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MOBIUS ORTHOGONALITY IN DENSITY FOR ZERO
ENTROPY DYNAMICAL SYSTEMS

ALEXANDER GOMILKO, MARIUSZ LEMANCZYK, AND THIERRY DE LA RUE

ABSTRACT. It is proved that whenever a zero entropy dynamical system (X,T")
has only countably many ergodic measures and p stands for the arithmetic
Mobius function then there exists A = A(X,T) < N of logarithmic density one
such that for each f e C(X),
1
lim > F(T x)p(n) =0

As3N—®
n<N

uniformly in z € X, in particular, the density version of Mobius orthogonality
holds.

1. INTRODUCTION

Following P. Sarnak [14], we say that a topological system (X,T) is Mdbius
orthogonal if

(1.1) lim = ) (") p(n) = 0

for all f € C(X) and z € X (here p stands for the classical arithmetic Mobius
function). By the standard trick of summation by parts (which we recall below
for the reader’s convenience), we obtain that the Mobius orthogonality of (X,T")
implies the logarithmic Mébius orthogonality of (X, T):

1
S L prnayun) = o

n

(1.2) lim

for all f e C(X) and x € X. The celebrated Sarnak’s conjecture [14] claims that all
zero entropy systems are Mobius orthogonal, but this statement has been established
only for some selected classes (we refer the reader to the bibliography in survey [9]
to see for which classes). In some contrast to this, a considerable progress has
been made recently in our understanding of the logarithmic Sarnak’s conjecture:
Frantzikinakis and Host [10] proved that each zero entropy system whose set of
ergodic measures is countable is logarithmic M&bius orthogonal. Earlier, Tao [17]
proved that the logarithmic Sarnak’s conjecture is equivalent to the logarithmic
version of the classical Chowla conjecture (from 1965) on auto-correlations of the
Mobius function.!

lSarnak’s conjecture itself was motivated by the fact that the Chowla conjecture implies Sarnak’s
conjecture [2], [14], [15]. See also [16], [19], [20], where special cases of the validity of the logarithmic
Chowla conjecture have been proved.
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While it looked rather odd to expect that we can say anything interesting about
Cesaro type averaging knowing the convergence of logarithmic averages, it has been
proved in [12] that the logarithmic Chowla conjecture implies the validity of the
Chowla conjecture along a subsequence. In fact, the result was a consequence of
some general mechanism when a certain sequence (in a locally convex space) of
logarithmic averages? converges to an extremal point. This approach seems to fail
if (what perhaps is natural), we would like to prove that the logarithmic Mébius or-
thogonality of a fixed system implies its Mobius orthogonality along a subsequence.
However, commenting on [12], Tao [18], using a different method (second moment
type argument), was able to prove a stronger result, namely, he proved that if
the logarithmic Chowla conjecture holds then the Chowla conjecture holds along a
subsequence of full logarithmic density; in particular, of upper density 1.

The aim of this note is to show how to adapt Tao’s argument (this is done in
Theorem 2.1 below) to be able to apply it to systems satisfying some (seemingly)
stronger condition than the logarithmic Mobius orthogonality and which allows one
to deduce Mobius orthogonality in full logarithmic density. In order to formulate
such a result we first recall the strong MOMO notion introduced in [3]. Namely, a
system (X, T') satisfies this property if for all increasing sequences (b) < N with
bg+1 — by — 00, all () < X and f e C(X), we have

(1.3) LSS @) — o,

b
K41 g <K b <n<bpiq

while if

(14) SN T ()| 0,

1
0gbx+1 k<K |by<n<bji1

then we say that (X,T) satisfies the logarithmic strong MOMO property. It has
been proved in [3] that Sarnak’s conjecture is equivalent to the fact that all zero
entropy systems enjoy the strong MOMO property.

Note that (1.3) is equivalent to

k<K ||bp<n<bpii C(X)

1.5 li
(1:5) Ko bi+1

and (1.4) is equivalent to

(1.6) lim > > “;n)foT” =0,

K—
o logbr 41 KK || bo<inzbi i )

2The Chowla conjecture can be reformulated using the language of quasi-generic points for
invariant measures in a certain shift space; it is then equivalent to the fact that that the empiric
measures determined by p converge to a certain natural measure which is ergodic, hence to an
extremal point, see e.g. the survey [9]. Similarly, we deal with the logarithmic Chowla conjecture.



MOBIUS ORTHOGONALITY IN DENSITY 1359

for all increasing sequences (by) € N with b1 —br — o0 and f € C(X). From (1.5)
we obtain

1
lim —— | ™ =
Jim e p(n)fo 0,
C(X)

for by 1 — by — o0, k — 00, and then it is easy to see that it holds for by := k,
such that the uniform convergence in Mobius orthogonality (1.1) holds. By analo-
gous way we obtain that logarithmic strong MOMO property implies the uniform
convergence in logarithmic M&bius orthogonality (1.2).

