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yl of xl are {xljl}
nl
jl=1 and {yljl}

nl
jl=1 respectively and are related as follows

(1.2) yl =W lxl−1 + bl, xljl = φ(yljl), jl = 1, ..., nl, l = 1, ..., L,

where

(1.3) W l = {W l
jljl−1

}nl,nl−1

jl,jl−1=1, l = 1, ..., L

are nl × nl−1 rectangular weight matrices,

(1.4) bl = {bljl}
nl
jl=1, l = 1, 2, ..., L

are nl-component bias vectors and φ : R → R is the component-wise nonlinearity.
Assume that the biases components {bljl}

nl
jl=1 are the Gaussian random variables

such that:

(1.5) E{bljl} = 0, E{bl1jl1 b
l2
jl2

} = σ2b δl1l2δjl1jl2 .

As for the weight matrices W l, l = 1, 2, ..., L, it is assumed that

W l = n
−1/2
l−1 X l = n

−1/2
l−1 {X l

jljl−1
}nl,nl−1

jl,jl−1=1,(1.6)

E{X l
jljl−1

} = 0, E{X l1
jl1jl1−1

X l2
jl2jl2−1

} = δl1l2δjl1jl1−1
δjl2jl2−1

,

the matrices X l, l = 1, 2, ..., L are independent and identically distributed and for
every l we view X l as the upper left rectangular block of the semi-infinite random
matrix

(1.7) {X l
jljl−1

}∞,∞
jl,jl−1=1

with the standard Gaussian entries.
Likewise, for every l we view bl in (1.4) as the first nl components of the semi-

infinite vector

(1.8) {bljl}
∞
jl=1

whose components are Gaussian random variables normalized by (1.5) with nl =
∞, l = 1, 2, ..., L.

As a result of this form of weights and biases of the lth layer they are for all
nl = 1, 2, ... defined on the same infinite-dimensional product probability space Ωl

generated by (1.7) – (1.8). Let also

(1.9) Ωl = Ωl × Ωl−1 × ...× Ω1, l = 1, ..., L

be the infinite-dimensional probability space on which the recurrence (1.2) is defined
for a given L (the number of layers). This will allow us to formulate our results on
the large size asymptotics of the eigenvalue distribution of matrices (1.12) as those
valid with probability 1 in ΩL.

Note that matrices W l(W l)T of (1.3) and (1.6) are known in statistics as the
Wishart matrices [14].

Consider the input-output Jacobian

(1.10) JL
nL

:=

{
∂xLjL
∂x0j0

}n0,nL

j0,jL=1

=

L∏
l=1

n
−1/2
l−1 DlX l, nL = (n1, ..., nL)
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i.e., a nL × n0 random matrix, where

(1.11) Dl = {Dl
jl
δjlkl}

nl
jl,kl=1, D

l
jl
= φ′

(
n
−1/2
l−1

nl−1∑
jl−1=1

X l
jljl−1

xl−1
jl−1

+ bljl

)
are diagonal random matrices.

We are interested in the spectrum of singular values of JL
nL

, i.e., the square roots
of eigenvalues of

(1.12) ML
nL

:= JL
nL

(JL
nL

)T

for networks with the above random weights and biases and for large {nl}Ll=1, i.e., for
deep networks with wide layers, see [10, 12, 20–22, 26] for motivations and settings.
More precisely, we will study in this paper the asymptotic case determined by the
simultaneous limits

(1.13) lim
Nl→∞

nl−1

nl
= cl ∈ (0,∞), nl → ∞, l = 1, ..., L

denoted below as

(1.14) lim
nL→∞

.

Denote {λLt }
nL
t=1 the eigenvalues of the nL × nL random matrix ML

nL
and define its

Normalized Counting Measure (NCM) as

(1.15) νML
nL

:= n−1
L

NL∑
t=1

δλL
t
.

We will deal with the leading term of νML
nL

in the asymptotic regime (1.13) – (1.14),

i.e., with the limit

(1.16) νML := lim
nL→∞

νML
nL

if any. Note that since νML
nL

is random, the meaning of the limit has to be stipulated.

The problem was considered in [21] (see also [10,20]) in the case where all bl and
X l, l = 1, 2, ..., L in (1.5) – (1.6) are Gaussian and have the same size n and n× n
respectively, i.e.,

(1.17) n := n0 = ... = nL.

We will write in this case n instead of nl, l = 0, ..., L. In [21] compact formulas for
the limit

(1.18) νML := lim
n→∞

νML
n
, νML

n
:= E{νML

n
}

and its Stieltjes transform

(1.19) fML(z) =

∫ ∞

∞

νML(dλ)

λ− z
, ℑz ̸= 0
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were proposed. The formula for νML is given in (2.4) below. To write the formula
for fML it is convenient to use the moment generating function

(1.20) mML(z) =
∞∑
k=1

mkz
k, mk =

∫ ∞

∞
λkνML(dλ),

related to fML as

(1.21) mML(z) = −1− z−1fML(z−1).

Let

(1.22) K l
n := (Dl

n)
2 = {(Dl

jl
)2}njl=1

be the square of the n × n random diagonal matrix (1.11) with nl = n, denoted
Dl

n to make explicit its dependence on n of (1.17), and let mKl be the moment
generating function of the n→ ∞ limit νKl of the expectation of the NCM of K l

n.
Then we have according to formulas (14) and (16) in [21] in the case where νKl ,
hence mKl , do not depend on l (see Remark 2.2 (i))

mML(z) = mK(z1/LΨL(mML(z))),(1.23)

ΨL(z) = (1 + z)1/Lz1−1/L.

i.e., fML of (1.19)) satisfies a certain functional equation, the standard situation in
random matrix theory and its applications, see [17] for general results and [8, 15]
for results on the products of random matrices. Note that our notation is different
from that of [21]: our fML(z) of (1.19) is −GX(z) of (7) in [21] and our mML(z) of
(1.20) is MX(1/z) of (9) in [21].

The derivation of (1.23) and the corresponding formula for the limiting mean
NCM νML in [21] was based on the claimed there asymptotic freeness of diagonal
matrices Dl

nl
= {Dl

jl
}nl
jl=1, l = 1, 2..., L of (1.11) and Gaussian matrices X l

nl
, l =

1, 2, ..., L of (1.3) – (1.6) (see, e.g. [5, 13, 19] for the definitions and properties of
asymptotic freeness). This leads directly to (1.23) in view of the multiplicative
property of the moment generating functions (1.20) and the so-called S-transforms
of νKl and of νMP , the mean limiting NCM’s of K l

nl
and of n−1X l

nl
(X l

nl
)T in the

regime (1.13), see Remark 2.2 (ii) and Corollary 3.7.
There is, however, a delicate point in the proof of the above results in [21], since, to

the best of our knowledge, the asymptotic freeness has been established so far for the
Gaussian random matrices X l

nl
of (1.6) and deterministic (more generally, random

but X l
nl
-independent) diagonal matrices, see e.g. [5, 13, 19] and also [8, 15] treating

the product matrices of form (1.12) with X l
n-independent diagonal matrices. On the

other hand, the diagonal matrices Dl
n in (1.11) depend explicitly on (X l

n, b
l
n) of (1.3)

– (1.4) and, implicitly, via xl−1, on the all “preceding” (X l′
n , b

l′
n), l

′ = l − 1, ..., 1.
Thus, the proof of validity of (1.23) requires an additional reasoning. The goal of
this paper is to provide this reasoning, thereby justifying the basic formula (1.23)
and the corresponding formulas for the mean limiting NCM νML of (1.18), see
formula (13) of [21] and formula (2.7) below. Moreover, we prove that the formula
(1.16) is valid not only in the mean (see (1.18)), but also with probability 1 in ΩL

of (1.9) (recall that the measures in the r.h.s. of (1.16) are random) and that the
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limiting measure νML in the l.h.s. of (1.16) coincides with νML of (1.18), i.e., νML

is nonrandom.
Note that a possible version of the proof of the above assertions could be carried

out by extending the corresponding proofs in free probability (see, e.g. [13, 19]) to
the case where the diagonal matrices are given by (1.11). We will prefer, however,
another approach based on the standard techniques of random matrix theory, see
e.g. [17]. There the main technical tools are some differentiation formulas (see, e.g.
(3.50)), providing certain identities for expectations of essential spectral character-
istics, and bounds (Poincaré, martingale) for the variance of these characterizes,
guaranteing the vanishing of their fluctuations in the large size (layer width) limit,
thereby allowing for the conversion of the obtained identities into functional equa-
tions for the characteristics in question, the Stieltjes transform of the limiting NCM
in particular. This, however, has to be complemented (in fact, preceded) by a certain
assertion (see Lemma 3.3) justifying the asymptotic replacement of random X l

nl
-

dependent matrices Dl
nl

in (1.10) – (1.11) by certain random but X l
nl
-independent

matrices (see (3.19) – (3.20)) and allowing us not only to substantiate the results
of [21], but also to extend them to the case of i.i.d. but not necessarily Gaussian
(X l

nl
, blnl

), l = 1, ..., L [18].
The paper is organized as follows. In the next section we prove the validity

of (1.16) with probability 1 in ΩL of (1.9), formula (1.23) and the corresponding
formula for νML = νML of [21]. The proofs are based on a natural inductive
procedure allowing for the passage from the lth to the (l + 1)th layer. In turn, the
induction procedure is based on a formula relating the limiting (in the layer width)
Stieltjes transforms of the NCM’s of two subsequent layers. The formula is more or
less standard both in its form and its derivation in the case where the matrices Dl

n

in (1.10) are deterministic or random but independent of (X l′
n , b

l′
n), l

′ = l, l−1, ..., 1,
see e.g. [6,17] and references therein.The case of dependent Dl

n as in (1.11) is treated
in Section 3.

