1. By Lemma 2.4, we can

find a set Nf of natural numbers with

lim
sÑ8

1

logNs

ÿ

NfQNďNs

1

N
“ 1,

and such that, for every H0, every sufficiently large element of Nf lies in Nf,ěH0 .
Thus, for every sufficiently large N P Nf , one has

1

N

ÿ

1ďnďN

ϕ

˜›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

ď

b

Rf pHq,

for some H ě H0 with N ě H2. By the monotonicity of ϕ and Jensen’s inequality,
this implies that

ϕ

˜

1

NH

›

›

›

›

›

ÿ

1ďnďN

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

ď ϕ

˜

1

N

ÿ

1ďnďN

›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

ď
1

N

ÿ

1ďnďN

ϕ

˜›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

¸

ď

b

Rf pHq,

so that, setting ψpsq :“ ϕ´1p
?
sq, s ą 0, we get

(2.17)
1

NH

›

›

›

›

›

ÿ

1ďnďN

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

ď ψpRf pHqq Ñ 0, H Ñ 8.

Next, by computation, we get

ÿ

1ďnďN

ÿ

1ďhďH

Sn`hf “
ÿ

1ďhďH

ÿ

1ďnďN

Sn`hf “
ÿ

1ďhďH

h`N
ÿ

m“h`1

Smf “

H
N
ÿ

m“1

Smf `
ÿ

1ďhďH

N`h
ÿ

m“N`1

Smf ´
ÿ

1ďhďH

ÿ

1ďmďh

Smf,

which gives



MÖBIUS ORTHOGONALITY IN DENSITY 1365

1

N

N
ÿ

m“1

Smf “
1

HN

ÿ

1ďnďN

ÿ

1ďhďH

Sn`h

´
1

HN

ÿ

1ďhďH

N`h
ÿ

m“N`1

Smf `
1

HN

ÿ

1ďhďH

ÿ

1ďmďh

Smf.

Now, let us fix H0. For any sufficiently large N P Nf , there exists H ě H0, with
H2 ď N , such that N P Nf,H . The triangular inequality yields

1

N

›

›

›

›

›

N
ÿ

m“1

Smf

›

›

›

›

›

2

ď
1

HN

›

›

›

›

›

ÿ

1ďnďN

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

`
1

HN

›

›

›

›

›

ÿ

1ďhďH

N`h
ÿ

m“N`1

Smf

›

›

›

›

›

2

`
1

HN

›

›

›

›

›

ÿ

1ďhďH

ÿ

1ďmďh

Smf

›

›

›

›

›

2

.

Using (2.17), we can upper bound the first term in the right-hand side by ψpRf pHqq.
The sum of the other two terms can be upper bounded by

M}f}1

HN

˜

ÿ

1ďhďH

N`h
ÿ

m“N`1

1 `
ÿ

1ďhďH

ÿ

1ďmďh

1

¸

ď
2HM}f}1

N
ď

2M}f}1

H
.

We thus get that

1

N

›

›

›

›

›

N
ÿ

m“1

Smf

›

›

›

›

›

2

ď sup
HěH0

ψpRf pHqq `
2M}f}1

H0
.

By letting H0 go to infinity, we conclude that limNÑ8, NPNf

›

›

›
p1{Nq

řN
m“1 Smf

›

›

›

2
“

0.
Let now pfkqkě1 be a dense set in B1. Then, by Lemma 2.4, we get a set N of

natural numbers with the property limsÑ8p1{ logNsq
ř

NQNďNs

1
N “ 1, such that

for any k P N,

lim
NÑ8, NPN

1

N

›

›

›

›

›

N
ÿ

m“1

Smfk

›

›

›

›

›

2

“ 0.

Take g P B1. Then for any ϵ ą 0 there exists fk such that }g ´ fk}1 ď ϵ{M, and
then

1

N

›

›

›

›

›

N
ÿ

m“1

Smg

›

›

›

›

›

2

ď
1

N

›

›

›

›

›

N
ÿ

m“1

Smfk

›

›

›

›

›

2

` ϵ,

which, by the above, yields

lim
NÑ8, NPN

1

N

›

›

›

›

›

N
ÿ

m“1

Smg

›

›

›

›

›

2

“ 0.