Here is our main result:

n<bpi1

Theorem 1.1. Assume that a topological system (X,T) satisfies the logarithmic
strong MOMO property. Then there exists A = A(X,T) < N with full logarithmic
density: 0(A) =1, such that for each f € C(X),

1.7 i
( ) Aa]l\fnioo

=0.
C(X)

% D ) foT"

n<N

In particular, Mébius orthogonality holds along a subsequence (of N) of full loga-
rithmic density.

One of the main results in [10] states that, if a system (X, T') has zero entropy and
if its set of ergodic measures is countable, then the system is logarithmic Mobius
orthogonal. We will show that such systems satisfy the strong logarithmic MOMO
property, hence obtaining the following:?

Corollary 1.2. Let (X,T) be a zero entropy ergodic dynamical system such that
the set M°¢(X,T) of ergodic T-invariant measures is countable. Then, there exists
A = A(X,T) c N with full logarithmic density along which M6bius orthogonality
holds uniformly in z € X.

In particular, the above holds for all zero entropy uniquely ergodic systems.
Corollary 1.2 is slightly surprising even for horocycle flows (in the cocompact case),
where we know that M&bius orthogonality holds [5] but it is open (see questions
in [9], [13]) whether M&bius orthogonality holds in its uniform form. By Corol-
lary 1.2, we have that a uniform version holds along a subsequence of logarithmic
density 1 (let alone the upper density of this subsequence is 1). A use of [11] shows
that Corollary 1.2 remains valid when g is replaced by any multiplicative function
which is strongly aperiodic.

The rest of the note is devoted to give some illustrations how Theorem 2.1 (which
is an adaptation of Tao’s result) can be applied in other situations. For example,
we will show how in the main result in [12] we can achieve full logarithmic density.
Besides, we note that in the classical Davenport-Erdos theorem on the existence
of the logarithmic density [7] of sets of multiples, the upper asymptotic density is
achieved along a set of full logarithmic density. Finally, we note in passing the logical

3We were informed by N. Frantzikinakis during the workshop “Sarnak’s Conjecture” at the
American Institute of Mathematics in mid-December 2018 that, independently of us, he can prove
Corollary 1.2 by modifying some arguments in [10].
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implication: logarithmic Chowla conjecture of order 2 = PNT along a subsequence
of logarithmic density 1.

A few words on basic concepts and notation: Given a subset C < N, we de-
note by §(C) its logarithmic density: §(C) := imy_(1/log N) X, < pec 1 as-
suming that the limit exists. It is classical that d(C) < §(C) < d(C), where
d(C) := limsupy_,, + |[1,N] n C| stands for the upper asymptotic density, and
similarly the lower (asymptotic) density d(C) is defined as the liminf. In fact, these
inequalities are direct consequences of the classical relationship between Cesaro av-
erages and logarithmic averages: given a sequence (ay) and setting s, :== > ._. aj,
sg := 0, we have:

j<n

1<n<N 1<n<N
(18) <n< <n<
1 1 SN Sp 1 SN
P 1) "N T 2w Y
l<neN—_1 n n + neN_1 nn-+

which basically says that the logarithmic averages of (a,) are the logarithmic av-
erages of Cesaro averages (sometimes, we only use the fact that the logarithmic
averages are convex combinations of Cesaro averages).

In what follows when we speak about subsequences of natural numbers, we always
mean increasing sequences of natural numbers (so that subsequences are the same as
infinite subsets). In Corollary 1.2, we find a subsequence of full logarithmic density
which depends however on the system (X,T). The methods used in this note do
not seem to give one universal subsequence along which Sarnak’s conjecture (i.e.
Mobius orthogonality for zero entropy systems) holds. We could get such a universal
sequence (see Proposition 1.3 below) if we were able to prove Sarnak’s conjecture
along a full logarithmic density sequence for each zero entropy system, that is,
by [17], if the logarithmic Chowla conjecture holds. More precisely:

Proposition 1.3. Assume that for each zero entropy dynamical system (X, T) there
exists a subsequence (Ni(X,T))x of natural numbers with 6({Ni(X,T) : k> 1}) =1
such that

1
(1.9) lim —— F(T"z)p(n) = 0
k—o0 Nk(X7 T) ngNkZ(X,T)

for all f € C(X) and x € X. Then there exists a subsequence (Ny) of natural
numbers, 6({Ny : k = 1}) = 1 such that for each zero entropy dynamical system
(X,T), (1.9) holds along (Nk).

To see the proof of Proposition 1.3, we have:

a) By assumption and the classical Lemma 2.5, we obtain that for each zero en-
tropy dynamical system (X, T), we have limy o (1/log N) Y, -y = f(T"x)pu(n) = 0
for each f e C(X) and x € X.