It follows from the results of the section that the coincidence of the limiting
eigenvalue distribution of matrices of two indicated cases is due to the form of
dependence of Dl

n on (X l′
n , b

l′
n), l

′ = l, l− 1, ..., 1 given by (1.11), which is, so to say,
“slow varying” and does not contribute to the leading term (the limit (1.16)) of the
corresponding eigenvalue distribution.

2. Main Result and its Proof.

As was already mention ed in Introduction, our goal is to present a more complete
proof of the results of work [21] by using random matrix theory. Thus, to formulate
our results, we need several facts of the theory.

Consider for every positive integer n: (i) the n×n random matrix Xn with entries
which are independent standard (mean zero and variance 1) Gaussian random vari-
ables; (ii) positive definite (and independent of Xn) matrices Kn and Rn that may
be also random but independent of Xn and such that their Normalized Counting
Measures νKn and νRn (see (1.15)) converge weakly (with probability 1 if random)

as n → ∞ to non-random measures νK and νR. Set Mn = n−1R
1/2
n XTKnXnR

1/2
n .

According to random matrix theory (see, e.g. Lemma 3.5 below, [6] and references
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therein), in this case the Normalized Counting Measures νMn ofMn converge weakly
with probability 1 as n→ ∞ to a non-random measure νM which is uniquely deter-
mined by the limiting measures νK and νR via a certain analytical procedure (see,
e.g. formulas (1.19) and (3.10) – (3.12) below). We can write down this fact as

(2.1) νM = νK ⋄ νR
and say that the procedure defines a binary operation in the set of non-negative
measures with the total mass 1 and a support belonging to the positive semiaxis
(see more details in Lemma 3.5 and Corollary 3.7). The main result of [21] and
of this paper is that the limiting Normalized Counting Measure (1.16) of random
matrices (1.12), where Kn is given by (1.11) and (1.22) and depends on Gaussian
matrices X l’s of (1.6), can be found as the “product” with respect the operation
(2.1) of L measures νKl , l = 1, ..., L which are indicated in Theorem 2.1 and are
the limiting Normalized Counting Measures of special random matrices that do not
depend on X l’s of (1.6), see (3.20 and the subsequent text.

Note that the operation is just a version of the so-called multiplicative convolution
of free probability theory [13, 19], having the above random matrices as a basic
analytic model.

We will follow [21] and confine ourselves to the case (1.17) where all the weight
matrices and bias vectors are of the same size n. The general case of different sizes
is essentially the same (see, e.g. Remark 3.2 (iii)).

Theorem 2.1. Let ML
n be the random matrix (1.12) defined by (1.2) – (1.11) and

(1.17), where the biases bl and weights W l are random Gaussian variables satisfying
(1.5) – (1.6) and the input vector x0 (1.1) (deterministic or random) is such that
there exists a finite limit

(2.2) q1 := lim
n→∞

q1n > σ2b > 0, q1n = n−1
n∑

j0=1

(x0j0)
2 + σ2b .

Assume also that the nonlinearity φ in (1.2) is a piecewise differentiable function
such that φ′ is not zero identically and denote

(2.3) sup
t∈R

|φ(t)| = Φ0 <∞, sup
t∈R

|φ′(t)| = Φ1 <∞.

Then the Normalized Counting Measure (NCM) νML
n
of ML

n (see (1.15)) converges

weakly with probability 1 in the probability space ΩL of (1.9) to the non-random
measure

(2.4) νML = νK1 ⋄ νK2 ... ⋄ νKL ⋄ δ1,

where the operation “⋄” is defined in (2.1) (see also Lemma 3.5 and Corollary
3.7), δ1 is the unit measure concentrated at 1 and νKl , l = 1, ..., L is the probability

distribution of the random variable (φ′(γ
√
ql))2 with the standard Gaussian random

variable γ and ql determined by the recurrence

(2.5) ql = E{φ2(γ
√
ql−1)}, l ≥ 2,

with q1 given by (2.2).
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Remark 2.2. (i) If

(2.6) qL = · · · = q1,

then νK := νKl , l = 1, ..., L, (2.4) becomes

(2.7) νML = νK ⋄ νK · · · ⋄ νK︸ ︷︷ ︸ ⋄δ1
L times

.

An important case of equalities (2.6) is where q1 = q∗ and q∗ is a fixed point of
(2.5), see [12, 22, 26] for a detailed analysis of (2.5) and its role in the deep neural
networks functioning.

(ii) Let us show now that Theorem 2.1 implies the results of [21]. It follows
from the theorem, (2.21), and Corollary 3.7 that the functional inverse zM l+1 of the
moment generating function mM l+1 (see (1.20) – (1.21)) of the limiting NCM νM l+1

of matrix M l+1
n and that of M l

n are related as in (3.87), i.e.,

(2.8) zM l+1(m) = zKl+1(m)zM l(m)m−1.

Passing from the moment generating functions to the S-transforms of free proba-
bility theory via the formula S(m) = (1 + m)m−1z(m) and taking into account
that the S-transform of the limiting NCM of the Wishart matrix n−1XnX

T
n is

SMP = (1 +m)−1 (see [13]), we obtain from (2.8)

(2.9) SM l+1(m) = SKl+1(m)SMP (m)SM l(m).

Iterating this relation from l = 1 to l = L− 1, we obtain formula (13) of [21]. The
functional equation (1.23) arising in the case (2.6) of the l-independent parameters
ql of (2.5) is derived from (2.9) in [21].

(iii) In the subsequent work [18] we consider a more general case of not necessarily
Gaussian random variables, i.e., where the entries of independent random matrices
X l, l = 1, 2, ... in (1.10) – (1.11) are i.i.d. random variables satisfying (1.6) and
certain moment conditions and the component of independent vectors bl, l = 1, 2, ...
are i.i.d. random variables satisfying (1.5). It is shown that in this, more general
case, the conclusion of the theorem is still valid, however the measure νKl , l = 1, 2, ...

is now the probability distribution of (φ′(γ
√
(ql−1 − σ2b ) + bl1))

2, where γ is again

the standard Gaussian random variable and (2.5) is replaced by

(2.10) ql =

∫
φ2
(
γ
√
ql−1 − σ2b + b

)
Γ(dγ)F (db), l ≥ 2,

where Γ(dγ) = (2π)1/2e−γ2/2dγ, F is the probability law of bl1 and q1 is again given
by (2.2).

(iv) If the input vector (1.1) are random, then it is assumed that they are defined
on the same probability space Ωx0 for all n0 and the limit q1 exists with probability 1
in Ωx0 . An example of this situation is where {xlj0}

n0

j0=1
are the first n0 components

of an ergodic sequence {xlj0}
∞
j0=1 (e.g. a sequence of i.i.d. random variables) with

finite second moment. Here q1 in (2.2) exists with probability 1 on Ωx0 and even is
non-random just by ergodic theorem (the strong Law of Large Numbers in the case
of i.i.d sequence) and the theorem is valid with probability 1 in Ωl × Ωx0 .

We present now the proof of Theorem 2.1.
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Proof. We prove the theorem by induction in L. We have from (1.2) – (1.12) and
(1.17) with L = 1 the following n× n matrix

(2.11) M1
n = J1

n(J
1
n)

T = n−1D1
nX

1
n(X

1
n)

TD1
n.

It is convenient to pass from M1
n to the n× n matrix

(2.12) M1
n = (J1

n)
TJ1

n = n−1(X1
n)

TK1
nX

1
n, K

1
n = (D1

n)
2

which has the same spectrum, hence the same Normalized Counting Measure as
M1

n. The matrix M1
n is a particular case with Sn = 1n of matrix (3.1) treated in

Theorem 3.1 below. Since the NCM of the unit matrix 1n is the Dirac measure δ1,
conditions (3.2) – (3.3) of the theorem are evident. Condition (3.9) of the theorem
is just (2.2). It follows then from Corollary 3.7 that the assertion of our theorem,
i.e., formula (2.4) with q1 of (2.2) is valid for L = 1.

Consider now the case L = 2 of (1.2) – (1.12) and (1.17):

(2.13) M2
n = n−1D2

nX
2
nM

1
n(X

2
n)

TD2
n.

Since M1
n is positive definite, we have

(2.14) M1
n = (S1

n)
2

with a positive definite S1
n, hence

(2.15) M2
n = n−1D2

nX
2
n(S

1
n)

2(X2
n)

TD2
n

and the corresponding M2
n is

(2.16) M2
n = n−1S1

n(X
2

n)
TK2

nX
2
nS

1
n, K

2
n = (D2

n)
2.

We observe that M2
n is a particular case of matrix (3.1) of Theorem 3.1 with M1

n =
(S1

n)
2 as Rn = (Sn)

2, X2
n as Xn, K

2
n as Kn, {x1j1}

n
j1=1 as {xαn}nα=1, Ω1 = Ω1 of

(1.9) as ΩRx and Ω2 of (1.9) as ΩXb, i.e., the case of the random but {X2
n, b

2
n} -

independent Rn and {xαn}nα=1 in (3.1) as described in Remark 3.2 (i). Let us check
that conditions (3.2) – (3.3) and (3.9) of Theorem 3.1 are satisfied for M2

n of (2.16)
with probability 1 in the probability space Ω1 = Ω1 generated by {X1

n, b
1
n} for all n

and independent of the space Ω2 generated by {X2
n, b

2
n} for all n.