So, statement (2.5) is proved. Assertion (2.6) follows from (2.5) by Lemma 2.5. □

Note that in the sequel we will use Theorem 2.1 mainly for ϕpsq “ s (or sometimes
for ϕpsq “ s2).
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3. Proof of Theorem 1.1

To prove Theorem 1.1 we will show a stronger result:

Theorem 3.1. Let pBj , } ¨ }jq, j “ 1, 2, be normed vector spaces and assume that
B1 is separable. Let pSkqkě1 be a sequence of linear bounded operators from B1 to
B2, such that for some M ą 0 we have, for each f P B1 and each k ě 1,

}Skf}2 ď M}f}1.

Assume that pSkqkě1 satisfies the property: for all increasing sequences pbkq Ă N
with bk`1 ´ bk Ñ 8 and f P B1, we have

lim
KÑ8

1

log bK`1

ÿ

kďK

›

›

›

›

›

›

ÿ

bkďnăbk`1

1

n
Snf

›

›

›

›

›

›

2

“ 0,

Then there exists A Ă N with full logarithmic density: δpAq “ 1, such that for each
f P B1,

lim
AQNÑ8

›

›

›

›

›

1

N

ÿ

nďN

Snf

›

›

›

›

›

2

“ 0.

The proof of Theorem 3.1 will use the following intermediate result whose proof
depends on some ideas which first appeared in [1].

Proposition 3.2. Let pBj , } ¨ }jq, j “ 1, 2 be normed vector spaces. Let pSnqně1 be
a sequence of linear bounded operators from B1 to B2, such that for any pbkq Ă N
with 0 ă bk`1 ´ bk Ñ 8 as k Ñ 8, and any f P B1 we have

(3.1)
1

log bK`1

ÿ

kďK

›

›

›

›

›

›

ÿ

bkďnăbk`1

1

n
Snf

›

›

›

›

›

›

2

ÝÝÝÝÑ
KÑ8

0.

Then

(3.2) limHÑ8limNÑ8

1

logN

ÿ

nďN

1

n

›

›

›

›

›

1

H

ÿ

hďH

Sn`hf

›

›

›

›

›

2

“ 0.

We will prove this result by contraposition, and we will need the following lemma.

Lemma 3.3 (Diagonalization Lemma). Consider a family of sequences pgn,mq Ă

R`, m ą n, m, n ě 1. Suppose that for some families pbk,ℓqk,ℓě1 Ă N with

(3.3) 0 ă bk,ℓ ă bk`1,ℓ, limℓÑ8limkÑ8 pbk`1,ℓ ´ bk,ℓq “ 8,

and some γ ą 0, we have

(3.4) limKÑ8

1

log bK`1,ℓ

K
ÿ

k“1

gbk,ℓ,bk`1,ℓ
ě γ, for all ℓ P N.

Then there exists a sequence pbkqkě1 Ă N such that

(3.5) 0 ă bk ă bk`1, bk`1 ´ bk ÝÝÝÑ
kÑ8

8,
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and

(3.6) limKÑ8

1

log bK`1

K
ÿ

k“1

gbk,bk`1
ě γ{2.

Proof. Note that by (3.3), we have bk`1,1´bk,1 ě 1 for each k ě 1, and that without
loss of generality we may assume that for each ℓ ě 1, we have limkÑ8 pbk`1,ℓ´bk,ℓq ě

ℓ. By (3.4) for ℓ “ 1, we can choose the value K1 so that

1

log bK1`1,1

K1
ÿ

k“1

gbk,1,bk`1,1
ě γ{2

and take then, for k “ 1, . . . ,K1 ` 1, bk :“ bk,1, to obtain

1

log bK1`1

K1
ÿ

k“1

gbk,bk`1
ě γ{2.

We continue the above process by induction. Suppose that for some ℓ ě 1 we
already have sequences 0 “ K0 ă K1 ă ¨ ¨ ¨ ă Kℓ, 1 ď b1 ă b2 ă ¨ ¨ ¨ ă bKℓ`1,
satisfying, for each s “ 1, . . . , ℓ,

(3.7) bk`1 ´ bk ě s, k “ Ks´1 ` 1, . . . ,Ks,

and

(3.8)
1

log bKs`1

Ks
ÿ

k“1

gbk,bk`1
ě γ{2.