(b) By (a) and Tao’s result (“logarithmic Sarnak implies logarithmic Chowla”)
[17], in the space M(X,) of measures on X,, we obtain that (1/logN)
Yin<n(1/n)dsn, — Uy, where we consider the M&bius subshift (X, S) and v
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stands for the relatively independent extension of the Mirsky measure v of the
square-free system (X2, S ).4

(c) By (b) and Theorem 5.1, we obtain that there exists a subsequence (NNVy) with
6({Nk : k>1}) =1 such that (1/Ng) X<y, Osnp — V.

(d) By (c) and the proof of the implication “Chowla implies Sarnak” in [2], it fol-
lows that for each zero entropy (X, T), we have limy,_,o,(1/Ny) 2, <y, f(T"z)p(n) =
0 for all f e C(X) and z € X, so Proposition 1.3 follows.

2. FUNCTIONAL FORMULATION OF TAO’S RESULT
Our aim in this section is to prove a slight extension of Tao’s result from [18]:

Theorem 2.1. Let (%5, ;). 7 = 1,2, be normed vector spaces and assume that
P is separable. Let (Sk)r=1 be a sequence of linear bounded operators from % to
B, such that for some M we have, for each f € %1 and each k > 1,

(2.1) 1S fllz < M| fl1.°

Let ¢ be a continuous, positive, strictly increasing and convex function on [0, 00)
with ¢(0) = 0. Suppose that there exists a subsequence (Ng) < N such that for any
f e %, setting

1 1
(2.2) R¢(H) := limsup —¢ ( — Sn+nf ) ,
s—ow  log Ny KéNS n H KEH ,
we have
(2.3) lim R;(H)=0.

H—o

Then there exists a set N of natural numbers with the property

24 lim — =1,
24 oo log Nty NV
such that, for any f € %,, we have
1

2. li — = 0.
29) x| W, 2, 5] =
Moreover, if (Ns) = N, then 6(N) =1 and

: 1 Snf
2.6 lim — =0.
(2:6) N—o 10gNK§N no,

The proof of the above theorem requires a few lemmas.

4The measure-theoretic investigations of the square-free system (X,,2,v.»,S) have been orig-
inated by Sarnak [14] and Cellarosi and Sinai [6]: the Mirsky measure is ergodic and so is its
relatively independent extension.

5Assuming that % is Banach and using the Uniform Boundedness Principle, we only need to
assume that in (2.1) we have sup,cy |Skfl2 < +c0.
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Lemma 2.2. Let G : N — Ry. Suppose that for some v € (0,1) and for some
subsequence (Ng) € N, we have

(n)

(2.7) lim sup — <.
5—00 1 Ny 1<n<N. n
Then, for the set M c N given by M := {n : G(n) < \ﬁ}, we have
. 1
(2.8) hslgloglf o Z - >1—./7.

$ n<Ns,neM

Proof. Let @ = N\M, so that Q = {n :G(n) = \/7} By Markov’s inequality, we
obtain

log N n n

1<n< N, neQ,n<Ns

n<Ng neM,n< Ny
hence
) Nl i oy o
log N, neM meN, ™ logN D \flogNs 1<oon, T
and (2.8) holds in view of (2.7). O
Lemma 2.3. Assume that F': N — Ry is bounded and satisfies
1 F
(2.9) lim sup Z Fln) <7, ~7€(0,1),
s—oo  1log N <o2n, M

for a subsequence (Ng). Then, for the set T < N given by

1
(2.10) = {N: v > Fn)< ﬁ},
1<n<N
we have
1
2.11 lim inf —=21—-\/7
21 =% log Ny neT,Zn:<Ns " V7

Proof. Set G(n) := %Zlémgn F(m). By (1.8), we have

G(n) Fn) 1
-y LS

1<n<N-1 1<n<N " 1<n<N

so that, by (2.9), we have

lim sup @ = lim sup ! Z Gini <.
n

s—oo log Ny <oZn, T s—oo  log N LensN.1

Then, by Lemma 2.2, we obtain (2.11) for the set T defined by (2.10). O
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Lemma 2.4 (see Tao [18]). Assume that M < N, k € N, and that there exists an
increasing sequence (Ng) < N such that, for each k,

> 1:1, ke N.

n
neMy,n<Ng

SILHOIO log N

Then there exists a subset M — N such that

(2.12) > % =1,

neM,n< Ny

I
500 log N,
and such that, for any k € N, there exists s with

(2.13) Mn{n:n= N} c M.