We will need here an important fact on the operator norm of n × n random
matrices with independent standard Gaussian entries. Namely, if Xn is such n× n
matrix, then we have with probability 1

(2.17) lim
n→∞

n−1/2||Xn|| = 2,

thus, with the same probability

(2.18) ||Xn|| ≤ Cn1/2, C > 2

if n is large enough.
For the Gaussian matrices relation (2.17) has already been known in the Wigner’s

school of the early 1960th, see [17]. It follows in this case from the orthogonal poly-
nomial representation of the density of the NCM of n−1XnX

T
n and the asymptotic

formula for the corresponding orthogonal polynomials. For the modern form of
(2.17) and (2.18), in particular their validity for i.i.d matrix entries with mean zero
and finite fourth moment, see [1, 28] and references therein.
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We will also need the bound

(2.19) ||K1
n|| ≤ (Φ1)

2,

following from (1.11), (1.22) and (2.3) and valid everywhere in Ω1 of (1.9).
Now, by using (2.12), (2.18), (2.19) and the inequality

(2.20) |TrAB| ≤ ||A||TrB,
valid for any matrix A and a positive definite matrix B, we obtain with probability
1 in Ω1 and for sufficiently large n

n−1Tr(M1
n)

2 = n−3Tr(K1
nX

1
n(X

1
n)

T )2 ≤ (CΦ1)
4.

We conclude that M1
n, which plays here the role of Rn of Theorem 3.1 and Remark

3.2 (i) according to (2.14), satisfies condition (3.2) with r2 = (CΦ1)
4 and with

probability 1 in our case, i.e., on a certain Ω11 ⊂ Ω1, P(Ω11) = 1.
Next, it follows from the above proof of the theorem for L = 1, i.e., in fact, from

Theorem 3.1, that there exists Ω12 ⊂ Ω1, P(Ω12) = 1 on which the NCM νM1
n

converges weakly to a non-random limit νM1 , hence condition (3.3) is also satisfied
with probability 1, i.e., on Ω12.

At last, according to Lemma 3.11 (i) and (2.2), there exists Ω13 ⊂ Ω1, P(Ω13) = 1
on which there exists

lim
n→∞

n−1
n∑

j1=1

(x1j1)
2 + σ2b = q2 > σ2b ,

i.e., condition (3.9) is also satisfied.
Hence, we can apply Theorem 3.1 on the subspace Ω1 = Ω11 ∩ Ω12 ∩ Ω13 ⊂

Ω1, P(Ω1) = 1 where all the conditions of the theorem are valid, i.e., Ω1 plays the
role of ΩRx of Remark 3.2 (i). Thus the theorem implies that for any ω1 ∈ Ω1 there

exists subspace Ω2(ω1) of the space Ω2 generated by {X2
n, B

2
n} for all n and such

that P(Ω2(ω1)) = 1 and formulas (2.4) – (2.5) are valid for L = 2. It follows then
from the Fubini theorem that the same is true on a certain Ω2 ⊂ Ω2, P(Ω2) = 1
where Ω2 is defined by (1.9) with L = 2.

This proves the theorem for L = 2. The proof for L = 3, 4, ... is analogous, since
(cf. (2.15))

(2.21) M l+1
n = n−1Dl+1

n X l+1
n M l

n(X
l+1
n )TDl+1

n , l ≥ 2.

In particular, we have with probability 1 on Ωl−1 of (1.9) for M l−1
n playing the role

of Rn of Theorem 3.1 on the lth step of the inductive procedure (cf. (3.2))

n−1Tr(M l)2 ≤ (CΦ1)
4l, l ≥ 2.

□

3. Auxiliary Results.

Our main result, Theorems 2.1 on the limiting eigenvalue distribution of random
matrices (1.12) for any L, is proved above by induction in the layer number l, see
formulas (2.13), (2.16) and (2.21). To carry out the passage from the lth to the
(l+1)th layer we need an expression for the limiting NCM νMl+1 of the matrixMl+1

n

via that of Ml
n in the infinite width limit n→ ∞. The corresponding results, which
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could be of independent interest, as well as certain auxiliary results are proved in
this section. In particular, a functional equation relating the Stieltjes transform of
νMl+1

n
and νMl

n
in the limit n→ ∞ is obtained.

Theorem 3.1. Consider for every positive integer n the n× n random matrix

(3.1) Mn = n−1SnX
T
nKnXnSn,

where:

(a) Sn is a positive definite n× n matrix such that

(3.2) sup
n
n−1TrR2

n = r2 <∞, Rn = S2
n,

and

(3.3) lim
n→∞

νRn = νR, νR(R+) = 1,

where νRn is the Normalized Counting Measure of Rn, νR is a non-negative mea-
sure not concentrated at zero and limn→∞ denotes here the weak convergence of
probability measures;

(b) Xn is the n× n random matrix

(3.4) Xn = {Xjα}nj,α=1, E{Xjα} = 0, E{Xj1α1Xj2α2} = δj1j2δα1α2 ,

with the independent standard Gaussian entries (cf. (1.6)), bn is the n-component
random vector

(3.5) bn = {bj}nj=1, E{bj} = 0, E{bj1bj2} = σ2b δj1j2

with the independent Gaussian components of zero mean and variance σ2b (cf. (1.5))
and for all n matrix Xn and the vector bn viewed as defined on the probability space

(3.6) ΩXb = ΩX × Ωb,

where ΩX and Ωb are generated by (1.7) and (1.8);

(c) Kn and Dn are the diagonal random matrices

(3.7) Kn = D2
n, Dn = {δjkDjn}nj,k=1, Djn = φ′

(
n−1/2

n∑
a=1

Xjαxαn + bj

)
,

where φ : R → R is a piecewise differentiable function, such that (cf. (2.3))

(3.8) sup
x∈R

|φ(x)| = Φ0 <∞, sup
x∈R

|φ′(x)| = Φ1 <∞,

and xn = {xαn}nα=1 is a collection of real numbers such that there exists

(3.9) q = lim
n→∞

qn > σ2b > 0, qn = n−1
n∑

α=1

(xαn)
2 + σ2b .

Then the Normalized Counting Measure (NCM) νMn of Mn converges weakly with
probability 1 in ΩXb of (3.6) to a non-random measure νM whose Stieltjes transform
fM (see (1.19)) can be obtained from the formulas

(3.10) fM(z) =

∫ ∞

0

νR(dλ)

k(z)λ− z
= −z−1 + z−1h(z)k(z),



RANDOM MATRICES IN DEEP NEURAL NETWORKS 1405

where the pair (h, k) is a unique solution of the system of functional equations

(3.11) h(z) =

∫ ∞

0

λνR(dλ)

k(z)λ− z

(3.12) k(z) =

∫ ∞

0

λνK(dλ)

h(z)λ+ 1
,

in which νR is defined in (3.3), νK is the probability distribution of (φ′(
√
qγ))2 with

q of (3.9) and the standard Gaussian random variable γ, i.e.,

(3.13) νK(∆) = P{(φ′(
√
qγ))2 ∈ ∆}, ∆ ∈ R,

and we are looking for a solution of (3.11) – (3.12) in the class of pairs (h, k)
of functions such that h is analytic outside the positive semi-axis, continuous and
positive on the negative semi-axis and

(3.14) ℑh(z)ℑz > 0, ℑz ̸= 0; sup
ξ≥1

ξh(−ξ) ∈ (0,∞).

Remark 3.2. (i) To apply Theorem 3.1 to the proof of Theorem 2.1 we need a
version of Theorem 3.1 in which its “parameters”, i.e., Rn, hence Sn, in (3.1) –
(3.3) and (possibly) {xαn}nα=1 in (3.7) and (3.9) are random, defined for all n on
the same probability space ΩRx, independent of ΩXb of (3.6) and satisfy conditions
(3.2) – (3.3) and (3.9) with probability 1 on ΩRx, i.e., on a certain subspace ΩRx ⊂
ΩRx, P(ΩRx) = 1. In this case Theorem 3.1 is valid with probability 1 in ΩXb×ΩRx.
The corresponding argument is standard in random matrix theory (see, e.g. Section
2.3 of [17]) and similar to that presented in Remark 3.6 (i). In deed, let ΩXb(ωRx) ⊂
ΩXb, P(ΩXb(ωRx)) = 1 be the subspace of ΩXb of (3.6) on which the theorem holds
for a given realization ωRx ∈ ΩRx of the parameters. Then it follows from the Fubini
theorem that Theorem 3.1 holds on a certain Ω ⊂ ΩRx × ΩXb, P(Ω) = 1. We will
use this remark in the proof of Theorem 2.1. The obtained limiting NCM νM is
random in general due to the randomness of νR and q in (3.3) and (3.9) which are
defined on the probability space ΩRx but do not depend on ω ∈ ΩXb. We will use
this remark in the proof of Theorem 2.1. Note, however, that in this case application
the corresponding analogs of νR and q are not random, thus the limiting measure
νML is a “genuine” non-random measure.

(ii) Repeating almost literally the proof of the theorem, one can treat a more
general case where Sm is m × m positive definite matrix satisfying (3.2) – (3.3),
Kn is the n × n diagonal matrix given by (3.7) – (3.9), Xn is a n × m Gaussian
random matrix satisfying (1.6) and (cf. (1.13)) limm→∞,n→∞m/n = c ∈ (0,∞).
The corresponding modifications of the theorem are given in Remark 3.6 (ii).

(iii) The theorem is also valid for not necessarily Gaussian Xn and bn (see [18]
and Remark 2.2) (iii).