Then, at step ℓ ` 1, we first choose Nℓ`1 large enough so that bKℓ`2`Nℓ`1,ℓ`1 ě

bKℓ`1 ` ℓ` 1, and, for each k ě Kℓ ` 2 `Nℓ`1, bk`1,ℓ`1 ´ bk,ℓ`1 ě ℓ` 1. Then, by
(3.4), we can choose Kℓ`1 ą Kℓ ` 2 large enough so that

1

log bKℓ`1`1`Nℓ`1,ℓ`1

Kℓ`1`Nℓ`1
ÿ

k“Kℓ`2`Nℓ`1

gbk,ℓ`1,bk`1,ℓ`1
ě γ{2,

and we take for k “ Kℓ ` 2, . . . ,Kℓ`1 ` 1 :

bk :“ bk`Nℓ`1,ℓ`1.

Then assertions (3.7) and (3.8) are valid up to s “ ℓ ` 1, and this allows us to
construct inductively the sequences pbkqkě1 with the required properties (3.5), (3.6).

□
Proof of Proposition 3.2. Suppose that for some f P B1, (3.2) does not hold. Then,
there exist γ ą 0 and a sequence pHℓq, Hℓ Ñ 8 as ℓ Ñ 8, such that for each ℓ ě 1,
we have

limNÑ8

1

logN

ÿ

1ďnďN

1

n

›

›

›

›

›

1

Hℓ

ÿ

1ďhďHℓ

Sn`hf

›

›

›

›

›

2

ě γ.

We write this in the form

limNÑ8

1

logN

1

Hℓ

Hℓ´1
ÿ

r“0

ÿ

nďN,n”r rHℓs

1

n

›

›

›

›

›

ÿ

1ďhďHℓ

Sn`hf

›

›

›

›

›

2

ě γ.
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Then there exists rℓ, 0 ď rℓ ă Hℓ, such that

limNÑ8

1

logN

ÿ

nďN,n”rℓ rHℓs

1

n

›

›

›

›

›

ÿ

1ďhďHℓ

Sn`hf

›

›

›

›

›

2

ě γ.

Using

1

n
“

1

n` h
`

h

npn` hq
, lim

NÑ8

1

logN

ÿ

nďN,n”rℓ rHℓs

H2
ℓ

n2
“ 0,

we obtain

limNÑ8

1

logN

ÿ

nďN,n”rℓ rHℓs

›

›

›

›

›

ÿ

1ďhďHℓ

1

n` h
Sn`hf

›

›

›

›

›

2

ě γ,

or

limNÑ8

1

logN

ÿ

nďN,n”rℓ rHℓs

›

›

›

›

›

ÿ

nămďn`Hℓ

1

m
Smf

›

›

›

›

›

2

ě γ.

Rewrite this inequality in the form

limNÑ8

1

logN

rN{Hℓs
ÿ

k“1

›

›

›

›

›

›

ÿ

kHℓ`rℓămďpk`1qHℓ`rℓ

1

m
Smf

›

›

›

›

›

›

2

ě γ,

and take, for a fixed ℓ, the sequence pbk,ℓqkě1 defined by bk,ℓ :“ kHℓ`rℓ`1. Setting
KN :“ rN{Hℓs for each N , we have log bKN`1,ℓ{ logN ÝÝÝÝÑ

NÑ8
1, hence

lim sup
KÑ8

1

log bK`1,ℓ

ÿ

kďK

›

›

›

›

›

›

ÿ

bk,ℓďmăbk`1,ℓ

1

m
Smf

›

›

›

›

›

›

2

ě γ.

We can now apply the Diagonalization Lemma 3.3 with the sequences

gn,m :“

›

›

›

›

›

ÿ

nďjăm

1

j
Sjf

›

›

›

›

›

2

.

We obtain that there exists a sequence pbkqkě1 with 0 ă bk`1 ´ bk ÝÝÝÑ
kÑ8

8, such

that

limKÑ8

1

log bK`1

ÿ

kďK

›

›

›

›

›

›

ÿ

bkďmăbk`1

1

m
Smf

›

›

›

›

›

›

2

ě γ{2.