Proof. Replacing, if necessary, each M}, by My N[\~ My, we may assume without
loss of generality that My,1 < My, ke N.
Let us choose an increasing sequence (si) such that, for each k,

- 1 Z 1 51 1
s = Sk = —=>1--.
log N, neM.a<N, n k
We set M := M; n[1,Ns ] u U,ZOZQ (Mk 8 (Nskfl,Nsk]) and verify that M satisfies
the desired properties (2.12) and (2.13). O
The following is classical.
Lemma 2.5. Let (an)n>1 be a bounded sequence in a normed vector space (A, |-||).
Suppose that there exists a subsequence N < N, §(N') = 1, such that
(2.14) yolim Z an’ =0.
1<n<N
Then
. Qn
(2.15) lim = 0.
N—o logN 1<nZ<N
Proof. Let M = N\, so that
1 1
(2.16) lim o= =o
N—w log N <N meM n
By (1.8), we have
an En 1
Z — =&nN+ Z R where &, := — A
1<n<N " t<nan—1 T " 1<msn
Setting C' := sup,, | €y, we obtain
1ogNKn$N logN logNngN’neMn—i—l logNngN’nENn+1
C C 1 1 &
1N+1N27+1NZ =ik
08 08 n<N,neM n 08 n<N,neN n+
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and then assertion (2.15) follows from (2.16) and (2.14). O

Proof of Theorem 2.1. Let f € %;. By (2.2), (2.3) and Lemma 2.3, we obtain that
for any fixed large H € N, there exists a set Ny g with the property

1
> & =1/ Re(H),
§ NfﬂHBNSNS
and such that, for N € Ny i, we have

2 ¢>< Y7 Swint

1<n<N 1<h<H

lim inf
s—o  log

)i

By deleting at most finitely many elements, we may assume that N7 g consists only
of elements of size at least H. For any Hy, if we set Ny >p, 1= Un=n, Ny, then
Ny >, satisfies lim_,o(1/1log Ny) ZNf,;HoaNSNs + = 1. By Lemma 2.4, we can
find a set NV, ¢ of natural numbers with

1 1
— =1

NfSNSNS

I
560 log N,

)

and such that, for every Hy, every sufficiently large element of N lies in N> g, .
Thus, for every sufficiently large N € Ny, one has
i

2 ¢ ( Z Sninf
for some H > Hy with N > H?. By the monotonicity of ¢ and Jensen’s inequality,

th'is I.Illp]‘i es tlla‘t
( )

(v
> Snt ) \ Ry (H),

1<h<H
so that, setting ¢ (s “1(\/s), s > 0, we get

> Sn+hf

1<n<N 1<h<H

> 2 5n+hf

1<n<N 1<h<H

}vw(
)=

Z Sn-i—hf

1<h<H

1<n<N

(2.17) W(Rp(H)) >0, H— .

Next, by computation, we get

h+N
2 2 Swnf= 2 )L Swmf= ) ), Swf=
1<n<N 1<h<H 1<h<H 1<n<N 1<h<H m=h+1
N+h
HZSmf+ 2, X Smf= 2 ), Saf
1<h<Hm=N+1 I<h<H 1<m<h

which gives
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1 Y 1
Nz:]m:H—E D Snin

1 1<n<N 1<h<H
N+h
v 2 X Sf + D1 DL Saf
1<h<Hm N+1 HN 1<h<H 1<m<h

Now, let us fix Hy. For any sufficiently large N € Ny, there exists H > Hp, with
H? < N, such that N e /. r,1- The triangular inequality yields

>0 Sn+hf

1<n<N 1<h<H

N
mf

N+h

2 ZSmf

1<h<H m=N+1

Using (2.17), we can upper bound the first term in the right-hand side by ¥ (R f( ).
The sum of the other two terms can be upper bounded by

M||f||1 Rl 2HMHfH1 _ 2Mfl
Bz 3w 3 3 )L 2

1<h<H m=N+1 1<h<H 1<m<h

2 ZSmf

1<h<H 1<m<h

We thus get that

< sup Y(Ry(H)) + %

1
N H>Ho Hy

N
2, S
m=1 2

By letting Hy go to infinity, we conclude that limy o, Nen; H(l/N) ZTanl Sme2 =
0.

Let now (fx)k>1 be a dense set in %B;. Then, by Lemma 2.4, we get a set N of
natural numbers with the property lims—o(1/1log Ns) D nsv<n, + =1, such that
for any k € N,

lim S, =
N—o0, NE./\/N Z—l mfk 9
Take g € #;1. Then for any € > 0 there exists f such that |g — fx|1 < ¢/M, and
then
L&
N Z Smg = N mfk + €,
m=1 2 m=1 2
which, by the above, yields
N
li — S, =0.
L DI
m=1 2

So, statement (2.5) is proved. Assertion (2.6) follows from (2.5) by Lemma 2.5. [J

Note that in the sequel we will use Theorem 2.1 mainly for ¢(s) = s (or sometimes

for ¢(s) = s?).