We will prove now Theorem 3.1

Proof. Lemma 3.9 (i) implies that the fluctuations of νMn vanish sufficiently fast
as n → ∞. This and the Borel-Cantelli lemma reduce the proof of the theorem to
the proof of the weak convergence of the expectation

(3.15) νMn := E{νMn}
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of νMn to the limit νM whose Stieltjes transform solves (3.10) – (3.14). It suf-
fices to prove the tightness of the sequence {νMn}n of measures and the pointwise
convergence on an open set of C \ R+ of their Stieltjes transforms (cf. (1.19))

(3.16) fMn(z) :=

∫ ∞

0

νMn(dλ)

λ− z

to the limit satisfying (3.10) – (3.14).
The tightness is guaranteed by the uniform in n boundedness of

(3.17) µ(1)n =

∫ ∞

0
λνMn(dλ)

providing the uniform in n bounds for the tails of νMn .
According to the definition of the NCM (see, e.g. (1.15)), spectral theorem and

(3.1) we have µ
(1)
n = E{n−1TrMn} = E{n−2TrXnRnX

T
nKn} and then (2.20), (3.2)

– (3.4) and (3.7) – (3.8) yield

(3.18) µ(1)n ≤ n−2Φ2
1E{TrXnRnX

T
n } = Φ2

1n
−1TrRn ≤ r

1/2
2 Φ2

1.

This implies the tightness of {νMn}n and reduces the proof of the theorem to the
proof of pointwise in C \R+ convergence of (3.16) to the limit determined by (3.10)
– (3.12).

The above argument, reducing the analysis of the large size behavior of the eigen-
value distribution of random matrices to that of the expectation of the Stieltjes
transform of the distribution, is widely used in random matrix theory (see [17],
Chapters 3, 7, 18 and 19), in particular, while dealing with the sample covariance
matrices. However, the matrix Mn of (3.1) differs essentially from the sample co-
variance matrices, since the “central” matrix Kn of (3.7) is random and dependent
on Xn (data matrix according to statistics), while in the sample covariance matrix
the analog of Kn is either deterministic or random but independent of Xn.

This is why the next, in fact, the main step of the proof of Theorem 3.1 is to
show that in the limit n→ ∞ the Stieltjes transform (3.16) of (3.1) coincides with
the Stieltjes transform fMn of the mean NCM νMnof the matrix

(3.19) Mn = SnX
T
n KnXnSn,

where

(3.20) Kn = {δjkKjn}nj,k=1, Kjn = (φ′(q1/2n γj))
2,

φ is again defined in (3.7) – (3.8), {γj}nj=1 are independent standard Gaussian

random variables and qn is defined in (3.9).
This, crucial for the paper fact, is proved in Lemma 3.3 below provided that φ

in (3.7) and (3.20) and Sn, hence Rn in (3.1) and (3.19) satisfy the conditions

(3.21) max
x∈R

|φ(p)(x)| = Φ̃p <∞, p = 0, 1, 2,

and

(3.22) sup
n

||Rn|| = ρ <∞.

Thus, since Kn, being random, is Xn-independent, the n → ∞ limit of Stieltjes
transform fMn of the mean NCM νMn of (3.19) can be obtained by using one of the
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techniques of random matrix theory including those of free probability theory [5,13]
or based on the Stieltjes transform, see [6,17] and references therein. We will present
below the corresponding assertion as Lemma 3.5 and outline its proof based on the
Stieltjes transform techniques.

Hence, Lemmas 3.3 and 3.5 imply that the limiting Stieltjes transform fM of
(3.10) can be expressed via a unique solution of the system (3.10) – (3.14), provided
that φ and Rn in (3.1) satisfy the conditions (3.21) – (3.22), i.e., the assertion of
Theorem 3.1 is proved under these conditions. Let us show that these technical
conditions can be replaced by initial conditions (3.2) and (3.8) of the theorem.

We will begin with (3.8). For any φ having a piecewise continuous derivative and
satisfying (3.8) introduce

φε(x) = (2π)−1/2

∫
e−y2/2φ(x+ εy)dy

= (2πε2)−1/2

∫
e−(x−y)2/2ε2φ(y)dy, ε > 0.(3.23)

Then φε and φ′
ε converge to φ and φ′ as ε → 0 uniformly on a compact set of R

(except the discontinuity points of φ′) and

(3.24) sup
x∈R

|φ(p)
ε (x)| ≤ Φp, p = 0, 1, sup

x∈R
|φ′′

ε (x)| ≤ Φ1/ε.

Hence, φε satisfies (3.21) with Φ̃p = Φp, p = 0, 1 and Φ̃2 = Φ1/ε < ∞ and the
assertion of theorem is valid for φε according to the above argument.

Let νM be the measure whose Stieljes transform satisfies (3.10) – (3.12) with νR
such that supp νR ⊂ [0, ρ], ρ < ∞ (cf. (3.22)), φ of (3.13) be satisfying (3.8), νMε

be the analogous measure with φε instead of φ in (3.13), νMn be the mean NCM of
(3.1) and νMε

n
be the mean NCM of the matrix (3.1) with φε instead of φ in (3.7),

i.e., with

(3.25) Kε
n = {δjkKε

jn}nj,k=1, K
ε
jn =

(
φ′
ε

(
n−1/2

n∑
α=1

Xjαxαn + bj

))2

,

instead of Kjn of (3.7). We write then for any n-independent z ∈ C \ R+

|fM(z)− fMn(z)| ≤ |fM(z)− fMε(z)|
+ |fMε(z)− fMε

n
(z)|+ |fMε

n
(z)− fMn(z)|.(3.26)

According to Lemma 3.12 (ii), the measure whose Stieltjes transform solves (3.10) –
(3.12) is weakly continuous in νK . Besides, it follows from (3.13) that νK is weakly
continuous in φ′ with respect to the bounded point-wise convergence of φ′. Hence,
the first term on the right of (3.34) vanishes as ε → 0. Next, the theorem proved
above under conditions (3.21) – (3.22) implies that the second term on the right
vanishes as n → ∞ for any n-independent ε > 0. We conclude that the l.h.s. of
(3.26) vanishes as n→ ∞ if the third term on the right of (3.26) vanishes as ε→ 0
uniformly in n:

(3.27) fMε
n
(z)− fMn(z) → 0, ε→ 0, ζ = dist(z,R+) ≥ ζ0 > 0.
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Denoting G = (Mn − z)−1, Gε = (Mε
n − z)−1 and using the resolvent identity

Gε − G = G(Mn −Mε
n)Gε and the relations fMn(z) = E{n−1TrG} and fMε

n
(z) =

E{n−1TrGε}, we get

fMε
n
(z)− fMn(z) = n−1E{TrGεG(Mn −Mε

n)}

= n−2
n∑

j=1

E{(XSGεGSXT )jj(Kjn −Kε
jn)}.(3.28)

Now, (3.22), Schwarz inequality for expectations and the bounds

(3.29) |Kj | ≤ Φ2
1, ||G|| ≤ ζ−1, ||Gε|| ≤ ζ−1, ζ = dist{z,R+} ≥ ζ0 > 0,

where we used the bound

(3.30) ||(A− z)−1|| ≤ ζ−1

valid for any positive definite A, yield for the r.h.s. of (3.28)

ρ(ζn)−2
n∑

j=1

E{||X(j)||2|Kjn −Kε
jn)|}

≤ ρ(ζn)−2
n∑

j=1

E1/2{||X(j)||4}E1/2{|Kjn −Kε
jn|2},

where X(j) = {Xjα}nα=1, j = 1, ..., n are the columns of the n×n matrix X. Taking
into account that

(3.31) ||X(j)||2 =
n∑

α=1

X2
jα

and that {Xjα}nα=1 are independent standard Gaussian (see (1.6)), we obtain

(3.32) E{||X(j)||2} = n, E{||X(j)||4} = n(n+ 2) ≤ Cn2, C ≥ 3.

Since, in addition, {(Kjn −Kε
jn)}nj=1 are i.i.d. random variables, we have in view

of (3.7), (3.23) and (3.32):

|fMε
n
(z)− fMn(z)| ≤ C1/2ρζ−2E1/2{|K1n −Kε

1n|2}

≤ C1/2ρζ−2((2π)−1/2

∫
e−y2/2|φ′(x)− φ′(x+ εy)|2Γn(dx)dy)

1/2,

where Γn is the probability law of the argument of φ′ in (3.7) and (3.25). Since
{Xjα}nj,α=1 and {bj}nj=1 are independent standard Gaussian, Γn(dx) = gn(x)dx,
where gn is the density of the Gaussian distribution of zero mean and variance qn of
(3.9), the r.h.s. of the above expression tends to zero as ε→ 0 uniformly in n→ ∞.
This proves (3.27), hence, justifies the replacement of (3.21) by the condition (3.8)
of the theorem.

Next, we will replace (3.22) by condition of (3.2) of the theorem. This is, in
fact, a known procedure of random matrix theory. In our case it is a version
of the procedure given in the first part of proof of Theorem 7.2.2 (or Theorem
19.1) in [17]. Here is an outline of the procedure. Let Rn be a general (i.e., not
satisfying in general (3.22)) positive definite matrix such that (3.2) – (3.3) hold
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with certain r2 and the limiting measure νR. For any positive integer p introduce

the truncated matrix R
(p)
n having the same eigenvectors as Rn and eigenvalues

R
(p)
α = max{Rα, p}, α = 1, 2, ..., n, where {Rα}nα=1 are the eigenvalues of Rn. Then

R
(p)
n satisfies (3.22) with ρ = p, its NCM ν

R
(p)
n

satisfies (3.2) – (3.3) with the weak

limit νR(p) := limn→∞ ν
R

(p)
n

coinciding with νR inside [0, p), equals zero outside [0, p]

and such that

(3.33) lim
p→∞

νR(p) = νR.

Denote by M(p)
n the matrix (3.1) with R

(p)
n instead of Rn, by νM(p)

n
its mean NCM

and by νM(p) its limit as n→ ∞ with a fixed p > 0. We will use now an argument
analogous to that used above to prove the replacement of (3.21) by (3.8). We write
(cf. (3.26))

(3.34) |νM − νMn | ≤ |νM − νM(p) |+ |νM(p) − νM(p)
n
|+ |νM(p)

n
− νMn |.