Hence (3.1) is not satisfied □
Proof of Theorem 3.1. By Proposition 3.2, we obtain that if we set

Rf pHq :“ lim sup
NÑ8

1

logN

ÿ

1ďnďN

1

n

›

›

›

›

›

1

H

ÿ

1ďhďH

Sn`hf

›

›

›

›

›

2

,

then limHÑ8 Rf pHq “ 0, so the result follows from Theorem 2.1 with ϕpsq “ s. □
Proof of Theorem 1.1. We apply Theorem 3.1 to B1 “ B2 “ CpXq and Skpfq :“
µpkqf ˝ T k. □
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4. Proof of Corollary 1.2 and related results

Recall that a point y in a topological dynamical system pY, Sq is quasi-generic
for some measure ν if, for some subsequence pNkq of integers and all f P CpY q, we
have

1

Nk

ÿ

1ďnďNk

fpSnyq ÝÝÝÑ
kÑ8

ż

Y
f dν.

Likewise, we say that y is logarithmically quasi-generic for ν if, for some subsequence
pNkq of integers and for all f P CpY q, we have

1

logNk

ÿ

1ďnďNk

1

n
fpSnyq ÝÝÝÑ

kÑ8

ż

Y
f dν.

Observe that any measure for which y is logarithmically quasi-generic is S-invariant.
We will use here the following result from [10] (see the remark after Theorem 1.3

therein).

Theorem 4.1 (Frantzikinakis and Host). Let pY, Sq be a topological dynamical
system, and let y P Y . Assume that, for any measure ν for which y is logarithmically
quasi-generic, the system pY, ν, Sq has zero entropy and countably many ergodic
components. Then for any g P CpY q, we have

(4.1) lim
NÑ8

1

logN

ÿ

1ďnďN

1

n
gpSnyqµpnq “ 0.

Proof of Corollary 1.2. Let us consider a dynamical system pX,T q with zero topo-
logical entropy, and such that M epX,T q is countable. In view of Theorem 1.1, all
we need to prove is that pX,T q satisfies the logarithmic strong MOMO property.
That is, we fix an increasing sequence pbkq Ă N with bk`1 ´bk Ñ 8 (and we assume
without loss of generality that b1 “ 1), a sequence pxkq Ă X and f P CpXq, and we
have to show the following convergence

(4.2)
1

log bK`1

ÿ

kďK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

bkďnăbk`1

1

n
fpTnxkqµpnq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÝÝÝÝÑ
KÑ8

0.

According to [3, Lemma 18], it is sufficient to show that

(4.3)
1

log bK`1

ÿ

kďK

ek
ÿ

bkďnăbk`1

1

n
fpTnxkqµpnq ÝÝÝÝÑ

KÑ8
0,

where ek P Σ3 :“ te2πij{3 : j “ 0, 1, 2u is chosen so that the product

ek
ÿ

bkďnăbk`1

1

n
fpTnxkqµpnq

belongs to the closed cone t0u Y tz P C : argpzq P r´π{3, π{3su.
In order to show (4.3), we consider the space Y :“ pX ˆ Σ3qN with the shift S,

and in this system the point y “ pynqnPN defined by

yn :“ pTnxk, ekq if bk ď n ă bk`1 pk ě 1q.
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Let ν be a measure for which y is logarithmically quasi-generic. The same argument
as in [3] (see the proof of (P2 ñ P3)) shows that ν must be concentrated on the set
of sequences of the form

`

px, aq, pTx, aq, pT 2x, aq, . . .
˘

px P X, a P Σ3q.

Now, let us consider an ergodic component ρ of ν. The marginal of ρ on the first
coordinate x must be an ergodic T -invariant measure on X. By assumption, there
are only countably many of them, and all of them give rise to zero-entropy sys-
tems. The marginal of ρ on the second coordinate a is one of the three Dirac
measures δ1, δei2π{3 , δei4π{3 . Moreover these two marginals must be independent
by the disjointness of ergodic systems with the identity, thus, these two marginals
completely determine ρ. Hence, we see that there can be only countably many
possible ergodic components of ν, and all of them have zero entropy. Thus y sat-
isfies the assumptions of Theorem 4.1, and we have (4.1) for each g P CpY q. In
particular, if we take the continuous function g defined by gpzq :“ a0fpz0q for each
z “ ppz0, a0q, pz1, a1q, . . .q P Y , we obtain (4.3). □

Remark 4.2. We can characterize uniform convergence for Möbius orthogonality
in terms of a MOMO type convergence. Indeed:
The uniform convergence in Möbius orthogonality (1.1) holds if and only if for all
pbkq satisfying bk{bk`1 Ñ 0, we have

1

bk`1

›

›

›

›

›

›

ÿ

bkďnăbk`1

µpnqf ˝ Tn

›

›

›

›

›

›

CpXq

ÝÝÝÑ
kÑ8

0.