1366 A. GOMILKO, M. LEMANCZYK, AND T. DE LA RUE

3. PROOF OF THEOREM 1.1
To prove Theorem 1.1 we will show a stronger result:

Theorem 3.1. Let (%5, - |;), j = 1,2, be normed vector spaces and assume that
P is separable. Let (Sk)p=1 be a sequence of linear bounded operators from %y to
PBa, such that for some M > 0 we have, for each f € %1 and each k > 1,

|Skfll2 < M| f]1-

Assume that (Sk)r=1 satisfies the property: for all increasing sequences (by) < N
with bgy1 — by — 00 and f € B, we have

. 1 1
[}gnoo logbx 41 Z Z ESnf =0

k<K ||bp<n<biii 9

Then there exists A < N with full logarithmic density: 6(A) = 1, such that for each
[ e %,

lim =0.
A35N—w0

3 S

n<N

2

The proof of Theorem 3.1 will use the following intermediate result whose proof
depends on some ideas which first appeared in [1].

Proposition 3.2. Let (%;,|-|;), j = 1,2 be normed vector spaces. Let (Sy)n=1 be
a sequence of linear bounded operators from 9By to PBa, such that for any (by) = N
with 0 < bgy1 — by — 0 as k — 0, and any f € B, we have

1 1
3.1 _ Lol —o
3 logbx+1 k;( kaE

n<bpi1 2
Then
(3.2) Tim 7 o0 lim ! > L4 D1 Spinf| =0
. IMH el IMN o0 77— — |5 n+h = U.
log N n<N H h<H 9

We will prove this result by contraposition, and we will need the following lemma.

Lemma 3.3 (Diagonalization Lemma). Consider a family of sequences (gnm) <
R4, m >mn, m,n > 1. Suppose that for some families (by¢)ie=1 < N with

(3.3) 0 <bre <brire limyoolimy o (bgs1e — bre) = o0,

and some v > 0, we have

1 K

3.4 limg_op ————
(34) K2 log bi 410 =

Ibr o brer1,e Z Vs for all ¢ € N.

Then there exists a sequence (bi)k=1 < N such that

(35) 0< bk < bk+1, bk+1 — bk —> 0,
k—o0
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and

1 K
3.6 limg_,00 ———— > /2.
( ) 1M K¢ OclogbK+1 k:1-gbk7bk+1 /7/

Proof. Note that by (3.3), we have by411—bg1 > 1 for each k > 1, and that without
loss of generality we may assume that for each ¢ > 1, we have lim;,_, ., (by11,0—br¢) =
0. By (3.4) for £ = 1, we can choose the value K so that

1 K

m I§1 Gor1 b1 = /2

and take then, for £ =1,..., K1 + 1, by := by 1, to obtain
1 K

T = /2.
10g bx, 1 kzlgblmkarl /7/

We continue the above process by induction. Suppose that for some ¢ > 1 we

already have sequences 0 = Ko < K; < -+ < Ky, 1 < by < b < -+ < bg,41,
satisfying, for each s = 1,...,¢,
(3.7) bpy1 —bpr=s, k=Ks1+1,..., K,
and
1 &

log bk, +1 =1

Then, at step ¢ + 1, we first choose Ny large enough so that b, 24N, 641 =
br,+1 + ¢+ 1, and, for each k > Ky + 2+ Nyp1, bpt1041 — b e41 = £+ 1. Then, by
(3.4), we can choose Kyy1 > Ky + 2 large enough so that

1 Kop1+Neya

log bre, 1 +1+ Ny 041 k=Kot 24 Npsy

bk g+1.bp 41,0401 = v/2,

and we take for k = K, +2,..., Ky 1+ 1:

b := bkt Nyy1 041-

Then assertions (3.7) and (3.8) are valid up to s = ¢ + 1, and this allows us to
construct inductively the sequences (b )r>1 with the required properties (3.5), (3.6).
[

Proof of Proposition 3.2. Suppose that for some f € %1, (3.2) does not hold. Then,
there exist v > 0 and a sequence (Hy), Hy — o as { — o0, such that for each ¢ > 1,

we have
Z Sn-‘rhf

limN_,oo Z
N Hy 1<h<H,

1<n SN

We write this in the form
Hy—1

CIRREES S
lgNHZT0n<Nnng]

Z Sn+hf

1<h<H,
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Then there exists rp, 0 < 1y < Hy, such that

— 1 1
lIlmpy o 710gN Z — Z Sninf|| =7.
n<N,n=ry [Hy] 1<h<H, 9
Using
1 1 h 1 H?
- = + ,  lim 2 —5 =0,
n n+h n(n+h) NowologN <Ny ] ™
we obtain
Toven iy 8| X agpeens|
IMyN_ g —— n+h Z 7
IOgN n<N,n=ry [H,] I1<h<H, n+h 9
or
A B
Imy_0 —— - >
N log N m- " v
n<N,n=ry [Hy] In<m<n+H, 9
Rewrite this inequality in the form

k=1 |kHy+rp<m<(k+1)H;+ry 2

and take, for a fixed ¢, the sequence (b ¢)r>1 defined by by, o := kHy+rp+1. Setting
Ky :=[N/H,] for each N, we have logbg, 4+1,¢/log N = 1, hence
—00