It follows then from Lemma 3.12 (ii) and (3.33) that solution of (3.11) – (3.12),
hence (3.10), with νR(p) instead νR converges pointwise in C \R+ as p→ ∞ to that
of (3.10) – (3.12) with the “genuine” νR satisfying (3.2) (see also (3.102)). Thus,
the first term on the right vanishes as p → ∞. Next, since the theorem is valid

under condition (3.22), hence (3.2) – (3.3), and R
(p)
n satisfies (3.22) with ρ = p, the

second term on the right vanishes as n→ ∞ for any n-independent p > 0. Thus, it
suffices to prove that

νMn − νM(p)
n

tends weakly to zero as p→ ∞ uniformly in n→ ∞ (cf. (3.27)). The expectations
νMn and νM(p)

n
coincide with those νMn and ν

M
(p)
n

of matricesMn = DnXnRnX
T
nDn

and M
(p)
n = DnXnR

(p)
n XT

nDn (cf. (1.12). Writing Mn as the sum of the rank-one
matrices (cf. (1.12) and (3.91))

(3.35) Mn =
n∑

α=1

Yα ⊗ Yα, Yα = {Yjα}nj=1, Yjα = (DnXnSn)jα

and using the analogous representation for M
(p)
n , we conclude that

rank(Mn −M (p)
n ) ≤ ♯{Rα : Rα > p, α = 1, 2, ..., n}

and then the min-max principle of linear algebra and the definition of a NCM (see,
e.g. (1.15)) yield for any interval ∆ of spectral axis

(3.36) |νMn(∆)− νM(p)
n
(∆)| ≤ νRn([p,∞)).

This estimate and (3.3) imply the weak convergence of the r.h.s. to zero as p→ ∞
uniformly in n, hence, the weak convergence of νMn to νM as n → ∞ and the
coincidence of the Stieltjes transform of νM with that given by (3.10) – (3.11) under
condition (3.2). □

We will prove now an assertion which is used in the proof of the theorem and
which is central in this work since it shows the mathematical mechanism of the
coincidence of the limiting eigenvalue distribution of “non-linear” random matrix
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Mn of (3.1), where Kn of (3.7) depends nonlinearly on Xn, and a conventional for
random matrix theory matrix Mn of (3.19), where the analog Kn of Kn is random
but independent of Xn matrix given by (3.20).

Lemma 3.3. Consider the matrices Mn and Mn given by (3.1) and (3.19) and
such that:

- the matrix Sn in Mn and Mn is diagonal, positive definite and satisfies (3.22);
- the random matrix Xn in Mn and Mn is Gaussian and given by (3.4);
- the matrix Kn in Mn is defined in (3.7) with φ satisfying (3.21);
- the matrix Kn in Mn is defined in (3.20) with the same φ satisfying (3.21).

Denote by νMn and νMn the mean NCM of Mn and Mn,by fMn and fMn the Stieltjes
transforms of νMn and νMn and

(3.37) ∆n(z) := fMn(z)− fMn(z), z ∈ C \ R+.

Then we have for any n-independent z, ζ := dist{z,R+} > 0 :

(3.38) lim
n→∞

∆n(z) = 0.

Proof. Writing

(3.39) fMn = E{n−1TrGn(z)}, fMn = E{n−1TrGn(z)}
where

(3.40) Gn(z) = (Mn − z)−1, Gn(z) = (Mn − z)−1, z ∈ C \ R+

are the corresponding resolvents, we obtain from (3.37)

(3.41) ∆n(z) = E{n−1Tr(Gn(z)− Gn(z))}.
Note that the symbolE{...} in (3.41) and below denotes the expectation with respect
to the “old” collections {Xjα}nj,α=1 and {bj}nj=1 of (3.4) and (3.5) as well as with

respect to the “new” collection {γj}nj=1 of (3.20) of independent standard Gaussian
variables.

Set for j = 1, ..., n

ηj(t) = t1/2ηj + (1− t)1/2q1/2n γj , t ∈ [0, 1],

ηj = n−1/2
n∑

α=1

Xjαxαn + bj ,(3.42)

(3.43) Kn(t) = {δjkKjn(t)}nj,k=1, Kjn(t) = (φ′(ηj(t)))
2

and

(3.44) Mn(t) = SnX
T
nKn(t)XnSn, Gn(z, t) = (Mn(t)− z)−1.

Then Mn(1) = Mn, Mn(0) = Mn and by using the formula

(3.45)
d

dt
A−1(t) = −A−1(t)

d

dt
A(t)A−1(t),

valid for any matrix function A invertible uniformly in t, we obtain in view of (3.40)
and (3.43):

∆n(z) =
1

n

∫ 1

0

d

dt
E{TrGn(z, t)}dt = − 1

n

∫ 1

0
E{TrG2

n(z, t)Ṁ(t)}dt,
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where

Ṁn(t) =
d

dt
Mn(t) =: {Ṁαβ(t)}nα,β=1,

Ṁαβ(t) =
1

2n

n∑
j=1

(SnX
T
n K̇n(t))αj(t

−1/2ηj − (1− t)−1/2q1/2n γj)(XnSn)jβ ,

and according to (3.20) – (3.21), and (3.43)

(3.46) K̇jn(t) = 2(φ′φ′′)(x)|x=ηj(t).

By using (3.45) again, we get

∆n(z) = δ′n(z),

δn(z) =
1

2n2

n∑
j=1

∫ 1

0
E{Fj(z, t)(t

−1/2ηj − (1− t)−1/2q1/2n γj)}t−1/2dt,(3.47)

where

(3.48) Fj(z, t) = (XnSnGn(z, t)SnX
T
n K̇n(t))jj .

It suffices to prove that

(3.49) max
z∈O

|δn(z)| = o(1), n→ ∞,

where O is an open set lying strictly inside C \ R+. Indeed, since Fj is analytic
in C \ R+, δn is analytic in O and any such bound implies (3.38) by the Cauchy
theorem.

To deal with the expectation in the r.h.s. of the second equality in (3.47), we
take into account that {Xjα}nα=1 and γj are independent Gaussian random variables
(see (3.4)) and (3.20)) and use the simple differentiation formula

(3.50) E{ξf(ξ)} = E{f ′(ξ)}
valid for the standard Gaussian random variable and any differentiable f : R → C
with a polynomially bounded derivative.

The formula, applied to ηj ’s and γj ’s in the integrand of (3.47), yields

E{Fj(z, t)(t
−1/2ηj − (1− t)−1/2q1/2n γj)}

= (tn)−1/2
n∑

α=1

E

{
∂Fj

∂Xjα

}
xαn,(3.51)

where the partial derivative in the r.h.s. denotes the “explicit” derivative (not

applicable to Xjα in the argument of Kjn and K̇jn of (3.43)).
By using the formula

(3.52)
∂Gβγ

∂Xjα
= − 1

n
(GSXTK)βj(SG)αγ −

1

n
(GS)βα(KXSG)jγ ,

which follows from (3.45) and where we omitted the subindex n in all the matrices
and denoted G = Gn(z, t), K = Kn(t) (see (3.44) and (3.43)), we obtain

(tn)−1/2
n∑

α=1

E

{
∂Fj

∂Xjα

}
xαn
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=
2

(tn)1/2
E{(K̇XGSx)j(1− n−1(KXGSX

T )jj)},(3.53)

where

(3.54) GS = SGS.
We have then via (3.21), (3.22), (3.29), (3.43) and (3.46)

(3.55) |Kj | ≤ Φ̃2
1, |K̇j | ≤ 2Φ̃1Φ̃2, ||GS || ≤ ρζ−1.

This and (3.32) imply that the r.h.s. of (3.53) admits the bounds

4Φ̃1Φ̃2ρ

ζ(tn)1/2
||x||E{||X(j)||+ (Φ̃1)

2ρ(ζn)−1||X(j)||3}

≤ 4Φ̃1Φ̃2ρ

ζt1/2
||x||(1 + C3/4ρζ−1(Φ̃1)

2),(3.56)

and since, according to (3.9), ||x|| = O(n1/2), we combine the above bound with
(3.51) and (3.53) to conclude that the expectation in the r.h.s. of (3.47) is εn(z, t),

where εn(z, t) = O(n1/2), n→ ∞ uniformly in t ∈ [0, 1] and z belonging to an open
set O lying strictly inside C \ R+.

We have proved (3.49), hence (3.38), both with the r.h.s. of the order O(n−1/2)
uniformly in z ∈ O ⊂ C \ R+. □
Remark 3.4. The “interpolating” random variable (3.42) implements a simple
version of the “interpolation” procedure used in [16], Theorem 5.7 and in [17],
Sections 18.3 - 18.4 and 19.1 - 19.2 to pass from the Gaussian random matrices to
matrices with i.i.d. entries. The procedure can be viewed as a manifestation of the
so-called Lindeberg principle, see [8] for related results and references.

We will find now the limiting eigenvalue distribution of a class of random matrices
containing (3.19) and used in the proof of Theorem 3.1. In particular, we obtain
functional equations (3.10) – (3.12) determining uniquely the Stieltjes transform
of the distribution, hence, the distribution. We will use for these, more general,
matrices the same notation Mn. Note that we give here a rather simple version of
the assertion sufficient to prove Theorem 3.1. For more general versions see, e.g. [6]
and references therein.