To see this equivalence, it is sufficient to note that for each x P X,

1

bk`1

ÿ

bkďnăbk`1

fpTnxqµpnq “

1

bk`1

ÿ

1ďnăbk`1

fpTnxqµpnq ´
bk
bk`1

1

bk

ÿ

1ďnăbk

fpTnxqµpnq.

Remark also that the same arguments work for logarithmic averages (replacing
bk{bk`1 Ñ 0 with log bk{ log bk`1 Ñ 0).

5. Miscellanea

5.1. Ergodic measures. In this section, we show that Tao’s approach persists, if
we consider the main observation from [12].

Let pX,T q be a dynamical system. Given x P X and n P N, we write δTnpxq for
the Dirac measure concentrated at the point Tnpxq. Let

Epx,Nq :“
1

N

ÿ

1ďnďN

δTnpxq, E logpx,Nq :“
1

logN

ÿ

1ďnďN

1

n
δTnpxq.

We consider here the convergence of these empirical measures in the weak* topology.
Note that any accumulation point of the above sequences is always a T -invariant
probability measure on X.
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Theorem 5.1. Suppose that for some x P X and some subsequence pNsqsě1 of
natural numbers, we have

(5.1) lim
sÑ8

E logpx,Nsq “ κ, where κ is ergodic.

Then there exists a set N of natural numbers with the property

(5.2) lim
sÑ8

1

logNs

ÿ

NQNďNs

1

N
“ 1,

such that

(5.3) lim
NÑ8, NPN

Epx,Nq “ κ.

Proof. The condition (5.1) means that for any f P CpXq we have

(5.4) lim
sÑ8

1

logNs

Ns
ÿ

n“1

1

n
fpTnuq “

ż

X
f dκ.

Let f P CpXq be fixed, and set Sf :“
ş

X f dκ. For H P N, we consider the
limiting of the second moment

Rf pHq :“ lim
sÑ8

1

logNs

ÿ

1ďnďNs

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

H
ÿ

m“1

fpTn`mxq ´ Sf

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

The limit does exist by (5.1), as the internal is given by a continuous function sum
sampled at x. So, by condition (5.4), we have

(5.5) Rf pHq “

ż

X

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

H
ÿ

m“1

fpTmxq ´ Sf

ˇ

ˇ

ˇ

ˇ

ˇ

2

dκpxq.

Hence, directly by the von Neumann ergodic theorem, and using the ergodicity of κ,
we obtain limHÑ8 Rf pHq “ 0. Take now B1 “ CpXq, B2 “ C with the sequence of

functionals Skf :“ fpT kxq ´Sf , k P N, and we obtain statement (5.3) by Theorem
2.1. □

5.2. Davenport-Erdös theorem. Davenport-Erdös theorem [7] is the fact that,
given B Ă N, the B-free set FB, i.e. the set of those numbers that have no divisor
in B, has logarithmic density and, moreover, δpFBq “ dpFBq. In fact, see [8],
the point 1FB

is logarithmically generic for the relevant Mirsky measure which
is ergodic. Hence, by Theorem 5.1, we obtain that the upper asymptotic density
dpFBq is obtained along a subsequence of logarithmic density 1. We can however
obtain this result in an elementary way. Indeed, for a subset A Ă N and N P N, set
dN pAq :“ 1

N

ř

1ďnďN 1Apnq and dlogN pAq :“ 1
logN

ř

1ďnďN
1
n1Apnq. More generally,

given a “ panqnPN a sequence of real numbers, set dN paq :“ 1
N

ř

1ďnďN an and

dlogN paq :“ 1
logN

ř

1ďnďN
an
n .