\%

lim sup # 2 Z % mf

log b i
K- 189K+l x|l <

m<bgi1e 9

We can now apply the Diagonalization Lemma 3.3 with the sequences

2 Lsi

n<j<m J

Inm =

2
We obtain that there exists a sequence (by)g>1 with 0 < bgy1 — by - o0, such
—00

that

I
08 DK +1 1 e |y <ombiny )

Hence (3.1) is not satisfied O
Proof of Theorem 3.1. By Proposition 3.2, we obtain that if we set

PN A SRS

1<n<N 1<h<H

R¢(H) := limsup
s(H) := lim su g N

)

2
then limp_,o Rf(H) = 0, so the result follows from Theorem 2.1 with ¢(s) = s. O

Proof of Theorem 1.1. We apply Theorem 3.1 to #B; = By = C(X) and Si(f) :=
p(k)foT". 0




MOBIUS ORTHOGONALITY IN DENSITY 1369

4. PROOF OF COROLLARY 1.2 AND RELATED RESULTS

Recall that a point y in a topological dynamical system (Y, S) is quasi-generic
for some measure v if, for some subsequence (Ny) of integers and all f € C(Y), we

have
w2 S — J fdv.

Ny 1<n<Nj

Likewise, we say that y is logarithmically quasi-generic for v if, for some subsequence
(N) of integers and for all f € C(Y), we have

1 1
— d
log Ni 1<Z n k—co f fdv.

<n<Nj

Observe that any measure for which y is logarithmically quasi-generic is S-invariant.
We will use here the following result from [10] (see the remark after Theorem 1.3
therein).

Theorem 4.1 (Frantzikinakis and Host). Let (Y,S) be a topological dynamical
system, and lety € Y. Assume that, for any measure v for which y is logarithmically
quasi-generic, the system (Y,v,S) has zero entropy and countably many ergodic
components. Then for any g € C(Y), we have

> *g (S"y)p(n) =

1<n $N

4.1 li
(4.1) Nooo logN

Proof of Corollary 1.2. Let us consider a dynamical system (X,T) with zero topo-
logical entropy, and such that M¢(X,T) is countable. In view of Theorem 1.1, all
we need to prove is that (X,T) satisfies the logarithmic strong MOMO property.
That is, we fix an increasing sequence (b)) < N with by —br — o0 (and we assume
without loss of generality that b = 1), a sequence (z;) € X and f € C(X), and we
have to show the following convergence

(42) N D Y (s TS| )

K
logbr+1 /S br<n<bii1 -

According to [3, Lemma 18], it is sufficient to show that

(4.3) Loy, >

1
- P () ——0,
UK+ UK b<n<bis

E K—o
where ey, € X3 := {>™J/3 : j = 0,1,2} is chosen so that the product
1
€k Z gf(T"xk)u(n)
bp<n<bii1

belongs to the closed cone {0} U {z € C: arg(z) € [-7/3,7/3]}.
In order to show (4.3), we consider the space Y := (X x X3)N with the shift 3,
and in this system the point y = (y,)nen defined by

Yn = (T"wp,ep) if bp <n <bpypy (B =1).
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Let v be a measure for which y is logarithmically quasi-generic. The same argument
as in [3] (see the proof of (P2 = P3)) shows that ¥ must be concentrated on the set
of sequences of the form

((z,a), (Tz,a),(T?z,a),...) (ve€X,aes).

Now, let us consider an ergodic component p of v. The marginal of p on the first
coordinate x must be an ergodic T-invariant measure on X. By assumption, there
are only countably many of them, and all of them give rise to zero-entropy sys-
tems. The marginal of p on the second coordinate a is one of the three Dirac
measures 01, Ouizr/3, Ogian/3. Moreover these two marginals must be independent
by the disjointness of ergodic systems with the identity, thus, these two marginals
completely determine p. Hence, we see that there can be only countably many
possible ergodic components of v, and all of them have zero entropy. Thus y sat-
isfies the assumptions of Theorem 4.1, and we have (4.1) for each g € C(Y). In
particular, if we take the continuous function g defined by g(z) := agf(zo) for each
z = ((20,a0), (21,a1),...) € Y, we obtain (4.3). O

Remark 4.2. We can characterize uniform convergence for Mobius orthogonality
in terms of a MOMO type convergence. Indeed:

The uniform convergence in Mdobius orthogonality (1.1) holds if and only if for all
(br) satisfying by/bi+1 — 0, we have

1
o p(n)foTm —=0
R o(x) -

To see this equivalence, it is sufficient to note that for each x € X,

Y ) - S ).

br+1 b
k+1 1<n<bk+1 k+1 Uk 1$n<bk

Remark also that the same arguments work for logarithmic averages (replacing
bk/bk+1 — 0 with log bk/ log bg11 — 0)

5. MISCELLANEA

5.1. Ergodic measures. In this section, we show that Tao’s approach persists, if
we consider the main observation from [12].