Lemma 3.5. Consider the n× n random matrix

(3.57) Mn = n−1SnX
T
n KnXnSn,

(see (3.19) – (3.20)), where Sn satisfies (3.2) and (3.3), Xn has standard Gaussian
entries (see (3.4)) and Kn is a n× n positive definite matrix such that (cf. (3.2) –
(3.3))

(3.58) sup
n
n−1TrK2

n ≤ k2 <∞,

(3.59) lim
n→∞

νKn = νK, νK(R) = 1,

where νKn is the Normalized Counting Measure of Kn, νK is a non-negative and
not concentrated ar zero measure (cf. (3.2) – (3.3)) and lim denotes the weak
convergence of probability measures.
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Then the Normalized Counting Measure νMn of Mn converges weakly with prob-
ability 1 to a non-random measure νM, νM(R+) = 1 and its Stieltjes transform fM
(see (1.19)) can be obtained from the system (3.11) – (3.12) in which νK is replaced
by νK of (3.58) – (3.59) and which is uniquely solvable in the class of pairs (h, k)
of functions such that h is analytic outside the positive semi-axis, continuous and
positive on the negative semi-axis and satisfies (3.14).

Remark 3.6. (i) It is easy to check that the assertions of the lemma remain valid
with probability 1 in the case where the “parameters” of the theorem, i.e., Sn,
hence Rn, in (3.2) – (3.3) and Kn (3.58) – (3.59) are random, defined for all n on
the same probability space ΩRK, independent of Xn = {Xjα}nj,α=1 for every n and

satisfies conditions (3.2) – (3.3) and (3.58) – (3.59) with probability 1 on ΩRK, i.e.,
on a certain subspace ΩRK ⊂ ΩRK, P(ΩRK) = 1. This follows from an argument
analogous to that presented in Remark 3.2 (i). In this case E{...} denotes the
expectation with respect to Xn.

(ii) Repeating almost literally the proof of the lemma, one can treat a more
general case where Sm is a m ×m positive definite matrix satisfying (3.2) – (3.3),
Kn is a n × n positive definite matrix satisfying (3.58) – (3.59), Xn is a n × m
Gaussian random matrix satisfying (1.6) and (cf. (1.13))

(3.60) lim
m→∞,n→∞

m/n = c ∈ (0,∞).

In this case the Stieltjes transform fM of the limiting NCM is again uniquely de-
termined by three functional equations, where the first and the third coincide with
(3.10) and (3.12) while the second is (3.11) in which k(z) is replaced by k(z)c−1

(see, e.g. [6]) and references therein.

(iii) The lemma is also valid for not necessarily Gaussian Xn (see [6, 18] and
references therein for more general cases of the theorem and their properties. If,
however, we confine ourselves to the Gaussian case, then we can reformulate our
result in terms of correlated Gaussian entries. Indeed, let Zn = {Zjα}nj,α=1 be a
Gaussian matrix with

E{Zjα} = 0, E{Zj1α1Zj2α2} = Cj1α1,j2α2 ,

and a separable covariance matrix Cj1α1,j2α2 = Kj1j2Rα1α2 , i.e., C = K⊗R and Kn =
{Kj1j2}nj1,j2=1 and Rn = {Rα1α2} as in the lemma. Writing Kn = D2

n, Rn = S2
n and

denoting Zn = SnXnDn, we can view as a data matrix and then the corresponding
sample covariance matrix ZT

n Zn is (3.57) of spatial-temporal correlated time series.

Here is the proof of Lemma 3.5.

Proof. As it was in the proof of Theorem 3.1, Lemma 3.9 (i) together with the Borel-
Cantelli lemma reduce the proof of the theorem to that of the weak convergence of
the expectation

(3.61) νMn = E{νMn}

of νMn .
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Next, it follows from the condition of the lemma that the argument analogous to
that proving (3.18) yields∫ ∞

0
λνMn(dλ) ≤ k

1/2
2 r

1/2
2 <∞,

hence, the tightness of measures {νMn}n and, in turn, reduces the proof of the
lemma to that of the pointwise convergence in C \ R+ of their Stieltjes transforms
fMn to the limit f satisfying (3.10) – (3.12). Moreover, the analyticity of fMn , fM, h
and k in C\R+ (see Lemma 3.12) allows us to confine ourselves to the open negative
semi-axis

(3.62) I− = {z ∈ C : z = −ξ, 0 < ξ <∞}.
Thus, we will mean and often write explicitly below that z ∈ I−.

Note first that since {Xjα}nj,α=1 are standard Gaussian, we can assume without
loss of generality that Sn and Kn are diagonal, i.e.,

(3.63) Sn = {δαβSαn}nα,β=1, Kn = {δjkKjn}nj,k=1.

Given j = 1, ..., n, consider the n× n matrix

(3.64) H(j) = {H(j)
αβ }

n
α,β=1, H

(j)
αβ := n−1(GSXT )αj(KXS)jβ

and we omit here and below the subindex n in the notation of matrices and their
entries.

It follows from (3.39) – (3.40) and the resolvent identity

(3.65) G = −z−1 + z−1GM,

implying

(3.66) z−1
n∑

j=1

E{H(j)} = z−1E{GM},

that it suffices to find the n→ ∞ limit of E{n−1TrH(j)}.
To this end we will apply to the expectation in the r.h.s. of (3.64) the Gaussian

differentiation formula (3.50). We compute the derivative of Gαγ with respect to
Xjγ by using an analog of (3.52) and we obtain

E{H(j)
αβ } = n−1E{Gαβ}S2

βKj −E{hn(z)H(j)
αβ }Kj(3.67)

−n−2E{(GS2GSXT )αj(XS)jβ}K2
j ,

where

(3.68) hn(z) = n−1TrSGS = n−1TrGR, R = S2.

We write

(3.69) hn = hn + (hn − hn), hn = E{hn}
in the r.h.s. of (3.67) and get

E{H(j)
αβ } = n−1E{Gαβ}S2

βQj −E{(hn − hn)H
(j)
αβ }Qj(3.70)

−n−2E{(GS2GSXT )αj(XS)jβ}KjQj ,
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where

(3.71) Qj(z) = Kj(hn(z)Kj + 1)−1

is well defined for z = −ξ < 0. Indeed, since R is positive definite, it follows from
(3.68), the spectral theorem and (3.2) that hn admits the representation

(3.72) hn(z) =

∫ ∞

0

µ(dλ)

λ− z
, µ ≥ 0, µ(R+) = n−1TrRn ≤ r

1/2
2 <∞.

Thus, we have in view of (3.62)

(3.73) 0 < hn(−ξ) ≤ r
1/2
2 /ξ <∞,

and then the positivity of Kj of and (3.63) imply

(3.74) 0 < Qj(−ξ) ≤ Kj , ξ > 0.

We then sum (3.70) over j = 1, ..., n and denote

(3.75) Hαβ =

n∑
j=1

H
(j)
αβ , H = {Hαβ}nα,β=1

yielding

(3.76) E{H} = E{G}kn(−ξ)R− T, T = T (1) + T (2),

where

(3.77) kn(−ξ) := n−1
n∑

j=1

Qj =

∫
λνKn(dλ)

hn(−ξ)λ+ 1
,

νKn is the NCM of Kn (see (3.59)) and

T (1) = n−1E{(hn − hn)GSX
TKQXS},(3.78)

T (2) = −n−2E{GS2GSXTKQXS}.
Plugging now (3.76) into (3.66) and the obtained expression in the r.h.s. of expec-
tation of (3.65), we get

(3.79) E{G}(kn(z)R− z) = 1− T.

The matrix (kn(−ξ)R + ξ) is invertible uniformly in n. Indeed, since R is positive
definite and kn(−ξ), ξ > 0 is positive in view of (3.73) and (3.77), we have uniformly
in n→ ∞:

(3.80) ||(kn(−ξ)R+ ξ)||2 ≥ ξ2.

Thus, we can write instead of (3.79)

(3.81) E{G} = G− GT, G = (kn(−ξ)R+ ξ)−1

yielding in view of the spectral theorem for Rn

(3.82) fMn(−ξ) =
∫ ∞

0

νRn(dλ)

kn(−ξ)λ+ ξ
+ tn(−ξ), tn(−ξ) = −n−1TrGT,

where νRn is the NCM of Rn (see (3.3)).
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Next, multiplying (3.81) by R and applying to the result the operation n−1Tr,
we obtain in view of (3.68) and (3.69)

(3.83) hn(−ξ) =
∫ ∞

0

λνRn(dλ)

kn(−ξ)λ+ ξ
+ t̃n(−ξ), t̃n(−ξ) = −n−1TrGRT.

The integral terms in the r.h.s. of (3.77), (3.82) and (3.83) are obviously the prelimit
versions of the r.h.s. of (3.10) – (3.12). Thus we have to show that the remainder
terms tn and t̃n in (3.82) and (3.83) vanish as n→ ∞ under the condition (3.62) and
to carry out the limiting transition in the integral terms of (3.77), (3.82) and (3.83).
The second procedure is quite standard in random matrix theory and based on (3.3)
and (3.59), the compactness of sequences of bounded analytic functions with respect
to the uniform convergence on a compact set of complex plane, the compactness of
sequences on probability measures with respect to the weak convergence and the
unique solvability of the system (3.11) – (3.12) proved in Lemma 3.12 (see, e.g. [17]
for a number of examples of the procedure).

Thus, we will deal with the remainders in (3.82) – (3.83). We will assume for
time being that the matrix Rn = S2

n of (3.2) is uniformly bounded in n (see (3.22)).
This assumption can be removed at the end of the proof by using an argument
analogous to that used at the end of proof of Theorem 3.1. Recall that we are
assuming that z = −ξ ∈ I− of (3.62).