Proposition 5.2. Let a “ panqnPN be a bounded sequence of real numbers, and

let ℓ :“ lim supNÑ8 dN paq. Assume that limNÑ8 dlogN paq “ ℓ. Then there exists

B Ă N with limNÑ8 dlogN pBq “ 1 such that limBQNÑ8 dN paq “ ℓ.
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Proof. Step 1 For any ε ą 0, set Bε :“ tN P N : dN paq ą ℓ ´ εu. Then

limNÑ8 dlogN pBεq “ 1. Indeed, let us introduce the sequence b “ pbnqnPN defined by
b1 :“ 0, and for each n ě 2, bn :“ dn´1 paq. The Abel summation formula yields

dlogN paq “
dN paq

logN
` dlogN pbq .

By assumption, we thus have limNÑ8 dlogN pbq “ ℓ. Let

ĂBε :“ tN P N : bN ą ℓ´ εup“ Bε ` 1q and ĂAε :“ NzĂBε “ tN P N : bN ď ℓ´ εu.

In the computation of dlogN pbq, the contribution of ĂAε is bounded above by

pℓ´ εqdlogN

´

ĂAε

¯

“ pℓ´ εq
´

1 ´ dlogN

´

ĂBε

¯¯

.

On the other hand, using the fact that lim supNÑ8 bN “ ℓ, the contribution of ĂBε

to dlogN pbq is bounded above by ℓdlogN

´

ĂBε

¯

`op1q. Therefore, we have for each N P N

dlogN pbq ď pℓ´ εq
´

1 ´ dlogN

´

ĂBε

¯¯

` ℓdlogN

´

ĂBε

¯

` op1q

“ εdlogN

´

ĂBε

¯

` ℓ´ ε` op1q.

But we know that limNÑ8 dlogN pbq “ ℓ, and it follows that limNÑ8 dlogN

´

ĂBε

¯

“ 1.

Finally, since ĂBε “ Bε ` 1, we also get limNÑ8 dlogN pBεq “ 1.
Step 2 We construct the announced set B as follows. First we fix a decreasing

sequence pεkq of positive numbers going to 0 as k Ñ 8. By Step 1, we know

that dlogN pBεkq ÝÝÝÝÑ
NÑ8

1. Then we construct a strictly increasing sequence pNkq

of integers such that @k, @N ě Nk, d
log
N pBεkq ą 1 ´ εk. Finally we define B by

BXt1, . . . , N1´1u :“ t1, . . . , N1´1u, and for each k ě 1, BXtNk, . . . , Nk`1´1u :“
Bεk X tNk, . . . , Nk`1 ´ 1u. □

5.3. Deriving a density version of the PNT from the logarithmic Chowla
conjecture of order 2.

Lemma 5.3. Assume that A Ă N with δpAq “ 1. For each m P N set

(5.6) Am :“ tn P N : rn{ms P Au.

Then δpAmq “ 1 for all m P N.

Proof. Let m ě 2 be fixed. Note that if n P A, then

(5.7) mn` j P Am, j “ 0, 1, . . . ,m´ 1,

and

(5.8)
m´1
ÿ

j“0

1

mn` j
ě

ż mpn`1q

mn

dt

t
“ logp1 ` 1{nq ě

1

n
´

1

2n2
.
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Given ϵ P p0, 1q, we have 1
logN

ř

nPA, nďN
1
n ě 1 ´ ϵ{2 for N ě Nϵ. Setting c :“

ř8
k“1

1
k2

“ π2

6 , we may assume that

c

2 logNϵ
ď ϵ{2 and

logN

logmN
ě 1 ´ ϵ for all N ě Nϵ.

It follows that for any N ě Nϵ, by (5.8) and (5.7), we have

1 ´ ϵ{2 ď
1

logN

ÿ

nPA, nďN

1

n

ď
1

logN

ÿ

nPA, nďN

˜

m´1
ÿ

j“0

1

mn` j

¸

`
1

2 logN

ÿ

nPA, nďN

1

n2

ď
1

logN

ÿ

kPAm, kďmpN`1q

1

k
` ϵ{2.

Therefore, for all N ě Nϵ, we have

1 ě
1

logmN

ÿ

kPAm, kďmN

1

k
“

logN

logmN

1

logN

ÿ

kPAm, kďmN

1

k
ě p1 ´ ϵq2.