Let (X,T) be a dynamical system. Given z € X and n € N, we write dpn(,) for
the Dirac measure concentrated at the point 7" (z). Let

1 . 1 1
E(ZE,N) = N Z 5T”((£)7 5 g(fl}',N) = lOgN Z ﬁé’]"n(w)
1<n<N 1<n<N

We consider here the convergence of these empirical measures in the weak™ topology.
Note that any accumulation point of the above sequences is always a T-invariant
probability measure on X.
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Theorem 5.1. Suppose that for some x € X and some subsequence (Ng)s=1 of
natural numbers, we have

(5.1) lim £%8(x, N,) = k, where r is ergodic.
§—00
Then there exists a set N of natural numbers with the property
1 1
5.2 lim — =1,
(5:2) s—w log N NoNen. N
such that
. li N) =
>3 I

Proof. The condition (5.1) means that for any f € C(X) we have

(5.4) lim IOgN Z f (T"w) JX fdrk.

Let f € C(X) be fixed, and set Sf := Sdeli. For H € N, we consider the
limiting of the second moment

2

R;(H) := lim

n+m,.\ _
i v fr"e) = Sf

1

T =
ﬁMm

S|

1<n<N;g

The limit does exist by (5.1), as the internal is given by a continuous function sum
sampled at z. So, by condition (5.4), we have

1 H
(55) Ry = [ | D ) -
m=1

Hence, directly by the von Neumann ergodic theorem, and using the ergodicity of x,
we obtain limg ., Rf(H) = 0. Take now #; = C(X), %> = C with the sequence of
functionals Sy f := f(T*z) — Sf, k € N, and we obtain statement (5.3) by Theorem
2.1. ]

2
dr(x).

5.2. Davenport-Erdés theorem. Davenport-Erdés theorem [7] is the fact that,
given # < N, the %B-free set F, i.e. the set of those numbers that have no divisor
in %, has logarithmic density and, moreover, §(Fz) = d(Fz). In fact, see [8],
the point 1r, is logarithmically generic for the relevant Mirsky measure which
is ergodic. Hence, by Theorem 5.1, we obtain that the upper asymptotic density
d(F) is obtained along a subsequence of logarithmic density 1. We can however
obtain this result in an elementary way. Indeed for a subset A € N and N € N, set

dy (A) = % 2<n<n La(n) and dog (4) = 10gN 2i<n<N n]lA( ) More generally,
given a = (an)neN a sequence of real numbers, set dy (a) := lensN ap and

1
dy? (a) = 10gN Di<n<N B

Proposition 5.2. Let a = (an)neN be a bounded sequence of real numbers, and
let £ := limsupy_,,, dy (a). Assume that limy_o d' ~ (a) = €. Then there exists
B < N with limpy_,q dlog (B) =1 such that limpsy o0 dy (a) = £.
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Proof. Step 1 For any ¢ > 0, set B. := {N € N : dy(a) > ¢ —¢e}. Then
limpy_ o0 dlji}g (B:) = 1. Indeed, let us introduce the sequence b = (by,)nen defined by
by := 0, and for each n > 2, b, := d,—1 (a). The Abel summation formula yields

_dy (a)

dlog _
N (@) log N

+dB(b).

By assumption, we thus have limy_,q, dljs,g (b) =4. Let
B.:={NeN:by>l—c}(=B.+1)and A, :=N\B. = {NeN: by < —¢}.

In the computation of dﬁg (b), the contribution of Z; is bounded above by
(=) (&) = (-2 (1-a3# (B)).

On the other hand, using the fact that lim supy_,,, by = ¢, the contribution of §;
to dlﬁ,g (b) is bounded above by Edlji}g (E;) +0(1). Therefore, we have for each N € N

4% (b) < (0 —¢) <1 —d% (E;)) + 0d\%% (BZ) +o(1)
— ed® <§a> + 0 —¢e+o(1).

But we know that limpy_.« dk),g (b) = ¢, and it follows that limpy_,q dlﬁ,g (E;) = 1.
Finally, since f?; = B. + 1, we also get limy_,o dljf’,g (B:) = 1.