We will start with the contribution

(3.84) t(1)n = −n−2E{(hn − hn)TrSGGSB}, B = XTKQX ≥ 0,

of T (1) in (3.78) to tn(−ξ) of (3.82). We have from (2.20), (3.22), (3.29) and (3.84):

n−2|TrSGGSB| ≤ ρ(ξn)−2TrB

≤ ρ(ξn)−2
n∑

j=1

||X(j)||2KjQj ,

where X(j) is the jth column of X. This, Schwarz inequality for expectations,
(3.32), (3.58) and (3.74) yield

|t(1)n | ≤ ρξ−2n−2
n∑

j=1

KjQjE
1/2{||X(j)||4}E1/2{|h(−ξ)− hn(−ξ)|2}

≤ ρk2ξ
−2C1/2E1/2{|hn(−ξ)− hn(−ξ)|2}

and then an analog of Lemma 3.9 (iii) for Mn and (3.73) implies for every ξ > 0

(3.85) |t(1)n | = O(n−1/2), n→ ∞.

Similarly, we have for the contribution

t(2)n = n−3E{TrSGGS2GSB}

of T (2) of (3.78) to tn in (3.83) by (2.20), (3.22) and (3.29): |t(2)n | ≤ ρ2ξ−3n−3E{TrB}
and then for every ξ > 0

(3.86) t(2)n = O(n−1), n→ ∞.

Combining now (3.85) – (3.86), we obtain tn(−ξ) = O(n−1/2), n→ ∞, ξ > 0.



RANDOM MATRICES IN DEEP NEURAL NETWORKS 1417

By using a similar argument, we find that t̃n(−ξ) = O(n−1/2), n → ∞, ξ > 0.
This and (3.82) – (3.83) with z = −ξ < 0 lead to (3.10) and (3.11). Multiplying
(3.11) by k and using the first equality in (3.10), we obtain the second equality.

The unique solvability of system (3.11) – (3.12) is proved in Lemma 3.12. □
It is convenient to write the equations (3.11) – (3.12) in a compact form similar

to that of free probability theory [5, 13]. This, in particular, makes explicit the
symmetry and the transitivity of the binary operation (2.1).

Corollary 3.7. Let νK, νR and νM be the probability measures (i.e., non-negative
measures of the total mass 1) entering (3.10) – (3.12) and mK, mR and mM be their
moment generating functions (see (1.20) – (1.21)). Then their functional inverses
zM, zK and zR of the corresponding moment generating functions are related as
follows

(3.87) zM(m) = zK(m)zR(m)m−1,

or, writing zA(m) = mσA(m), A = M,K, R,

(3.88) σM(m) = σK(m)σR(m)

Proof. It follows from (3.11) – (3.12) and (1.21) that

mK(−h(z)) = −h(z)k(z), mR(k(z)z
−1) = −h(z)k(z),(3.89)

mM(z−1) = −h(z)k(z).
Now the first and the third relations (3.89) yield mK(−h(z−1)) = mM(z), hence
zK(m) = −h(z−1

M (m)), and then the second and the third relations yield

mR(k(z
−1)z) = mM(z), hence zR(µ) = k(z−1

M (m))zM(m). Multiplying these two
relations and using once more the third relation in (3.89), we obtain

zK(m)zR(m) = −k(z−1
M (m))h(z−1

M (m))zM(m) = zM(m)m

and (3.87) and (3.88) follows. □
Remark 3.8. In the case of rectangular matrices Xn in (3.1), described in Remark
3.6 (ii), the analogs of (3.87) and (3.88) are

(3.90) zM(m) = zM(cm)zR(cm)m−1, σM(m) = c2σK(cm)σR(cm).

Lemma 3.9. Let Mn be given by (3.1) in which Xn = {Xjα}nj,α=1 of (3.4) and

bn = {bjα}nj of (3.5) are i.i.d. random variables. Denote νMn the Normalized

Counting Measure of Mn (see, e.g. (1.15)), gn(z) its Stieltjes transform

gn(z) = n−1Tr(Mn − z)−1, ζ = dist(z,R+) > 0,

and (see (3.68))

hn(z) = n−1TrSn(Mn − z)−1Sn, ζ = dist(z,R+) > 0,

where Sn is a positive definite matrix satisfying (3.2) with Rn = S2
n. Then we have:

(i) for any nindependent interval ∆ of spectral axis

E{|νMn(∆)−E{νMn(∆)}|4} ≤ C1/n
2,

where C1 is an absolute constant;
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(ii) for any n-independent z with ζ > 0

E{|gn −E{gn}|4} ≤ C2/n
2ζ4,

where C2 is an absolute constant;
(iii) for any n-independent z with ζ > 0

E{|hn −E{hn}|4} ≤ C3r
2
2/n

2ζ4,

where C3 is an absolute constant and r2 is defined in (3.2).

Proof. It follows from (3.1) that (cf. (3.35))

(3.91) Mn =
n∑

j=1

Yj ⊗ Yj , Yj = {Yjα}nα=1, Yjα = n−1/2(DnXSn)jα.

It is easy to see that {Yj}nj=1 are independent. This allows us to use the martingale

bounds given in Sections 18.2 and 19.1 of [17] and implying the assertions of the
lemma in view of (3.30) and (3.72) . □
Remark 3.10. (i) The independence of random vectors Yj in (3.91) is the main

reason to pass from the matrices M l
n given by (2.11) and (2.13) to the matrices Mn

given by (2.12), (2.16) and (3.1).
(ii) The lemma is valid for an arbitrary (not necessarily Gaussian) collection (3.4)

and (3.5) of i.i.d. random variables as well as for random but independent of (3.4)
and (3.5) Sn and {xj,α}nj,α=1, see Remarks 3.2 (i) and (iii) and [18]. It is also valid

for matrices Mn of (3.19).

The next lemma deals with asymptotic properties of the vectors of activations xl

in the lth layer, see (1.2). It is an extended version (treating the convergence with
probability 1) of assertions proved in [12,22,26].

Lemma 3.11. Let yl = {ylj}nj=1, l = 1, 2, ... be post-affine random vectors defined in

(1.2) – (1.6) with x0 satisfying (2.2), χ : R → R be a bounded piecewise continuous
function and Ωl be defined in (1.9). Set

(3.92) χl
n = n−1

n∑
jl=1

χ(yljl), l ≥ 1.

Then there exists Ωl ⊂ Ωl, P(Ωl) = 1 such that for every ωl ∈ Ωl (i.e., with
probability 1) the limit

(3.93) χl := lim
n→∞

χl
n, l = 1, 2, ...,

exists, is non-random and given by the formula

(3.94) χl =

∫ ∞

−∞
χ(γ

√
ql)Γ(dγ), l = 1, 2, ...,

valid on Ωl with Γ(dγ) = (2π)−1/2e−γ2/2dγ being the standard Gaussian probability
distribution and ql defined recursively by the formula

(3.95) ql =

∫ ∞

−∞
φ2(γ

√
ql−1)Γ(dγ) + σ2b , l = 2, 3, ...



RANDOM MATRICES IN DEEP NEURAL NETWORKS 1419

and by q1 of (2.2).
In particular, we have with probability 1:
(i) for the activation vector xl = {xlj}nj=1 of the lth layer (see (1.2)):

(3.96) lim
n→∞

n−1
n∑

jl=1

(xljl)
2 = ql+1 − σ2b , l = 1, 2, ...

(ii) for the weak limit νKl of the Normalized Counting Measure νKl
n
of diago-

nal random matrix K l
n of (1.22): νKl is the probability distribution of the random

variable (φ′(γ
√
ql))

2.

Proof. Set l = 1 in (3.92) Since {b1j1}
n
j1=1 and {X1

j1,j0
}nj1,j0=1 are i.i.d. Gaussian

random variables satisfying (1.5) – (1.6), it follows from (1.2) that the components
of y1 = {y1j1}

n
j1=1 are also i.i.d. Gaussian random variables of zero mean and variance

q1n of (2.2). Since χ is bounded, the collection {χ(y1j1)}
n
j1=1 consists of bounded i.i.d

random variables defined for all n on the same probability space Ω1 generated by
(1.7) and (1.8) with l = 1. This allows us to apply to {χ(y1j1)}

n
j1

the strong Law of

Large Numbers implying (3.93) with l = 1 together with the formula

χ1 = lim
n→∞

E{χ(y11)}(3.97)

= lim
n→∞

∫ ∞

−∞
χ(γ

√
q1n)Γ(dγ) =

∫ ∞

−∞
χ(γ

√
q1)Γ(dγ)

for the limit, both valid with probability 1, i.e., on a certain Ω1 ⊂ Ω1 = Ω1,
P(Ω1) = 1, see (1.9). This yields (3.94) for l = 1.

Consider now the case l = 2. Since {X1, b1} and {X2, b2} are independent collec-
tions of random variables, we can fix ω1 ∈ Ω1 (a realization of {X1, b1}) and apply
to χ2

n of (3.92) the same argument as that for the case l = 1 above to prove that for

every ω1 ∈ Ω1 there exists Ω
2
(ω1) ⊂ Ω2, P(Ω

2
(ω1) = 1 on which we have (3.93)

for l = 2 with some (cf. (3.97))

(3.98) χ2(ω1, ω2) = lim
n→∞

E{X2,b2}{χ(y21)}

where E{X2,b2}{...} denotes the expectation with respect to {X2, b2} only. Now the

Fubini theorem implies that there exists Ω2 ⊂ Ω2 = Ω1 ⊗ Ω2, P(Ω2) = 1 on which
we have (3.93) with l = 2.