Letting ϵ Ñ 0, we obtain limNÑ8
1

logmN

ř

kPAm, kďmN
1
k “ 1, and then δpAmq “

1. □

By Lemmas 5.3 and 2.4 we obtain the following:

Lemma 5.4. Let A Ă N with δpAq “ 1. Then there exists Ã Ă N with δpÃq “ 1,
such that for any m P N there exists Nm satisfying

(5.9) ÃX tn : n ě Nmu Ă

m
č

k“1

Ak

(sets Ak are defined by (5.6)).

Given u : N Ñ C, let Upxq :“
ř

nďx upnq, for x ě 0, denote the corresponding
summation function.

Lemma 5.5. Let A Ă N with δpAq “ 1, and let u : N Ñ C such that

|Upnq|

n
ÝÝÝÝÝÑ
AQnÑ8

0.

Then there exists rA Ă A, δp rAq “ 1 such that, for each a ě 1 and ε ą 0, we can find
X “ Xpa, ϵq ą 1 for which

@x ě X, rxs P Ã ùñ
ÿ

nďa

|Upx{nq| ď εx.

Proof. We have a set rA as in Lemma 5.4, so δp rAq “ 1. Let a ě 1 be fixed. Denote
C :“

ř

nďa
1
n and choose K ě 1 so that

(5.10) A Q rxs ě K ñ
|Upxq|

x
ď

|Uprxsq|

rxs
ď ε{C.
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Taking m “ ras and using Lemma 5.4, we choose Nm such that (5.9) holds, i.e.

rns, rn{2s, . . . , rn{ms P A whenever n P Ã and n ě Nm. Then for x ě pm `

1qmaxtNm,Ku with rxs P Ã, by (5.10), we have
ř

nďa |Upx{nq| ď
ř

nďa
x
n

ε
C “

xε. □

Proposition 5.6. The statement logarithmic Chowla conjecture (for µ) holds6 for
auto-correlations of length 2 implies that there exists a sequence A Ă N, δpAq “ 1,
such that

ř

nďx Λpnq “ x` opxq for A Q x Ñ 8.

Proof. By Theorem 2.1 7 (or directly by Tao’s proof in [18]), we obtain that
1
N

ř

nďN µpnq Ñ 0 when A Q N Ñ 8, where δpAq “ 1.
Following [4], we repeat the proof that Mpµq :“ limNÑ8

ř

nďN µpnq “ 0 implies
PNT. We have

ÿ

nďx

Λpnq “ x´
ÿ

q,d;qdďx

µpdqfpqq ` Op1q

for some arithmetic function f . All we need to show is that
ř

q,d;qdďxµpdqfpqq “

opxq. Using summation by parts, one arrives at

(5.11)
ÿ

q,d;qdďx

µpdqfpqq “
ÿ

nďb

µpnqF px{nq `
ÿ

nďa

fpnqMpx{nq ´ F paqMpbq,

where ab “ x. Moreover, F pxq “ B ¨
?
x for a constant B ą 0. It follows that the

first summand in (5.11) is bounded by B1x{
?
a for a constant B1 ą B. Indeed,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďb

µpnqF px{nq

ˇ

ˇ

ˇ

ˇ

ˇ

ď B
?
x
ÿ

nďb

1
?
n

ď B1

?
b
?
x “ B1

x
?
a
.

We fix ε ą 0 and choose a ě 1, so that B1{
?
a ă ε which yields the first summand

ă εx for all x ě 1. To majorate the second summand, we use
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďa

fpnqMpx{nq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Fa

ÿ

nďa

|Mpx{nq|, Fa :“ maxt|fpnq| : n ď au,

and Lemma 5.5 (with u “ µ). Finally, the third summand is majorated in the same
way as in [4]. □

Acknowledgments. Research of the first and second authors supported by Naro-
dowe Centrum Nauki grant UMO-2019/33/B/ST1/00364.

6Proved by Tao in [16].
7Note that if pcnq is a bounded sequence of complex numbers with

limNÑ8
1

logN

ř

nďN
1
n
cncn`h “ 0 for each h ‰ 0 then for

RHppcnqq :“ lim sup
NÑ8

1

logN

ÿ

nďN

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

1

H

ÿ

hďH

cn`h

ˇ

ˇ

ˇ

ˇ

ˇ

2

we have limHÑ8 RHppcnqq “ 0.
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