Step 2 We construct the announced set B as follows. First we fix a decreasing
sequence (g) of positive numbers going to 0 as k — o0. By Step 1, we know

that df,g (Be,) = 1. Then we construct a strictly increasing sequence (Nj)
-0

of integers such that Vk, VN > N, dﬁg (Be,) > 1 — €. Finally we define B by
Bn{l,...,Ny—1}:={1,...,Ny—1},and foreach k > 1, BN {Ng,..., Npp1—1} :=
Bz—:k ﬂ{Nk,...,Nk+1—1}. Il

5.3. Deriving a density version of the PNT from the logarithmic Chowla
conjecture of order 2.

Lemma 5.3. Assume that A ¢ N with §(A) = 1. For each m € N set

(5.6) Ap i={neN: [n/m] e A}

Then §(Ap,) =1 for all m e N.

Proof. Let m = 2 be fixed. Note that if n € A, then

(5.7) mn+j€A, 7=01,...,m—1,

and
-1

(5.8) >

7=0

1 (n+1) gy 11
.>j — =log(l1+1/n)= - — —.
mn + j mn t n  2n2
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Given € € (0 1), we have 1og1N Dinea, nSN% >1—¢/2for N > N.. Setting ¢ :=

Y12 = %, we may assume that

c log N
210gN6<6/2 and o gmN>l—e for all N > N..
It follows that for any N > by (5.8) and (5.7), we have
1 1
1—¢/2< —
log N neA, n<N n
_ 1 = 1 3 1
\logNneA = mn + j 2logN eA,n<Nn2
1 1
< Z —+¢€/2.
0g N | a fmvan) ©
Therefore, for all N = N, we have
1 1 logN 1 1
> gy % E T lgmNiogN = 1-9%
O8N e Ay, k<mN 08 MUV 08 IV e A <mN

Letting ¢ — 0, we obtain limy_,o logmN DkeA,,, k<mN # =1, and then §(A4,,) =
1. O

By Lemmas 5.3 and 2.4 we obtain the following:
Lemma 5.4. Let A c N with §(A) = 1. Then there exists A = N with §(A) =
such that for any m € N there exists Ny, satisfying
(5.9) An{n:n=N,}c ﬂ Ay,

(sets Ay are defined by (5.6)).

Given u : N — C, let U(x) := >, _, u(n), for z > 0, denote the corresponding
summation function.

Lemma 5.5. Let A < N with 6(A) =1, and let u : N — C such that

Un) N

n Asn—o0
Then there exists A A, (5(11) = 1 such that, for each a = 1 and € > 0, we can find
X = X(a,€) > 1 for which

Vo> X, [z]e A= ) |U(x/n)| <ex

n<a
Proof. We have a set A as in Lemma 5.4, so & (/T) . Let a = 1 be fixed. Denote
C = Zn<a ~ and choose K > 1 so that
(5.10) Asfe] s Kk = T OADE e
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Taking m = [a] and using Lemma 5.4, we choose Ny, such that (5.9) holds, i.e.
[n],[n/2],...,[n/m] € A whenever n € A and n > Np,. Then for z > (m +
1) max{Ny,, K} with [z] € A, by (5.10), we have >, _ [U(z/n)| < X, corC& =

g

xe.

Proposition 5.6. The statement logarithmic Chowla conjecture (for ) holds® for
auto-correlations of length 2 implies that there exists a sequence A < N, 6(A) =1,
such that >, . A(n) = x +o(x) for Asx — 0.

n<r

Proof. By Theorem 2.1 7 (or directly by Tao’s proof in [18]), we obtain that
%anN p(n) — 0 when A > N — oo, where 6(A) = 1.

Following [4], we repeat the proof that M (u) := limy o D3, < (1) = 0 implies
PNT. We have

YA =a— Y udfl)+0()

n<T q,d;qd<z

for some arithmetic function f. All we need to show is that >, ;.. #(d)f(q) =
o(x). Using summation by parts, one arrives at

(5.11) Y, w@d)f(a) = Y, pm)F(x/n)+ Y f(n)M(z/n) — F(a)M(b),
q,d;qd<z n<b n<a

where ab = z. Moreover, F(x) = B - \/z for a constant B > 0. It follows that the
first summand in (5.11) is bounded by Biz/+/a for a constant B; > B. Indeed,

< BVz < BiVbyz = B —.
L va

We fix € > 0 and choose a > 1, so that B;/y/a < & which yields the first summand
< ex for all x = 1. To majorate the second summand, we use

Z f(n)M(x/n)

n<a

3 uln)F(a/n)

n<b

<F Y [M(@/n)l, Fu:=max{|f(n)] : n <a},

n<a

and Lemma 5.5 (with v = p). Finally, the third summand is majorated in the same
way as in [4]. O

Acknowledgments. Research of the first and second authors supported by Naro-
dowe Centrum Nauki grant UMO-2019/33/B/ST1/00364.

6proved by Tao in [16].
"Note that if (ch,) is a bounded sequence of complex numbers with
limy oo ﬁ DineN %cncm_h = 0 for each h # 0 then for

2
Z Cn+h

h<H

Ru((cn)) : 7hmsup1 gN Z -

we have limp o Ry ((cn)) = 0.
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