Using once more the independence of {X1, b1} and {X2, b2}, we can compute the
r.h.s. of (3.98) by observing that if {X2, b2} are Gaussian, then, according to (1.2),
y21 is also Gaussian of zero mean and variance (cf. (2.2))

(3.99) q2n = n−1
n∑

j1=1

(x1j1)
2 + σ2b ,

or, in view of (1.2),

(3.100) q2n = n−1
n∑

j1=1

(φ(y1j1))
2 + σ2b .
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The first term on the right is a particular case of (3.92) with χ = (φ)2 and l = 1,
thus, according to (3.97), the limiting form of the above relation is (3.95) with l = 2
for every ω1 ∈ Ω1 and we have

χ2 = lim
n→∞

∫ ∞

−∞
χ(γ

√
q2n)Γ(dγ) =

∫ ∞

−∞
χ(γ

√
q2)Γ(dγ)

i.e., formula (3.94) for l = 2 valid on Ω2 ⊂ Ω2 = Ω1 ⊗ Ω2, P(Ω2) = 1, i.e., with
probability 1.

This proves the validity (3.93) – (3.95) for l = 2 with probability 1. Analogous
argument applies for l = 3, 4, ....

The proof of item (i) is, in fact, that of (3.95), see (3.99) – (3.100) for l = 2, for
l ≥ 3 the proof is analogous.

Let us prove item (ii) of the lemma, i.e., the weak convergence with probability
1 of the Normalized Counting Measure νKl

n
of K l

n in (1.22) to the probability dis-

tribution of (φ′(γ
√
ql))

2. It suffices to prove the validity with probability 1 of the
relation

lim
n→∞

∫ ∞

−∞
ψ(λ)νKl

n
(dλ) =

∫ ∞

−∞
ψ(λ)νKl(dλ)

for any bounded and piece-wise continuous ψ : R → R.
In view of (1.2), (1.11) and (1.22) the relation can be written in the form

lim
n→∞

n−1
n∑

jl=1

ψ((φ′(yljl))
2) =

∫ ∞

−∞
ψ((φ

′
(γ
√
ql−1))

2)Γ(dγ), l ≥ 1.

This is a particular case of (3.93) – (3.95) for χ = ψ ◦ φ′2, hence, assertion (ii)
follows. □

The next lemma provides the unique solvability of the system (3.11) – (3.12).
Note that in the course of proving Lemma 3.5 it was proved that the system has at
least one solution.

Lemma 3.12. The system (3.11) – (3.12) with νR and νK satisfying

(3.101) νK(R+) = 1, νR(R+) = 1

and (cf. ((3.2))

(3.102)

∫ ∞

0
λ2νK(dλ) = κ2 <∞,

∫ ∞

0
λ2νR(dλ) = ρ2 <∞

has a unique solution in the class of pairs of functions (h, k) defined in C \R+ and
such that h is analytic in C \ R+, continuous and positive on the open negative
semi-axis and satisfies (3.14) with r2 replaced by ρ2 of (3.102).

Besides:
(i) the function k is analytic in C \ R+, continuous and positive on the open

negative semi-axis and (cf. (3.14))

(3.103) ℑk(z)ℑz < 0 for ℑz ̸= 0, 0 < k(−ξ) ≤ κ
1/2
2 for ξ > 0

with κ2 of (3.102);
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(ii) if the sequence {νK(p) , νR(p)}p has uniformly in p bounded second moments
(see (3.102)) and converges weakly to (νK , νR) also satisfying (3.102), then the

sequences of the corresponding solutions {h(p), k(p)}p of the system (3.11) – (3.12)
converges pointwise in C \R+ to the solution (h, k) of the system corresponding to
the limiting measures (νK , νR).

Proof. We will start with the proof of assertion (i). It follows from (3.12), (3.102)
and the analyticity of h in C \ R+ that k is also analytic in C \ R+. Next, for any
solution of (3.11) – (3.12) we have from (3.12) with ℑz ̸= 0

(3.104) ℑk(z) = −ℑh(z)
∫ ∞

0

λ2νK(dλ)

|h(z)λ+ 1|2

and then (3.14) yields (3.103) for ℑz ̸= 0, while (3.12) with z = −ξ < 0

k(−ξ) =
∫ ∞

0

λνK(dλ)

h(−ξ)λ+ 1
,

the positivity of h(−ξ) (see (3.14)), (3.101) and Schwarz inequality yield (3.103) for
z = −ξ.

Let us prove now that the system (3.11) – (3.12) is uniquely solvable in the class
of pairs of functions (h, k) analytic in C \ R+ and satisfying (3.14) and (3.103).

Denote C+ and C− the upper and lower open half-planes. Consider first the case
z ∈ C+ of the system (3.11) – (3.12). To this end introduce the map

(3.105) F : {h ∈ C+} × {k ∈ C−} × {z ∈ C+} → C× C
defined by

F1(h, k, z) = h−
∫ ∞

0

λνR(dλ)

kλ− z
, h(3.106)

F2(h, k, z) = k −
∫ ∞

0

λνK(dλ)

hλ+ 1
.

The map is well defined in the indicated domain, since there ℑ|kλ− z| > λ|ℑk| and
ℑ|1+hλ| > λℑh, hence the absolute values of the integrals in F1 and that in F2 are
bounded from above by |ℑk|−1 <∞ and (ℑh)−1 <∞ respectively. The equation

(3.107) F (h, k, z) = 0

is in fact (3.11) – (3.12). We will apply now to the equation the implicit function
theorem. To this end we have to prove that the Jacobian of F , i.e., 2 × 2 matrix
of derivatives of F with respect to h and k, is invertible. It is easy to find that the
determinant of the Jacobian is

(3.108) 1− I(h)J(k, z)

with

I(h) =

∫ ∞

0

λ2νK(dλ)

(hλ+ 1)2
≤ A(h), J(k, z) =

∫ ∞

0

λ2νR(dλ)

(kλ− z)2
≤ B(k, z)

and

0 < A(h) :=

∫ ∞

0

λ2νK(dλ)

|hλ+ 1|2
≤ (ℑh)−2 <∞,
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0 < B(k, z) :=

∫ ∞

0

λ2νR(dλ)

|kλ− z|2
≤ (ℑk)−2 <∞,

where we used (3.101) to obtain the second inequality.
On the other hand, the imaginary part of (3.106) – (3.107) yield (cf. (3.104))

A(h) = −ℑk
ℑh

, B(k, z) = −ℑh
ℑk

+
ℑz
ℑk

C(k, z),

where

(3.109) 0 < C(k, z) =

∫ ∞

0

λνR(dλ)

|kλ− z|2
<∞, ℑz > 0.

This implies

(3.110) 0 < A(h)B(k, z) = 1−ℑz(ℑh)−1C(k, z)

and since C(k, z)ℑz(ℑh)−1 > 0 in view of (3.105) and (3.109), we have for the
determinant (3.108)

(3.111) |1− I(h)J(k, z)| ≥ 1−A(h)B(k, z) = C(k, z)ℑz(ℑh)−1 > 0.

Thus, the Jacobian of the map (3.105) – (3.106) is invertible and the system (3.11)
– (3.12) is uniquely solvable in C+. The proof for C− is analogous.

Assume now that z = −ξ, ξ > 0. Here we consider the map

F̃ : {h ∈ R+ \ {0}} × {k ∈ R+} × {z = −ξ ∈ R− \ {0}} → R× R

defined by (3.106) with h > 0, k > 0, z = −ξ < 0. It is easy to find that the map is
well defined since kλ+ ξ > kλ ≥ 0, 1 + hλ > hλ ≥ 0, hence the integrals in (3.105)
with h > 0, k > 0, z = −ξ < 0 are positive and bounded from above by k−1 < ∞
and h−1 <∞ respectively. Moreover, since in this case we have

I(h) = A(h) =

∫ ∞

0

λ2νK(dλ)

(hλ+ 1)2
,

J(k,−ξ) = B(k,−ξ) =
∫ ∞

0

λ2νR(dλ)

(kλ+ ξ)2
,

the determinant of the Jacobian of F̃ is now (cf. (3.108))

1−A(h)B(k,−ξ), h > 0, k > 0, ξ > 0.

Set in (3.110) h = h′+iε, k = k′−iε, z = −ξ+iε where h′ > 0, k′ > 0, ξ > 0, ε > 0
and carry out the limit ε→ 0. We obtain (cf. (3.111))

1−A(h′)B(k′,−ξ) = C(k′,−ξ) =
∫ ∞

0

λνR(dλ)

(kλ+ ξ)2
> 0.

Besides, it follows from (3.11) – (3.12) that (3.107) is valid for h = 0, k = k1 and
z = ∞, where k1 is the first moment of νK . This proves the unique solvability of
(3.11) – (3.12) in C \ R+.

Let us prove assertion (ii) of the lemma. Since h(p) and k(p) are analytic and
uniformly in p bounded outside the closed positive semiaxis, there exist subsequences

{h(pj), k(pj)}j converging pointwise in C \ R+ to a certain analytic pair (h̃, k̃). Let
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us show that (h̃, k̃) = (h, k). It suffices to consider real negative z = −ξ > 0 (see
(3.62)). Write for the analog of (3.12) for νK(p) :

k(p) =

∫ ∞

0

λνK(p)(dλ)

h(p)λ+ 1

=

∫ ∞

0

λνK(p)(dλ)

h̃λ+ 1
+ (h̃− h(p))

∫ ∞

0

λ2νK(p)(dλ)

(h(p)λ+ 1)(h̃λ+ 1)
.

Putting here p = pj → ∞, we see that the l.h.s. converges to k̃, the first integral on

the right converges to the r.h.s of (3.12) with h̃ instead of h since νK(p) converges
weakly to νK , the integrand is bounded and continuous and the second integral is

bounded in p since h(p)(−ξ) > 0, h̃(−ξ) > 0 and the second moment of νK(p) is
bounded in p according to (3.102), hence, the second term vanishes as p = pj → ∞.

An analogous argument applied to (3.11) show (h̃, k̃) is a solution of (3.11) – (3.12)

and then the unique solvability of the system implies that (h̃, k̃) = (h, k). □
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